Physics interplay between FCC-ee & FCC-hh (with a focus on QCD & Higgs)

LFC21 Strong Interactions from QCD to New Strong Dynamics at LHC & Future Colliders ECT* Trento, Sept 2021

FCC David d'Enterria (CERN)

Open questions in the SM (1)

$$\mathcal{L} = -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{8} tr(\mathbf{W}_{\mu\nu} \mathbf{W}^{\mu\nu}) - \frac{1}{2} tr(\mathbf{G}_{\mu\nu} \mathbf{G}^{\mu\nu}) \qquad [\text{Gauge interactions: U(1)}_{\gamma}, \text{SU(2)}_{L}, \text{SU(3)}_{c}] \\ + (\bar{\nu}_{L}, \bar{e}_{L}) \tilde{\sigma}^{\mu} i D_{\mu} \begin{pmatrix} \nu_{L} \\ e_{L} \end{pmatrix} + \bar{e}_{R} \sigma^{\mu} i D_{\mu} e_{R} + \bar{\nu}_{R} \sigma^{\mu} i D_{\mu} \nu_{R} + (\text{h.c.}) \qquad [\text{Lepton dynamics}] \\ \hline -\frac{\sqrt{2}}{v} \left[(\bar{\nu}_{L}, \bar{e}_{L}) \phi M^{e} e_{R} + \bar{e}_{R} \bar{M}^{e} \bar{\phi} \begin{pmatrix} \nu_{L} \\ e_{L} \end{pmatrix} \right] - \frac{\sqrt{2}}{v} \left[(-\bar{e}_{L}, \bar{\nu}_{L}) \phi^{*} M^{\nu} \nu_{R} + \bar{\nu}_{R} \bar{M}^{\nu} \phi^{T} \begin{pmatrix} -e_{L} \\ \nu_{L} \end{pmatrix} \right] \left[\text{Lepton masses} \right] \\ + (\bar{u}_{L}, \bar{d}_{L}) \tilde{\sigma}^{\mu} i D_{\mu} \begin{pmatrix} u_{L} \\ d_{L} \end{pmatrix} + \bar{u}_{R} \sigma^{\mu} i D_{\mu} u_{R} + \bar{d}_{R} \sigma^{\mu} i D_{\mu} d_{R} + (\text{h.c.}) \qquad [\text{Quark dynamics}] \\ \hline -\frac{\sqrt{2}}{v} \left[(\bar{u}_{L}, \bar{d}_{L}) \phi M^{d} d_{R} + \bar{d}_{R} \bar{M}^{d} \bar{\phi} \begin{pmatrix} u_{L} \\ d_{L} \end{pmatrix} \right] - \frac{\sqrt{2}}{v} \left[(-\bar{d}_{L}, \bar{u}_{L}) \phi^{*} M^{u} u_{R} + \bar{u}_{R} \bar{M}^{u} \phi^{T} \begin{pmatrix} -d_{L} \\ u_{L} \end{pmatrix} \right] \left[\text{Quark masses} \right] \\ + (\bar{D}_{\mu} \phi) D^{\mu} \phi - m_{h}^{2} [\bar{\phi} \phi - v^{2}/2]^{2} / 2v^{2}. \qquad [\text{Higgs dynamics \& mass]}$$

Light masses: Higgs Yukawa mechanism for lightest fermions (q,e) unproven Type of Higgs coupling to Dirac/Majorana v's?

Open questions in the SM (2)

$$\mathcal{L} = -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{8} tr(\mathbf{W}_{\mu\nu} \mathbf{W}^{\mu\nu}) - \frac{1}{2} tr(\mathbf{G}_{\mu\nu} \mathbf{G}^{\mu\nu}) \qquad [\text{Gauge interactions: U(1)}_{Y}, \text{SU(2)}_{L}, \text{SU(3)}_{c}] \\ + (\bar{\nu}_{L}, \bar{e}_{L}) \tilde{\sigma}^{\mu} i D_{\mu} \begin{pmatrix} \nu_{L} \\ e_{L} \end{pmatrix} + \bar{e}_{R} \sigma^{\mu} i D_{\mu} e_{R} + \bar{\nu}_{R} \sigma^{\mu} i D_{\mu} \nu_{R} + (\text{h.c.}) \qquad [\text{Lepton dynamics}] \\ - \frac{\sqrt{2}}{v} \left[(\bar{\nu}_{L}, \bar{e}_{L}) \phi M^{e} e_{R} + \bar{e}_{R} \bar{M}^{e} \bar{\phi} \begin{pmatrix} \nu_{L} \\ e_{L} \end{pmatrix} \right] - \frac{\sqrt{2}}{v} \left[(-\bar{e}_{L}, \bar{\nu}_{L}) \phi^{*} M^{\nu} \nu_{R} + \bar{\nu}_{R} \bar{M}^{\nu} \phi^{T} \begin{pmatrix} -e_{L} \\ \nu_{L} \end{pmatrix} \right] \left[\text{Lepton masses} \right] \\ + (\bar{u}_{L}, \bar{d}_{L}) \tilde{\sigma}^{\mu} i D_{\mu} \begin{pmatrix} u_{L} \\ d_{L} \end{pmatrix} + \bar{u}_{R} \sigma^{\mu} i D_{\mu} u_{R} + \bar{d}_{R} \sigma^{\mu} i D_{\mu} d_{R} + (\text{h.c.}) \qquad [\text{Quark dynamics}] \\ - \frac{\sqrt{2}}{v} \left[(\bar{u}_{L}, \bar{d}_{L}) \phi M^{d} d_{R} + \bar{d}_{R} \bar{M}^{d} \bar{\phi} \begin{pmatrix} u_{L} \\ d_{L} \end{pmatrix} \right] - \frac{\sqrt{2}}{v} \left[(-\bar{d}_{L}, \bar{u}_{L}) \phi^{*} M^{u} u_{R} + \bar{u}_{R} \bar{M}^{u} \phi^{T} \begin{pmatrix} -d_{L} \\ u_{L} \end{pmatrix} \right] \right] Quark masses] \\ + (\bar{u}_{L}, \bar{d}_{L}) \phi M^{d} d_{R} + \bar{d}_{R} \bar{M}^{d} \bar{\phi} \begin{pmatrix} u_{L} \\ d_{L} \end{pmatrix} \right] - \frac{\sqrt{2}}{v} \left[(-\bar{d}_{L}, \bar{u}_{L}) \phi^{*} M^{u} u_{R} + \bar{u}_{R} \bar{M}^{u} \phi^{T} \begin{pmatrix} -d_{L} \\ u_{L} \end{pmatrix} \right] \right] Quark masses]$$

 $+\overline{(D_{\mu}\phi)}D^{\mu}\phi - m_{h}^{2}[\bar{\phi}\phi - v^{2}/2]^{2}/2v^{2}$. [Higgs dynamics & mass]

X Light masses: Higgs Yukawa mechanism for lightest fermions (q,e) unproven Type of Higgs coupling to Dirac/Majorana v's?

