Recent and Future Measurements of the EMC Effect with Inclusive Electron Scattering

Dave Gaskell Jefferson Lab

Exposing Novel Quark and Gluon Effects in Nuclei April 16-20, 2018

Outline

- Overview of EMC Effect Measurements
 - Discovery and dedicated measurements
 - Known properties of EMC effect from inclusive data
- Recent inclusive results from JLab
 - Local density dependence
 - EMC and SRC
 - Nuclear dependence of R?
- Open questions
 - Establish origin of EMC-SRC correlation
 - Flavor dependence of EMC effect
- Future measurements (interspersed)

EMC Effect approaches Middle Age

- The EMC Effect has been with us for 35 years
- While the source of intense experimental and theoretical study, we have not yet achieved consensus on the origin of this effect. Why?
 - Nuclear physics isn't simple: early calculations that attempted to incorporate "trivial" nuclear physics used simple pictures (mean field, no high-momentum wave function components)
 - Modern calculations can use better nucleon distributions, but it's unclear how to treat binding, off-shell effects
- In the end, we want to understand the EMC effect in terms of the fundamental constituents (quarks and gluons) – this is even harder since our picture of the free nucleon is incomplete
- Experimentalist's job: Gather as much information as possible to learn about general properties of EMC Effect, look for ties to other nuclear effects

EMC Effect: Discovery and Confirmation

Original discovery by EMC collaboration \rightarrow Rise observed at small x emphasizes potential pitfalls in making first measurement

Confirmation from "data mining" early SLAC data already hinted at important property of effect \rightarrow minimal Q²/energy dependence

Bodek et al, PRL 50, 1431 (1983) and PRL 51, 534 (1983)

EMC Effect Measurements

Laboratory/collabor ation	Beam	Energy (GeV)	Target	Year
SLAC E139	е	8-24.5	D , ⁴ He, Be, C, Ca, Fe, Ag, Au	1994,1984
SLAC E140	е	3.75-19.5	-19.5 D , Fe, Au	
CERN NMC	μ	90	⁶ Li, ¹² C, ⁴⁰ Ca	1992
	μ	200	D , ⁴He, C, Ca	1991, 1995
	μ	200	Be, C , Al, Ca, Fe, Sn, Pb	1996
CERN BCDMS	μ	200	D, Fe	1987
	μ	280	D , N, Fe	1985
CERN EMC	μ	100-280	D , Cu	1993
	μ	280	D , C, Ca	1988
	μ	100-280	D , C, Cu, Sn	1988
	μ	280	H, D , Fe	1987
	μ	100-280	D, Fe	1983
FNAL E665	μ	490	D, Xe	1992
	μ	490	D, Xe	1992
DESY HERMES	е	27	D , ³ He, N, Kr	2000, 2003
Jefferson Lab	е	6	D , ³ He, ⁴ He, Be, C, Cu, Au	2009
	е	6	D , C, Cu, Au	2004 (thesis)

Jefferson Lab

Geesaman, Saito, and Thomas, Ann. Rev. Nucl. Sci. 45, 337 (1995) – updated

Properties of the EMC Effect

x Dependence

Jefferson Lab

7

x Dependence

Jefferson Lab

Properties of the EMC Effect

Global properties of the EMC effect

Q² Dependence of the EMC Effect

(*) Q² Dependence of Sn/C

Arneodo et al, Nucl. Phys. B 481, 23 (1996)

Q² Dependence at Large x, Low W

JLab found A/D ratios independent of Q^2 to surprisingly low W

C/D ratios at fixed x are Q^2 independent for

 W^2 >2 GeV² and Q²>3 GeV²

For E03-103, this extends to x=0.85

Properties of the EMC Effect

Global properties of the EMC effect

- 1. Universal x-dependence
- 2. Little Q² dependence
- 3. EMC effect increases with *A*
- → Anti-shadowing region shows little nuclear dependence

A-Dependence of EMC Effect

NMC: Arneodo et al, Nucl. Phys. B 481, 3 (1996)

A-Dependence of EMC Effect

 $< r^2 > =$ RMS electron scattering radius

SLAC E139: Gomez et al, PRD 49, 4348 (1992)

EMC Effect Measurements at Large x

SLAC E139 provided the most extensive and precise data set for x>0.2

Measured σ_A / σ_D for A=4 to 197 \rightarrow ⁴He, ⁹Be, C, ²⁷Al, ⁴⁰Ca, ⁵⁶Fe, ¹⁰⁸Ag, and ¹⁹⁷Au