× <u>Flavour problems</u>: Matter-antimater asymm., fermion masses/mixings pattern

Open questions in the SM (3)

$$\mathcal{L} = -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{8} tr(\mathbf{W}_{\mu\nu} \mathbf{W}^{\mu\nu}) - \frac{1}{2} tr(\mathbf{G}_{\mu\nu} \mathbf{G}^{\mu\nu})$$
 [Gauge interactions: U(1)_Y, SU(2)_L, SU(3)_c]
+ $(\bar{\nu}_L, \bar{e}_L) \tilde{\sigma}^{\mu} i D_{\mu} \begin{pmatrix} \nu_L \\ e_L \end{pmatrix} + \bar{e}_R \sigma^{\mu} i D_{\mu} e_R + \bar{\nu}_R \sigma^{\mu} i D_{\mu} \nu_R + (h.c.)$ [Lepton dynamics]
 $-\frac{\sqrt{2}}{v} \left[(\bar{\nu}_L, \bar{e}_L) \phi M^e e_R + \bar{e}_R \bar{M}^e \bar{\phi} \begin{pmatrix} \nu_L \\ e_L \end{pmatrix} \right] - \frac{\sqrt{2}}{v} \left[(-\bar{e}_L, \bar{\nu}_L) \phi^* M^{\nu} \nu_R + \bar{\nu}_R \bar{M}^{\nu} \phi^T \begin{pmatrix} -e_L \\ \nu_L \end{pmatrix} \right]$ [Lepton masses]
+ $(\bar{u}_L, \bar{d}_L) \tilde{\sigma}^{\mu} i D_{\mu} \begin{pmatrix} u_L \\ d_L \end{pmatrix} + \bar{u}_R \sigma^{\mu} i D_{\mu} u_R + \bar{d}_R \sigma^{\mu} i D_{\mu} d_R + (h.c.)$ [Quark dynamics]
 $-\frac{\sqrt{2}}{v} \left[(\bar{u}_L, \bar{d}_L) \phi M^d d_R + \bar{d}_R \bar{M}^d \bar{\phi} \begin{pmatrix} u_L \\ d_L \end{pmatrix} \right] - \frac{\sqrt{2}}{v} \left[(-\bar{d}_L, \bar{u}_L) \phi^* M^u u_R + \bar{u}_R \bar{M}^u \phi^T \begin{pmatrix} -d_L \\ u_L \end{pmatrix} \right]$ [Quark masses]
+ $\overline{(D_{\mu}\phi)} D^{\mu} \phi \left[-\frac{m_h^2 [\bar{\phi}\phi - v^2/2]^2/2v^2}{2} \right]$ [Higgs dynamics & mass]

Light masses: Higgs Yukawa mechanism for lightest fermions (q,e) unproven. Type of Higgs coupling to Dirac/Majorana v's?

× <u>Flavour problems</u>: Matter-antimater asymm., fermion masses/mixings pattern

× <u>Higgs potential</u>: Higgs trilinear & quartic self-couplings unknown.

Open questions in the SM (4)

$$\mathcal{L} = -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{8} tr(\mathbf{W}_{\mu\nu} \mathbf{W}^{\mu\nu}) - \frac{1}{2} tr(\mathbf{G}_{\mu\nu} \mathbf{G}^{\mu\nu}) \qquad [\text{Gauge interactions: U(1)}_{\gamma}, \text{SU(2)}_{L}, \text{SU(3)}_{c}] \\ + (\bar{\nu}_{L}, \bar{e}_{L}) \tilde{\sigma}^{\mu} i D_{\mu} \begin{pmatrix} \nu_{L} \\ e_{L} \end{pmatrix} + \bar{e}_{R} \sigma^{\mu} i D_{\mu} e_{R} + \bar{\nu}_{R} \sigma^{\mu} i D_{\mu} \nu_{R} + (\text{h.c.}) \qquad [\text{Lepton dynamics}] \\ - \frac{\sqrt{2}}{v} \left[(\bar{\nu}_{L}, \bar{e}_{L}) \phi M^{e} e_{R} + \bar{e}_{R} \bar{M}^{e} \phi \begin{pmatrix} \nu_{L} \\ e_{L} \end{pmatrix} \right] - \frac{\sqrt{2}}{v} \left[(-\bar{e}_{L}, \bar{\nu}_{L}) \phi^{*} M^{\nu} \nu_{R} + \bar{\nu}_{R} \bar{M}^{\nu} \phi^{T} \begin{pmatrix} -e_{L} \\ \nu_{L} \end{pmatrix} \right] \qquad [\text{Lepton masses}] \\ + (\bar{u}_{L}, \bar{d}_{L}) \tilde{\sigma}^{\mu} i D_{\mu} \begin{pmatrix} u_{L} \\ d_{L} \end{pmatrix} + \bar{u}_{R} \sigma^{\mu} i D_{\mu} u_{R} + \bar{d}_{R} \sigma^{\mu} i D_{\mu} d_{R} + (\text{h.c.}) \qquad [\text{Quark dynamics}] \\ - \frac{\sqrt{2}}{v} \left[(\bar{u}_{L}, \bar{d}_{L}) \phi M^{d} d_{R} + \bar{d}_{R} \bar{M}^{d} \phi \begin{pmatrix} u_{L} \\ d_{L} \end{pmatrix} \right] - \frac{\sqrt{2}}{v} \left[(-\bar{d}_{L}, \bar{u}_{L}) \phi^{*} M^{u} u_{R} + \bar{u}_{R} \bar{M}^{u} \phi^{T} \begin{pmatrix} -d_{L} \\ u_{L} \end{pmatrix} \right] \qquad [\text{Quark masses}] \\ + (\bar{D}_{\mu} \phi) D^{\mu} \phi \left[- \frac{m_{h}^{2} [\bar{\phi} \phi - v^{2}/2]^{2} / 2v^{2}} \right] \qquad [\text{Higgs dyn. \& mass]} \qquad + \text{new particles/symmetries ?}$$

Light masses: Higgs Yukawa mechanism for lightest fermions (q,e) unproven. Type of Higgs coupling to Dirac/Majorana v's?