 \rightarrow Best determination of the A dependence

→ Verified that the x dependence was roughly constant

Building on the SLAC data

- \rightarrow Higher precision data for ⁴He
- → Addition of ³He
- \rightarrow Precision data at large x

х_{вј}

JLab E03103

E03103 in Hall C at Jefferson Lab ran Fall 2004

- \rightarrow Measured EMC ratios for light nuclei (³He, ⁴He, Be, and C)
- \rightarrow Results consistent with previous world data
- \rightarrow Examined nuclear dependence a la E139

New definition of "size" of the EMC effect \rightarrow Slope of line fit from x=0.35 to 0.7

Definition assumes shape of the EMC effect is universal for nuclei

→Data *not inconsistent* with this assumption

→ Normalization errors mean we can only confirm this at 1-1.5% level

JLab E03103 Results

E03103 measured σ_A/σ_D for ³He, ⁴He, Be, C

→ 3 He, 4 He, C, EMC effect scales well with density

Scaled nuclear density = $(A-1)/A < \rho >$ \rightarrow remove contribution from struck nucleon

from ab initio few-body calculations
→ [S.C. Pieper and R.B. Wiringa, Ann. Rev.
Nucl. Part. Sci 51, 53 (2001)]

JLab E03103 Results

E03103 measured σ_A/σ_D for ³He, ⁴He, Be, C \rightarrow ³He, ⁴He, C, EMC dx effect scales well with density \rightarrow Be does not fit the trend

Scaled nuclear density = $(A-1)/A < \rho >$ \rightarrow remove contribution from struck nucleon

 $<\rho>$ from ab initio few-body calculations → [S.C. Pieper and R.B. Wiringa, Ann. Rev. Nucl. Part. Sci 51, 53 (2001)]

EMC Effect and Local Nuclear Density

⁹Be has low average density \rightarrow Large component of structure is $2\alpha+n$

 \rightarrow Most nucleons in tight, α -like configurations

EMC effect driven by *local* rather than *average* nuclear density

Jefferson Lab

"Local density" is appealing in that it makes sense intuitively – can this be tied to other observables?

EMC Effect and Short Range Correlations

son Lab

Weinstein et al observed linear correlation between size of EMC effect and Short Range Correlation "plateau"

 \rightarrow Observing Short Range Correlations requires measurements at x>1→ Reaction dynamics very different – DIS vs. QE scattering, why the same nuclear dependence?

EMC Effect and SRC

EMC-SRC connection became more intriguing with the addition of Be SRC data \rightarrow Both EMC and SRC display similar dependence on nuclear density

Jefferson Lab

Nuclear Dependence of EMC and SRCs

Interesting to look for common independent variable that is correlated with both EMC Effect and SRCs

- \rightarrow Various combinations of A-dependence
- → Average nuclear density
- \rightarrow Separation energy

No clear, definitive common independent variable (with available data)

Arrington et al, PRC 86, 065204 (2012)

Nuclear Dependence of EMC and SRCs

Can also try to examine/distinguish "high virtuality" (np-correlated pairs only) hypothesis, or "local density" (all pairs participate) hypothesis → Data do not favor one or the other strongly

Further Studies of the EMC Effect with Inclusive Electron Scattering

EMC effect has been studied extensively with inclusive electron scattering – what more can we learn?

- \rightarrow Improve precision for heavy targets at large x
- Additional light nuclei amenable to calculations with "exact" nuclear wave functions
- → Explore EMC-SRC connection further; A dependence at fixed N/P, N/P dependence at fixed A
- → Flavor dependence
- \rightarrow n/p ratio in nuclei at large x

E12-10-008: EMC effect in light→ heavy nuclei

Spokespersons: J. Arrington, A. Daniel, N. Fomin, D. Gaskell

E03-103: EMC at 6 GeV

- \rightarrow Focused on light nuclei
- → Large EMC effect for ${}^{9}\text{Be}$
- \rightarrow Local density/cluster effects?

J. Seely, et al., PRL 103, 202301 (2009)

E12-10-008: EMC effect at 12 GeV

- \rightarrow Higher Q², expanded range in x (both low and high x)
- → Light nuclei include ¹H, ²H, ³He, ⁴He, ⁶Li, ⁷Li, ⁹Be, ¹⁰B, ¹¹B, ¹²C
- → Heavy nuclei include ⁴⁰Ca, ⁴⁸Ca and Cu and additional heavy nuclei of particular interest for EMC-SRC correlation studies

E12-10-008 (EMC effect) and E12-06-105 (x>1)

- Both experiments use wide range of nuclear targets to study impact of cluster structure, separate mass and isospin dependence on SRCs, nuclear PDFs
- Experiments will use a common set of targets to provide more information in the EMC-SRC connection