× Flavour problems: Matter-antimater asymm., fermion masses/mixings pattern

- **×** <u>Higgs potential</u>: Higgs trilinear & quartic self-couplings unknown
- **×** <u>Fine-tuning</u>: Higgs mass virtual corrections «untamed» up to Planck scale

Open questions in the SM (5)

$$\mathcal{L} = -\frac{1}{4}B_{\mu\nu}B^{\mu\nu} - \frac{1}{8}tr(\mathbf{W}_{\mu\nu}\mathbf{W}^{\mu\nu}) - \frac{1}{2}tr(\mathbf{G}_{\mu\nu}\mathbf{G}^{\mu\nu}) \qquad [\text{Gauge interactions: U(1)}_{Y}, \text{SU(2)}_{L}, \text{SU(3)}_{c}] \\ + (\bar{\nu}_{L}, \bar{e}_{L})\tilde{\sigma}^{\mu}iD_{\mu}\begin{pmatrix}\nu_{L}\\e_{L}\end{pmatrix} + \bar{e}_{R}\sigma^{\mu}iD_{\mu}e_{R} + \bar{\nu}_{R}\sigma^{\mu}iD_{\mu}\nu_{R} + (\text{h.c.}) \qquad [\text{Lepton dynamics}] \\ - \frac{\sqrt{2}}{v}\left[(\bar{\nu}_{L}, \bar{e}_{L})\phi M^{e}e_{R} + \bar{e}_{R}\bar{M}^{e}\bar{\phi}\begin{pmatrix}\nu_{L}\\e_{L}\end{pmatrix}\right] - \frac{\sqrt{2}}{v}\left[(-\bar{e}_{L}, \bar{\nu}_{L})\phi^{*}M^{\nu}\nu_{R} + \bar{\nu}_{R}\bar{M}^{\nu}\phi^{T}\begin{pmatrix}-e_{L}\\\nu_{L}\end{pmatrix}\right] \qquad [\text{Lepton masses}] \\ + (\bar{u}_{L}, \bar{d}_{L})\tilde{\sigma}^{\mu}iD_{\mu}\begin{pmatrix}u_{L}\\d_{L}\end{pmatrix} + \bar{u}_{R}\sigma^{\mu}iD_{\mu}u_{R} + \bar{d}_{R}\sigma^{\mu}iD_{\mu}d_{R} + (\text{h.c.}) \qquad [\text{Quark dynamics}] \\ - \frac{\sqrt{2}}{v}\left[(\bar{u}_{L}, \bar{d}_{L})\phi M^{d}d_{R} + \bar{d}_{R}\bar{M}^{d}\bar{\phi}\begin{pmatrix}u_{L}\\d_{L}\end{pmatrix}\right] - \frac{\sqrt{2}}{v}\left[(-\bar{d}_{L}, \bar{u}_{L})\phi^{*}M^{u}u_{R} + \bar{u}_{R}\bar{M}^{u}\phi^{T}\begin{pmatrix}-d_{L}\\u_{L}\end{pmatrix}\right] \qquad [\text{Quark masses}] \\ + (\overline{D_{\mu}\phi})D^{\mu}\phi - m_{h}^{2}[\bar{\phi}\phi - v^{2}/2]^{2}/2v^{2}. \qquad [\text{Higgs dyn. \& mass}] \qquad (+ \text{ new particles/symmetries ?})$$

Light masses: Higgs Yukawa mechanism for lightest fermions (q,e) unproven. Type of Higgs coupling to Dirac/Majorana v's?

× <u>Flavour problems</u>: Matter-antimater asymm., fermion masses/mixings pattern

- **×** <u>Higgs potential</u>: Higgs trilinear & quartic self-couplings unknown
- **×** <u>Fine-tuning</u>: Higgs mass virtual corrections «untamed» up to Planck scale
- Dark matter: SM describes only 4% of Universe (visible fermions+bosons): Higgs should couple to any massive dark world.

Open questions in the SM (6,7,8,...)

$$\mathcal{L} = -\frac{1}{4}B_{\mu\nu}B^{\mu\nu} - \frac{1}{8}tr(\mathbf{W}_{\mu\nu}\mathbf{W}^{\mu\nu}) - \frac{1}{2}tr(\mathbf{G}_{\mu\nu}\mathbf{G}^{\mu\nu}) \qquad \text{[Gauge interactions: U(1)_{Y}, SU(2)_{L}, SU(3)_{c}]} \\ + (\bar{\nu}_{L}, \bar{e}_{L})\tilde{\sigma}^{\mu}iD_{\mu}\begin{pmatrix}\nu_{L}\\e_{L}\end{pmatrix} + \bar{e}_{R}\sigma^{\mu}iD_{\mu}e_{R} + \bar{\nu}_{R}\sigma^{\mu}iD_{\mu}\nu_{R} + (h.c.) \qquad \text{[Lepton dynamics]} \\ - \frac{\sqrt{2}}{v}\left[\left(\bar{\nu}_{L}, \bar{e}_{L}\right)\phi M^{e}e_{R} + \bar{e}_{R}\bar{M}^{e}\bar{\phi}\begin{pmatrix}\nu_{L}\\e_{L}\end{pmatrix}\right] - \frac{\sqrt{2}}{v}\left[\left(-\bar{e}_{L}, \bar{\nu}_{L}\right)\phi^{*}M^{\nu}\nu_{R} + \bar{\nu}_{R}\bar{M}^{\nu}\phi^{T}\begin{pmatrix}-e_{L}\\\nu_{L}\end{pmatrix}\right] \qquad \text{[Lepton masses]} \\ + (\bar{u}_{L}, \bar{d}_{L})\tilde{\sigma}^{\mu}iD_{\mu}\begin{pmatrix}u_{L}\\d_{L}\end{pmatrix} + \bar{u}_{R}\sigma^{\mu}iD_{\mu}u_{R} + \bar{d}_{R}\sigma^{\mu}iD_{\mu}d_{R} + (h.c.) \qquad \text{[Quark dynamics]} \\ - \frac{\sqrt{2}}{v}\left[\left(\bar{u}_{L}, \bar{d}_{L}\right)\phi M^{d}d_{R} + \bar{d}_{R}\bar{M}^{d}\bar{\phi}\begin{pmatrix}u_{L}\\d_{L}\end{pmatrix}\right] - \frac{\sqrt{2}}{v}\left[\left(-\bar{d}_{L}, \bar{u}_{L}\right)\phi^{*}M^{u}u_{R} + \bar{u}_{R}\bar{M}^{u}\phi^{T}\begin{pmatrix}-d_{L}\\u_{L}\end{pmatrix}\right] \qquad \text{[Quark masses]} \\ + \overline{(D_{\mu}\phi)}D^{\mu}\phi - m_{h}^{2}[\bar{\phi}\phi - v^{2}/2]^{2}/2v^{2}. \qquad \text{[Higgs dyn. \& mass]} \qquad \text{(+ new particles/symmetries ?)} \end{cases}$$

X Light masses: Higgs Yukawa mechanism for lightest fermions (q,e) unproven Type of Higgs coupling to Dirac/Majorana v's?

× <u>Flavour problems</u>: Matter-antimater asymm., fermion masses/mixings pattern

- **×** <u>Higgs potential</u>: Higgs trilinear & quartic self-couplings unknown
- **×** <u>Fine-tuning</u>: Higgs mass virtual corrections «untamed» up to Planck scale
- Dark matter: SM describes only 4% of Universe (visible fermions+bosons): Higgs should couple to any massive dark world.
- **×** <u>Plus many others</u>: Strong CP problem, dark energy, inflation,...

Open questions in the SM

$$\mathcal{L} = -\frac{1}{4}B_{\mu\nu}B^{\mu\nu} - \frac{1}{8}tr(\mathbf{W}_{\mu\nu}\mathbf{W}^{\mu\nu}) - \frac{1}{2}tr(\mathbf{G}_{\mu\nu}\mathbf{G}^{\mu\nu}) \qquad \text{[Gauge interactions: U(1)_{Y}, SU(2)_{L}, SU(3)_{C}]} \\ + (\bar{\nu}_{L}, \bar{e}_{L})\tilde{\sigma}^{\mu}iD_{\mu}\begin{pmatrix}\nu_{L}\\e_{L}\end{pmatrix} + \bar{e}_{R}\sigma^{\mu}iD_{\mu}e_{R} + \bar{\nu}_{R}\sigma^{\mu}iD_{\mu}\nu_{R} + (h.c.) \qquad \text{[Lepton dynamics]} \\ - \frac{\sqrt{2}}{v}\left[\left(\bar{\nu}_{L}, \bar{e}_{L}\right)\phi M^{e}e_{R} + \bar{e}_{R}\bar{M}^{e}\bar{\phi}\begin{pmatrix}\nu_{L}\\e_{L}\end{pmatrix}\right] - \frac{\sqrt{2}}{v}\left[\left(-\bar{e}_{L}, \bar{\nu}_{L}\right)\phi^{*}M^{\nu}\nu_{R} + \bar{\nu}_{R}\bar{M}^{\nu}\phi^{T}\begin{pmatrix}-e_{L}\\\nu_{L}\end{pmatrix}\right] \qquad \text{[Lepton masses]} \\ + (\bar{u}_{L}, \bar{d}_{L})\tilde{\sigma}^{\mu}iD_{\mu}\begin{pmatrix}u_{L}\\d_{L}\end{pmatrix} + \bar{u}_{R}\sigma^{\mu}iD_{\mu}u_{R} + \bar{d}_{R}\sigma^{\mu}iD_{\mu}d_{R} + (h.c.) \qquad \text{[Quark dynamics]} \\ - \frac{\sqrt{2}}{v}\left[\left(\bar{u}_{L}, \bar{d}_{L}\right)\phi M^{d}d_{R} + \bar{d}_{R}\bar{M}^{d}\bar{\phi}\begin{pmatrix}u_{L}\\d_{L}\end{pmatrix}\right] - \frac{\sqrt{2}}{v}\left[\left(-\bar{d}_{L}, \bar{u}_{L}\right)\phi^{*}M^{u}u_{R} + \bar{u}_{R}\bar{M}^{u}\phi^{T}\begin{pmatrix}-d_{L}\\u_{L}\end{pmatrix}\right] \qquad \text{[Quark masses]} \\ + \overline{(D_{\mu}\phi)}D^{\mu}\phi - m_{h}^{2}[\bar{\phi}\phi - v^{2}/2]^{2}/2v^{2}. \qquad \text{[Higgs dyn. \& mass]} \qquad \text{(+ new particles/symmetries ?)} \end{cases}$$

Light masses: Higgs Yukawa mechanism for lightest fermions (q,e) unproven. Type of Higgs coupling to Dirac/Majorana v's?

- **×** <u>Flavour problems</u>: Matter-antimater asymm., fermion masses/mixings pattern
- **×** <u>Higgs potential</u>: Higgs trilinear & quartic self-couplings unknown
- **×** <u>Fine-tuning</u>: Higgs mass virtual corrections «untamed» up to Planck scale
- X Dark matter: SM describes only 4% of Universe (visible fermions+bosons):
- ✗ <u>Plus many others</u>: Strong CP problem, dark energy, inflation,...

Some/Most(!?) of these questions will NOT be fully answered at the LHC!

CERN Future Circular Collider (FCC) project

Solving those HEP fundamental problems requires new e⁺e⁻&pp collider:

FCC: 100 km ring, Nb₃Sn 16-T magnets, LHC used as injector:

 pp at √s=100 TeV, L~2x10³⁵, L_{int}=2 ab⁻¹/yr (also pPb, PbPb at √s=39–63 TeV)

e⁺e⁻ before pp at √s=90–350 GeV
 L_{int} ≈ 5 ab⁻¹ Higgs factory

~1.2 million Higgs in 3+5 years. Plus 10^{12} Zs(!), 10^{8} Ws(!), $0.5 \cdot 10^{6}$ tops

CERN Future Circular Collider

European Strategy for Particle Physics Update (2020) mandate:

"Europe, together with its international partners, should investigate the technical and financial feasibility of a future hadron collider at CERN with a centre-of-mass energy of at least 100 TeV, and with an electron-positron Higgs and electroweak factory as a possible first stage. Such a feasibility study of the colliders and related infrastructure should be established as a global endeavour and be completed on the timescale of the next Strategy update."

LFC21, ECT*-Trento, Sept'21

David d'Enterria (CERN)

CERN Future Circular Collider

June 2021: FCC Feasibility Study (2021-2025) organization approved unanimously by CERN council.

Comprehensive long-term CERN program maximizing physics opportunities: **Stage 1 (2040–): FCC-ee (Z, W, H, tt)**: Higgs, EWK & top factory with highest luminosities. **Stage 2 (2065–): FCC-hh (~100 TeV)**: Energy frontier machine, with ion & e-h options.