Light nuclei: Reliable calculations of nuclear structure (e.g. clustering)

Heavier nuclei: Cover range of N/Z at ~fixed values of A

Heavy Nuclei at Large x

Precision for heavier nuclei at large x could be improved – NMC provides precision at low x, but poor statistics above x=0.2

S. Malace et al, Int.J.Mod.Phys. E23 (2014) no.08, 1430013

Flavor Dependence of the EMC Effect

Mean-field calculations predict a flavor dependent EMC effect for $N \neq Z$ nuclei Flavour dependent EMC ratios 1.2Gold Isovector-vector mean field (ρ) causes 1.1 u (d) quark to feel additional vector attraction (repulsion) in $N \neq Z$ nuclei 1 0.9Cloët, Bentz, and Thomas, PRL 102, R_A 0.8252301 (2009) u_A 0.7 u_0 d_A $Q^2 = 5.0 \,\mathrm{GeV^2}$ 0.60.20.40 0.60.81 x

Experimentally, this flavor dependence has not been observed directly

Flavor dependence could be measured using PVDIS, pion Drell-Yan, SIDIS, unpolarized EMC Effect...

Flavor dependence from ⁴⁰Ca and ⁴⁸Ca

CBT model predicts a ~3% effect for ⁴⁸Ca at x=0.6 $\rightarrow N/Z = 1.4$

Assuming no flavor dependence, difference between ⁴⁰Ca and ⁴⁸Ca should be less than 1% assuming SLAC E139 Adependent parametrization

Measurement of unpolarized EMC effect in ⁴⁰Ca and ⁴⁸Ca provides some sensitivity to possible flavor dependent effect

Χ

E12-10-008: Physics Reach

E12-10-008 outcomes

- 1. EMC Ratios of a variety of previously unmeasured nuclei
- 2. Additional nuclei to explore the EMC-SRC correlation in more detail (when combined with E12-06-105)
- Sensitivity to flavor dependence of EMC effect via measurements of ⁴⁰Ca and ⁴⁸Ca
- 4. n/p ratio in nuclei

JLab E03103 (6 GeV) – Heavy Targets

E03-103 also measured EMC ratios for Cu and Au – analysis at the relatively low 6 GeV beam energy complicated by *Coulomb Corrections*

Electrons scattering from nuclei can be accelerated/decelerated in the Coulomb field of the nucleus

→ This effect is NOT part of the hadronic structure of the nucleus we wish to study
 → Important to remove/correct for apparent changes in the cross section due to Coulomb effects

In a very simple picture – Coulomb field induces a change in kinematics in the reaction $E_{-} \rightarrow E_{-} + V_{0}$

$$E_e \rightarrow E_e + V_0$$

$$E_e' \rightarrow E_e' - V_0$$

$$V_0 = 3\alpha(Z-1)/2R$$

Electrostatic
 potential energy at center of nucleus

Coulomb Corrections in QE Processes

Importance of Coulomb Corrections in quasi-elastic processes well known

Distorted Wave Born Approximation calculations are possible – but difficult to apply to experimental cross sections

 \rightarrow Instead use *E*ffective *M*omentum *A*pproximation (*EMA*) tuned to agree with DWBA calculations

EMA:
$$E_e \rightarrow E_e + V_0$$
 $E_e' \rightarrow E_e' - V_0$ with "focusing factor" $F^2 = (1 - V_0/E)$
 $V_0 \rightarrow (4/5)V_0, V_0 = 3\alpha(Z-1)/2R$ $V_0 = 10$ MeV for Cu, 20 MeV for Au

[Aste et al, Eur.Phys.J.A26:167-178,2005, Europhys.Lett.67:753-759,2004]

E03103: EMC Effect in Gold

No Coulomb Corrections applied

E03103: EMC Effect in Gold

Coulomb corrections significantly larger for JLab data \rightarrow 5-10%, SLAC \rightarrow 1-2%

$R_A - R_D$

E03103 shows good agreement with E139 data for smaller A \rightarrow agreement not as good for heavier targets. Why?

$$\frac{d\sigma}{d\Omega dE'} = \frac{4\alpha^2 (E')^2}{Q^4 v} \left[F_2(v,Q^2) \cos^2 \frac{\theta}{2} + \frac{2}{Mv} F_1(v,Q^2) \sin^2 \frac{\theta}{2} \right]$$

 $\frac{d\sigma}{d\Omega dE'} = \Gamma \Big[\sigma_T(v, Q^2) + \varepsilon \sigma_L(v, Q^2) \Big] \qquad F_1 \alpha \sigma_T \quad F_2 \text{ linear combination of } \sigma_T \text{ and } \sigma_L$