- Complementary physics: Searches via ultraprecise SM tests vs. high mass/ p_{T} searches
- FCC builds upon and exploits CERN's existing lab/infrastructure/know-how.
- Common tunnel, civil engineering and technical infrastructures.
- Integrated project allows seamless HEP continuation after HL-LHC

David d'Enterria (CERN)

Future e⁺e⁻ colliders luminosities

■ FCC-ee features lumis a few times larger than other machines over 90–300 GeV
 ■ FCC-ee: unparalleled Z, W, jets, *τ*,... data sets: Negligible stat. uncertainties for SM (Higgs, QCD, EWK, flavour,...) and indirect BSM studies
 LFC21, ECT*-Trento, Sept'21

CERN Future Circular Collider schedule

FCC integrated project technical schedule:

Physics at FCC e⁺e⁻ & pp machines

(1) <u>QCD</u>: α_s coupling

(2) <u>QCD</u>: Parton Distribution Functions

(3) <u>QCD</u>: Jet substructure & flavour tagging

(4) <u>QCD</u>: Non-perturbative regime

(5) Higgs sector

(6) BSM searches

QCD = Key piece at future ee, pp colliders

- Though QCD is not per se the main driving force behind future colliders, QCD is crucial for many pp, ee measurements (signals & backgrounds):
 - High-precision α_s : Affects all x-sections & decays (esp. Higgs, top, EWPOs).
 - NⁿLO corrs., NⁿLL resummations: Affects all pQCD x-sections & decays.
 - High-precision PDFs: Affects all precision W,Z,H (mid-x) measurements & all searches (high-x) in pp collisions.
 - Heavy-Quark/Quark/Gluon separation (jet substructure, boosted topologies..): Needed for all precision SM measurements & BSM searches with final jets.
 - Semihard QCD (low-x gluon saturation, multiple hard parton interactions,...):

Leading x-sections at FCC-pp (Note: $Q_0 \sim 10$ GeV at 100 TeV).

• Non-perturbative QCD: Affects final-states with jets: Colour reconnection, $e^+e^- \rightarrow Z$, WW, ttbar $\rightarrow 4j$, 6j... (m_w , m_{top} extractions). Parton hadronization,...

QCD in e⁺e⁻ collisions

e⁺e⁻ collisions provide an extremely clean environment with fullycontrolled initial-state to very precisely probe q,g dynamics:

Advantages compared to p-p collisions:

- QED initial-state with known kinematics
- Controlled QCD radiation (only in final-state)
- Well-defined heavy-Q, quark, gluon jets
- Smaller non-pQCD uncertainties: no PDFs, no QCD "underlying event",...
 Direct clean parton fragmentation & hadroniz.
 - Plus QCD physics in $\gamma\gamma$ (EPA) collisions:

Available QCD samples at FCC-ee

FCC: e^+e^- at $\sqrt{s} = 90,(125),160,240,350$ GeV provides huge jets data sets

Working point	Z, years 1-2	Z, later	WW	HZ	tī		(s-channel H)
$\sqrt{s} \; (\text{GeV})$	88, 91,	94	157, 163	240	340-350	365	m_{H}
Lumi/IP $(10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1})$	115	230	28	8.5	0.95	1.55	(30)
Lumi/year $(ab^{-1}, 2 \text{ IP})$	24	48	6	1.7	0.2	0.34	(7)
Physics goal (ab^{-1})	150		10	5	0.2	1.5	(20)
Run time (year)	2	2	2	3	1	4	(3)
		_		10^6 HZ	10^{6} t	tī	
Number of events	5×10^{1}	2 Z	10^8 WW	+	+200k	HZ	(6000)
				$25k\;WW \to H$	$+50 \mathrm{kWV}$	$V \to H$	

Approximate number of QCD jets:

LFC2	21, ECT*-Trento, Sept'21		17/66			David d'Enterria (CERN)
	# of heavy-Q jets/yr:	$\mathcal{O}(10^{12})$	$O(10^{7})$	<i>O</i> (10⁵)	$\mathcal{O}(10^6)$	$\mathcal{O}(10^8)_{\rm bckgds}$
	# of gluon-jets/year:	$\mathcal{O}(10^{11})$	$\mathcal{O}(10^6)$	$O(10^{4})$	<i>O</i> (10 ³)	$\mathcal{O}(10^7)_{bckgds}$
	# of light-q jets/year:	$O(10^{12})$	$O(10^{7})$	$O(10^{5})$	-	$\mathcal{O}(10^8)_{\mathrm{bckgds}}$

Physics at FCC e⁺e⁻ & pp machines

(1) <u>QCD</u>: α_c coupling

- (2) <u>QCD</u>: Parton Distribution Functions
- (3) QCD: Jet substructure & flavour tagging
- (4) QCD: Non-perturbative regime
- (5) Higgs sector
- (6) BSM searches

QCD coupling α_s

- Determines strength of the strong interaction between quarks & gluons.
- → Single free parameter of QCD in the $m_q \rightarrow 0$ limit.
- Determined at a ref. scale (Q=m₇), decreases as $\alpha_s \sim \ln(Q^2/\Lambda^2)^{-1} \Lambda \sim 0.2$ GeV

QCD coupling α_s

- Determines strength of the strong interaction between quarks & gluons.
- → Single free parameter of QCD in the $m_a \rightarrow 0$ limit.
- Determined at a ref. scale (Q=m₇), decreases as $\alpha_s \sim \ln(Q^2/\Lambda^2)^{-1} \Lambda \sim 0.2 \text{ GeV}$

• Least precisely known of all interaction couplings ! $\delta \alpha \sim 10^{-10} \ll \delta G_{_{F}} \ll 10^{-7} \ll \delta G \sim 10^{-5} \ll \delta \alpha_{_{s}} \sim 10^{-3}$

Importance of the QCD coupling α_s

Impacts all QCD x-sections & decays (H), precision top & parametric EWPO:

					Msbar mass error	budget (from three	shold scan)	\frown
Process	σ (pb)	$\delta \alpha_s(\%)$	PDF + $\alpha_s(\%)$	Scale(%)	$(\delta M_t^{ m SD-low})^{ m exp}$	$(\delta M_t^{ m SD-low})^t$	theo $(\delta \overline{m}_t(\overline{m}_t))^{\text{conversion}}$	$\left(\left(\delta \overline{m}_t(\overline{m}_t) \right)^{\alpha_s} \right)$
ggH	49.87	± 3.7	-6.2 +7.4	-2.61 + 0.32	40 MeV	50 MeV	7 – 23 MeV	70 MeV
ttH	0.611	± 3.0	± 8.9	-9.3 + 5.9	\Rightarrow improvement	t in α_s crucial		$\delta \alpha_s(M_z) = 0.001$
Channel	$M_{ m H}[{ m GeV}]$	$\delta \alpha_s(\%)$	Δm_b Δ	Δm_c	Quantity	FCC-ee fu	iture param.unc.	Main source
$H \rightarrow c\bar{c}$	126	± 7.1	$\pm 0.1\%$ \pm	= 2.3 %	Γ_Z [MeV]	0.1	0.1	$\delta lpha_s$
$H \rightarrow gg$	126	± 4.1	$\pm 0.1\%$ \pm	= 0 %	$R_b [10^{-5}]$	6	< 1	$\delta \alpha_s$
					R_{ℓ} [10 ⁻³]	1	1.3	$\delta \alpha_s$

Sven Heinemeyer – 1st FCC physics workshop, CERN, 17.01.2017

Impacts physics approaching Planck scale: EW vacuum stability, GUT

Ultra-precise W, Z, top physics at FCC-ee

LFC21, ECT*-Trento, Sept'21

David d'Enterria (CERN)

World α_s determination (PDG 2019)

Determined today by comparing 7 experimental observables to pQCD NNLO,N³LO predictions, plus global average at the Z pole scale:

World α_s determination (PDG 2019)

Determined today by comparing 7 experimental observables to pQCD NNLO,N³LO predictions, plus global average at the Z pole scale:

α_s from hadronic τ -lepton decays

• Computed at N³LO:
$$R_{\tau} \equiv \frac{\Gamma(\tau^- \to \nu_{\tau} + \text{hadrons})}{\Gamma(\tau^- \to \nu_{\tau} e^- \bar{\nu}_e)} = S_{\text{EW}} N_C (1 + \sum_{n=1}^4 c_n \left(\frac{\alpha_s}{\pi}\right)^n + \mathcal{O}(\alpha_s^5) + \delta_{\text{np}})$$

- ♦ Experimentally: R_{τ.exp} = 3.4697 ± 0.0080 (±0.23%)
- Various pQCD approaches (FOPT vs CIPT) & treatment of non-pQCD corrections (Λ/m_z)² ~2%, yield different results.

Uncertainty slightly increased: $2013 (\pm 1.3\%) \rightarrow 2019 (\pm 1.5\%)$

Future :

- Understand FOPT vs CIPT diffs.
- Better spectral functions needed (high stats & better precision): B-factories (BELLE-II)?

- High-stats: $\mathcal{O}(10^{11})$ from $Z \rightarrow \tau\tau$ at FCC-ee(90) : $\delta\alpha_s < \delta\alpha_s < \delta\alpha_$

David d'Enterria (CERN)

α_s from e⁺e⁻ event shapes & jet rates (today)

- Computed at N^{2,3}LO+N⁽²⁾LL accuracy.
- Experimentally (LEP): Thrust, C-parameter, jet shapes n-jet x-sections
- Results sensitive to non-pQCD (hadronization) accounted for via MCs or analytically:

Wide span of TH extractions...

$$\tau = 1 - \max_{\hat{n}} \frac{\sum |\vec{p}_i \cdot \hat{n}|}{\sum |\vec{p}_i|}$$
$$C = \frac{3}{2} \frac{\sum_{i,j} |\vec{p}_i| |\vec{p}_j| \sin^2 \theta_{ij}}{(\sum_i |\vec{p}_i|)^2}$$

α_{a} from e⁺e⁻ event shapes & jet rates (FCC-ee)

 $C = \frac{3}{2} \frac{\sum_{i,j} |\vec{p_i}| |\vec{p_j}| \sin^2 \theta_{ij}}{(\sum_i |\vec{p_i}|)^2}$

- Computed at N^{2,3}LO+N⁽²⁾LL accuracy. $\tau = 1 - \max_{\hat{n}} \frac{\sum |\vec{p_i} \cdot \hat{n}|}{\sum |\vec{n_i}|}$
- Experimentally (LEP): Thrust, C-parameter, jet shapes 3-jet x-sections
- Results sensitive to non-pQCD (hadronization) accounted for via MCs or analytically:

LFC21, ECT*-Trento, Sept'21

David d'Enterria (CERN)

OPAL 3 jet event

Hadronic Z, W decay pseudo-observables

Z & W observables theoretically known at N³LO accuracy:

• The W and Z hadronic widths :

$$\Gamma_{\mathrm{W,Z}}^{\mathrm{had}}(Q) = \Gamma_{\mathrm{W,Z}}^{\mathrm{Born}} \left(1 + \sum_{i=1}^{4} a_i(Q) \left(\frac{\alpha_S(Q)}{\pi} \right)^i + \mathcal{O}(\alpha_S^5) + \delta_{\mathrm{EW}} + \delta_{\mathrm{mix}} + \delta_{\mathrm{np}} \right)$$

• The ratio of W, Z hadronic-to-leptonic widths :

$$\mathrm{R}_{\mathrm{W},\mathrm{Z}}(Q) = \frac{\Gamma_{\mathrm{W},\mathrm{Z}}^{\mathrm{had}}(Q)}{\Gamma_{\mathrm{W},\mathrm{Z}}^{\mathrm{lep}}(Q)} = \mathrm{R}_{\mathrm{W},\mathrm{Z}}^{\mathrm{EW}} \left(1 + \sum_{i=1}^{4} a_i(Q) \left(\frac{\alpha_S(Q)}{\pi}\right)^i + \mathcal{O}(\alpha_S^5) + \delta_{\mathrm{mix}} + \delta_{\mathrm{np}}\right)$$

• In the Z boson case, the hadronic cross section at the resonance peak in e^+e^- :

$$\sigma_{\mathrm{Z}}^{\mathrm{had}} = rac{12\pi}{m_{\mathrm{Z}}} \cdot rac{\Gamma_{\mathrm{Z}}^{\mathrm{e}}\Gamma_{\mathrm{Z}}^{\mathrm{had}}}{(\Gamma_{\mathrm{Z}}^{\mathrm{tot}})^2}$$

TH uncertainties: $(\alpha^2, \alpha^3 \text{ included for Z})$: ±0.015-0.03% (Z) ±0.015-0.04% (W)

DdE, Jacobsen:

arXiv:2005.04545

Param. uncerts.: $(\mathsf{m}_{z.w}, \alpha, \mathsf{V}_{cs.ud})$: ±0.01–0.03% (Z) ±1.1–1.7% (W) ±0.03% (W, CKM unit)

• Measured at LEP with $\pm 0.1 - 0.3\%$ (Z), $\pm 0.9 - 2\%$ (W) exp. uncertainties:

28/66

		experiment					
	previous	new (this work)	change	previous [6]	new [20, 2	1]	change
$\Gamma_{\rm Z}^{\rm tot} \ ({\rm MeV})$	$2494.2\pm0.8_{\rm th}$	$2495.2 \pm 0.6_{ m par} \pm 0.4_{ m th}$	+0.04%	2495.2 ± 2.3	2495.5 ± 2	.3	+0.012%
Rz	$20.733 \pm 0.007_{\rm th}$	$20.750 \pm 0.006_{ m par} \pm 0.006_{ m th}$	+0.08%	20.767 ± 0.025	20.7666 ± 0.0247		-0.040%
$\sigma_{ m Z}^{ m had}$ (pb)	$41490\pm6_{\rm th}$	$41494\pm5_{ m par}\pm6_{ m th}$	+0.01%	41540 ± 37	41480.2 ± 3	2.5	-0.144%
W boson	GFITTER 2.2 (NNLO) this work			(N ³ LO)			periment
observables		(exp. CKM)		(CKM u	nit.)		
$\Gamma_{\rm W}^{\rm had}$ (MeV)	- 1440.3 ± 23.9 _{par} ±		0.2 _{th}	$1410.2 \pm 0.8_{\rm par} \pm 0.2_{\rm th}$		14	405 ± 29
$\Gamma_{\rm W}^{\rm tot} ({ m MeV})$	$2091.8\pm1.0_{\rm pa}$	r 2117.9 ± 23.9 _{par} ±	$2117.9 \pm 23.9_{ m par} \pm 0.7_{ m th}$		$2087.9 \pm 1.0_{\rm par} \pm 0.7_{\rm th}$		085 ± 42
R _W	_	$2.1256 \pm 0.0353_{ m par} \pm$	0.0008 _{th}	$2.0812 \pm 0.0007 _{\rm p}$	$ar \pm 0.0008_{th}$	2.00	69 ± 0.019
1, ECT*-Trento,	Sept'21		2	8/66			