Measurements of EMC effect often assume $\sigma_{A/}\sigma_D = F_2^A/F_2^D$ \rightarrow this is true if $R = \sigma_{L/}\sigma_T$ is the same for A and D

E139 data mostly at large ε – JLab data at small $\varepsilon \rightarrow$ if $R_A \neq R_D$, this might explain the difference

 \rightarrow Motivated us to re-examine earlier experiments that measured nuclear dependence of R

SLAC E140: *R*_{*A*}*-R*_{*D*}

E140 measured ε dependence of cross section ratios σ_A/σ_D for

x=0.2, 0.35, 0.5 $Q^2 = 1.0, 1.5, 2.5, 5.0 \text{ GeV}^2$ Iron and Gold targets

 $R_A - R_D$ consistent with zero within errors

[E140 Phys. Rev. D 49 5641 (1993)]

No Coulomb corrections were applied

R_A-R_D: E140 Re-analysis

Re-analyzed E140 data using Effective Momentum Approximation for published "Born"-level cross sections

→ Total consistency requires application to radiative corrections model as well ч⁰ _{0.1} $R_A - R_D = -2E - 4 + / - 0.02$ 0 -0.1 Dasu et al 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 O $R_A - R_D = -0.03 + / -0.02$ 0.1 0 -0.1 Dasu et al - with CC 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 х

Including Coulomb Corrections yields result 1.5 σ from zero when averaged over **x**

$R_A - R_D$ at x=0.5

Interesting result from E140 reanalysis motivated more detailed study $\rightarrow x=0.5$, Q²=5 GeV²

→ Include E139 Fe data
 → Include JLab data
 Cu, Q²=4-4.4 GeV²

Normalization uncertainties between experiments treated as extra point-to-point errors

No Coulomb Corrections \rightarrow combined analysis still yields $R_A-R_D \sim 0$

No Coulomb Corrections

$R_A - R_D$ at x=0.5

Interesting result from E140 reanalysis motivated more detailed study $\rightarrow x=0.5, Q^2=5 \text{ GeV}^2$

→ Include E139 Fe data
 → Include JLab data
 Cu, Q²=4-4.4 GeV²

Normalization uncertainties between experiments treated as extra point-to-point (between data sets) errors

Application of Coulomb Corrections $\rightarrow R_A - R_D 1.2 \sigma$ from zero

Uncertainties amplified due to need to combine data from different experiments Jefferson Lab

JLab Hall C E02-109/E04-001/E06-009

- → Precision extraction of separated structure functions on D, AI, C, Fe/Cu
- \rightarrow Search for nuclear effects in F_L, R
- \rightarrow Neutron and p-n moment extractions (compare to lattice calculations)

→ Allow study of quark-hadron duality for neutron, nuclei separated structure functions

F₂, F_L, R on Deuterium and heavier targets

$R_A - R_D$ at Large x

- Evidence is suggestive that $R_A R_D < 0$ at large x
 - Effect is not large depends on precision of the experimental data
 - Coulomb Corrections are crucial to observation/existence of this effect \rightarrow CC has significant dependence on electron energy, varies between ε settings
- Implications of $R_A R_D < 0$
 - $-F_1$, F_2 not modified in the same way in nuclei
 - What does this mean for our understanding of the EMC effect?
 - Parton model: $R=4 < K_T^2 > /Q^2$, $< K_T^2 >$ smaller for bound nucleons? [A. Bodek, PoS DIS2015 (2015) 026]
- Additional data (dedicated measurement) in DIS region required

JLab Experiment 12-14-002

Precision Measurements and Studies of a Possible Nuclear Dependence of $R=\sigma_L/\sigma_T$

[S. Malace, M.E. Christy, D. Gaskell, C. Keppel, P. Solvignon]

Measurements of nuclear dependence of structure functions, R_A - R_D via direct L-T separations

Detailed measurements of x and Q^2 dependence for Copper target \rightarrow A dependence at select kinematics using C and Au

JLab Experiment 12-14-002

Summary

- 35 years of inclusive experiments have provided a lot of information about the properties of the EMC Effect
- Recent results (experimental and theoretical) have provided a roadmap for future studies (JLab-12 GeV)
 - Additional light nuclei, where exact nuclear wave functions are available
 - Further exploration of the EMC-SRC connection
 - Flavor dependence
- Nuclear dependence of *R* at large *x* also needs a second look
 - Effects do not appear to be large, but re-analysis of existing data suggests that the assumption $R_A = R_D$ may not be valid for all kinematics
 - Investigation requires L-T separation experiment with good control of systematic uncertainties