Recent update of LEP luminosity bias(*) change the Z values by few permil

(*) Voutsinas et al. arXiv:1908.01704. Janot et al. arXiv:1912.02067

David d'Enterria (CERN)

α_s from hadronic Z decays (today)

α_s from hadronic Z decays (FCC-ee)

QCD coupling extracted from:

(i) Combined fit of 3 Z pseudo-observ: (ii) Full SM fit (with α_s free parameter)

♦ <u>FCC-ee</u>:

- Huge Z pole stats. ($\times 10^5$ LEP):
- Exquisite systematic/parametric precision (stat. uncert. negligible):

$$\begin{split} \Delta \mathbf{R}_{\mathbf{Z}} &= 10^{-3}, \quad \mathbf{R}_{\mathbf{Z}} = 20.7500 \pm 0.0010 \\ \Delta \Gamma_{\mathbf{Z}}^{\text{tot}} &= 0.1 \text{ MeV}, \quad \Gamma_{\mathbf{Z}}^{\text{tot}} = 2495.2 \pm 0.1 \text{ MeV} \\ \underline{\Delta \sigma_{\mathbf{Z}}^{\text{had}}} &= 4.0 \text{ pb}, \quad \sigma_{\mathbf{Z}}^{\text{had}} = 41\,494 \pm 4 \text{ pb} \\ \hline \Delta m_{\mathbf{Z}} &= 0.1 \text{ MeV}, \quad m_{\mathbf{Z}} = 91.18760 \pm 0.00001 \text{ GeV} \\ \Delta \alpha &= 3 \cdot 10^{-5}, \quad \Delta \alpha_{\text{had}}^{(5)}(m_{\mathbf{Z}}) = 0.0275300 \pm 0.0000009 \end{split}$$

- TH uncertainty reduced by \times 4 computing missing α_s^{5} , α^3 , $\alpha\alpha_s^{2}$, $\alpha\alpha_s^{2}$, $\alpha^2\alpha_s$ terms
- 10 times better precision than today: $\delta \alpha_s / \alpha_s \sim \pm 0.2\%$ (tot), $\pm 0.1\%$ (exp) Strong (B)SM consistency test.

LFC21,	ECT*-Trento	Sept'2
--------	-------------	--------

Z boson	$lpha_S(m_{ m Z})$	uncertainties			
observable	extraction	exp.	param.	theor.	
All combined	0.1203 ± 0.0029	± 0.0029	± 0.0002	± 0.0008	
Global SM fit	0.1202 ± 0.0028	± 0.0028	± 0.0002	± 0.0008	
All combined (FCC-ee)	0.12030 ± 0.00026	±0.000 <mark>13</mark>	± 0.00005	$\pm 0.000 \frac{22}{2}$	
Global SM fit (FCC-ee)	0.12020 ± 0.00026	± 0.000 13	± 0.00005	$\pm 0.000 \frac{22}{22}$	

α_s from hadronic W decays (today)

• QCD coupling extracted from new N³LO fit of combined Γ_{w} , R_{w} pseudo-observ.:

W boson	$lpha_S(m_{ m Z})$	uncertainties		
observables	extraction	exp.	param.	theor.
$\Gamma_{\rm W}^{\rm tot}, {\rm R}_{\rm W} \ ({\rm exp. \ CKM})$	0.044 ± 0.052	± 0.024	$\pm 0.0 \frac{47}{47}$	(± 0.0014)
$\Gamma_{\rm W}^{\rm tot}, { m R}_{ m W} \; ({ m CKM \; unit.})$	0.101 ± 0.027	± 0.0 27	(± 0.0002)	(± 0.0016)
$\Gamma_{\rm W}^{\rm tot}$, $R_{\rm W}$ (FCC-ee, CKM unit.)	0.11790 ± 0.00023	± 0.00012	± 0.00004	± 0.00019

- Very imprecise extraction:
- Large propagated parametric uncert. from poor V_{cs} exp. precision (±2%):
 QCD coupling unconstrained: 0.04±0.05
- Imposing CKM unitarity: large exp. uncertainties from $\Gamma_{\rm w}$, R_w (0.9–2%): QCD extracted with ~27% precision
- Propagated TH uncertainty much smaller today: ~1.5%

α_s from hadronic W decays (FCC-ee)

• QCD coupling extracted from new N³LO fit of combined Γ_{w} , R_{w} pseudo-observ.:

W boson	$lpha_S(m_{ m Z})$	uncertainties		
observables	extraction	exp.	param.	theor.
$\Gamma_{\rm W}^{\rm tot}, {\rm R}_{\rm W} ({\rm exp. \ CKM})$	0.044 ± 0.052	± 0.024	± 0.047	(± 0.0014)
$\Gamma_{\rm W}^{\rm tot}, { m R}_{ m W} ({ m CKM unit.})$	0.101 ± 0.027	± 0.0 27	(± 0.0002)	(± 0.0016)
$\Gamma_{\rm W}^{\rm tot}$, R _W (FCC-ee, CKM unit.)	0.11790 ± 0.00023	± 0.00012	± 0.00004	± 0.00019

FCC-ee extraction:

- Huge W pole stats. ($\times 10^4$ LEP-2).
- Exquisite syst./parametric precision:

$$\Gamma_{\rm W}^{\rm tot} = 2088.0 \pm 1.2 \; {\rm MeV}$$

 $R_{\rm W} = 2.08000 \pm 0.00008$

 $m_{\rm W} = 80.3800 \pm 0.0005 \, {\rm GeV}$

- $|V_{cs}| = 0.97359 \pm 0.00010 \leftarrow O(10^{12}) D$ mesons
- TH uncertainty reduced by $\times 10$ after computing missing α_s^5 , α^2 , α^3 , $\alpha\alpha_s^2$, $\alpha\alpha_s^2$, $\alpha^2\alpha_s$ terms

DdE, Jacobsen: arXiv:2005.04545 [hep-ph]

LFC21, ECT*-Trento, Sept'21

Partial summary: α_s at FCC-ee

- World-average QCD coupling at N^{2,3}LO today:
 - Determined from 7 observables with combined ±0.85% uncertainty: Least well-known gauge coupling.
 - Impacts all LHC QCD x-sections & decays.
 - Role beyond SM: GUT, EWK vacuum stability, New colored sectors?
- **Uncerts.** for e^+e^- extractions today:
- $-\tau$ decays: ±1.5% (mostly non-pQCD)
- Shapes, jets: ±2.6% (mostly non-pQCD)
- Z pseudo-observ.: ±2.5% (mostly exp.)
- New Z, W extractions:
 - Z boson: New fit with high-order
 EW corrections + updated LEP data: ±2.3%, ±0.6%, (exp., th.) uncerts.
 - W boson: New N³LO fit to Γ_{w} , R_w ~47%,~27% (param., exp.) uncerts.