EXTRA

Carbon/²H Ratio and Q² Dependence

Carbon/²H Ratio and Q² Dependence

Sensitivity to flavor dependence

Extracting the flavor dependence from the inclusive ratio relies on comparing the measured to the "expected" EMC effect in ⁴⁸Ca relative ⁴⁰Ca \rightarrow Can measure "size" of the EMC effect either at fixed x, or via "slope"

Ratio	R @ x=0.6	dR/dx (x=0.3-0.7)				
⁴⁸ Ca/ ⁴⁰ Ca (no flavor dep.)	0.993	1.050				
⁴⁸ Ca/ ⁴⁰ Ca (w/flavor dep.)	0.970 +/- 0.013 +/- 0.014	1.115 +/- 0.057 +/- 0.016				
stat + random sys						

The "no flavor dependence" ratio above uses the nuclear dependence of the EMC effect from SLAC E139 A-dependent fit

→ Other, plausible nuclear dependencies (e.g. $A^{-1/3}$) yield similar results, change the expected ratio by < 0.5% at fixed x=0.6, or by 2.5% for the slope

Flavor dependence and SRCs

S.C. Pieper and R.B. Wiringa, Ann. Rev. Nucl. Part. Sci 51, 53 (2001) High momentum nucleons from SRCs emerge from tensor part of *NN* interaction <u>– *np* pairs dominate</u>

→ Probability to find 2 nucleons "close" together nearly the same for *np, nn, pp*

For r_{12} < 1.7 fm: $P_{pp} = P_{nn} \approx 0.8 P_{np}$

If EMC effect due to *high virtuality*, flavor dependence of EMC effect emerges naturally

→ If EMC effect from *local density*, *np/pp/nn* pairs all contribute (roughly) equally

Flavor dependence and SRCs

 $u_A = \frac{Z\tilde{u}_p + N\tilde{d}_p}{\varDelta} \quad d_A = \frac{Z\tilde{d}_p + N\tilde{u}_p}{\varDelta}$

High momentum nucleons in the nucleus come primarily from *np* pairs

 \rightarrow The relative probability to find a high momentum proton is larger than for neutron for N>Z nuclei

Under the assumption the EMC effect comes from "high virtuality" (high momentum nucleons), effect driven by protons (u-quark dominates) \rightarrow similar flavor dependence is seen in some "mean-field" approaches

Testing Coulomb Corrections with Electrons

Coulomb corrections can be tested by measuring target ratios at fixed x and ε \rightarrow Varying Q² allows us to change E/E' and hence size of CC

Fixed **x** required due to EMC effect

$$\frac{\sigma_A}{\sigma_D} = \frac{F_2^A (1 + \epsilon R_A)(1 + R_D)}{F_2^D (1 + R_A)(1 + \epsilon R_D)}$$

Fixed ϵ eliminates potential dependence on R_A - R_D

EMC effect measurements have shown little or no dependence on Q^2

E12-14-002 Coulomb Corrections Test

Golo	d target	x=0.5				
3	Q ² (GeV ²)	E (GeV)	E' (GeV)	θ (deg.)	W (GeV)	C _{Coulomb}
0.2	3.48	4.4	0.69	64.6	2.08	11.6%
0.2	9.03	11.0	1.38	45.5	3.10	6.2%
0.7	2.15	4.4	2.11	27.9	1.74	3.5%
0.7	5.79	11.0	4.83	19.0	2.58	1.9%

CC test will measure precise Au/D ratios \rightarrow 2 shifts (16 hours) at 60 µA

Statistics goals: 100k events for deuterium, 50k for gold

- \rightarrow 0.55% uncertainty in ratio (statistics)
- → Effect is potentially large at these kinematics, but want to test to high precision to minimize contribution to point-to-point uncertainties

E12-14-002 Coulomb Corrections Test

CC test will measure precise Au/D ratios \rightarrow 2 shifts (16 hours) at 60 µA

Jefferson Lab Assume point-to-point uncertainty ~ 1% - normalization uncertainty not shown 54

E12-10-008 in Experimental Hall C

Spectrometers

HMS:

 $d\Omega \sim 6 \text{ msr}, P_0 = 0.5 - 7 \text{ GeV/c}$ $\theta_0 = 10.5 \text{ to } 80 \text{ degrees}$ e ID via calorimeter and gas Cerenkov

SHMS:

 $d\Omega \sim 4 \text{ msr}, P_0 = 1 - 11 \text{ GeV/c}$ $\theta_0 = 5.5 \text{ to } 40 \text{ degrees}$ e ID via heavy gas Cerenkov and calorimeter