■ 0.1% uncertainty only possible with a machine like FCC-e⁺e⁻

What are the detector design improvements needed to bring propagated syst. uncert. on W,Z pseudo-observ. below 0.1% ? David d'Enterria (CERN)

α_s running at the multi-TeV scale (FCC-pp)

 Jets from pp collisions above LHC energies provide the only known means to test asymptotic freedom & new coloured sectors above ~3 TeV:

Figure 5.5: Left plot: combined statistical and 1% systematic uncertainties, at 30 ab⁻¹, vs p_T threshold; these are compared to the rate change induced by the presence of 4 or 8 TeV gluinos in the running of α_S . Right plot: the gluino mass that can be probed with a 3σ deviation from the SM jet rate (solid line), and the p_T scale at which the corresponding deviation is detected.

• <u>FCC-pp</u>: – Jet cross sections with <10% stat. uncert. up to p_{τ} ~25 TeV – Sensitivity to m_{q} =4–8 GeV gluinos in α_{s} running.

Physics at FCC e⁺e⁻ & pp machines

(1) <u>QCD</u>: α_s coupling

(2) <u>QCD</u>: Parton Distribution Functions

(3) QCD: Jet substructure & flavour tagging

(4) <u>QCD</u>: Non-perturbative regime

(5) Higgs sector

(6) BSM searches

PDFs impact on new BSM / QCD physics

Improved PDFs with p-p data (today)

6 partonic processes in pp at the LHC have provided key PDF constraints:

LFC21, ECT*-Trento, Sept'21

Improved PDFs with pp data (HL-LHC)

LFC21, ECT*-Trento, Sept'21

38/66

David d'Enterria (CERN)

PDFs needs for FCC-pp

Still large PDF uncertainties in pp at 100 TeV in key (x,Q²) regions:

FCC-ep required to reach <1% uncertainty for $\sigma(W,Z,H)$ at FCC-pp, or FCC-pp data themselves will suffice? LFC21, ECT*-Trento, Sept'21

Physics at FCC e⁺e⁻ & pp machines

(1) <u>QCD</u>: α_s coupling

(2) <u>QCD</u>: Parton Distribution Functions

(3) <u>QCD</u>: Jet substructure & flavour tagging

(4) <u>QCD</u>: Non-perturbative regime

(5) Higgs sector

(6) BSM searches

Precise jet substructure & flavour tagging

- State-of-the-art jet substructure studies based on angularities: (normalized Eⁿ×θⁿ products)
 "Sudakov"-safe variables of jet constituents: 1+multiplicity, LHA, width/broadening, mass/thrust, C-parameter,...
- k=1: IRC-safe computable (NⁿLO+NⁿLL) via SCET (but uncertainties from non-pQCD effects)

MC parton showers differ on gluon (less so quark) radiation patterns:

LFC21, ECT*-Trento, Sept'21

David d'Enterria (CERN)

High-precision gluon & quark jet studies (FCC-ee)

- Exploit FCC-ee H(gg) as a "pure gluon" factory: H→gg (BR~8% accurately known) provides – O(100.000) extra-clean digluon events.
- Multiple handles to study gluon radiation & g-jet properties:
 - Gluon vs. quark via H→gg vs. Z→qq
 (Profit from excellent g,b separation)
 - Gluon vs. quark via Z → bbg vs. Z → qq(g) (g in one hemisphere recoiling against 2-b-jets in the other).
 - Vary E_{jet} range via ISR: $e^+e^- \rightarrow Z^*, \gamma^* \rightarrow jj(\gamma)$
 - Vary jet radius: small-R down to calo resolution
- Multiple high-precision analyses at hand:
 - <u>BSM</u>: Improve q/g/Q discrimination tools
 - <u>pQCD</u>: Check NⁿLO antenna functions. High-precision QCD coupling.
 - <u>non-pQCD</u>: Gluon fragmentation: Octet neutralization? (zero-charge gluon jet with rap gaps). Colour reconnection? Glueballs ? Leading η's,baryons?

42/66

Highly-boosted jets, multijets (FCC-pp)

- Proton-proton collisions at 100 TeV provide unique conditions to produce & study highly-boosted objects: top, W, Z, H, R_{BSM}(jj),... Resolving small angular dijet sep. $\Delta R \approx 2M(jj)/p_{\tau}(j)$.
- Jet substructure: key to separate dijets from QCD & (un)coloured resonance decays, e.g. event fraction uds jets, m₂ = 10 TeV top jets, m₂ = 10 TeV anti-k_, R = 0.5

anti-k_r, R = 0.5

-Herwig++

-Pythia8

0.005

Herwig++

Pythia8

₹ 0.015

0.01

0.005

- $R_{10-TeV} \rightarrow tt, qq, gg, WW$
- Diffs. in MC generators for quark vs. gluon jets (& jet radius).

Physics at FCC e⁺e⁻ & pp machines

(1) <u>QCD</u>: α_s coupling

(2) <u>QCD</u>: Parton Distribution Functions

(3) QCD: Jet substructure & flavour tagging

(4) <u>QCD</u>: Non-perturbative regime

(5) Higgs sector

(6) BSM searches

Colour reconnection

Colour reconnection among partons is source of uncertainty in m_w, m_{top}, aGC extractions in multijet final-states. Especially in pp (MPI cross-talk).

- CR impacts all FCC-ee multi-jet final-states (potentially shifted angular correlations):
 - $-e^+e^- \rightarrow WW(4j), Z(4j), ttbar,$
 - H(2j,4j) CP studies,...
 - String-drag effect on W mass
 (Hinted at LEP: No-CR excluded at 99% CL).
- Exploit huge W stats (×10⁴ LEP) to "turn the m_w measurement around": Determine m_w leptonically and constrain CR in hadronic WW: Colour reconnection controlled to <1%</p>

Other non-pQCD phenomena

- **High-precision low-p_T PID hadrons in e⁺e⁻, pp for detailed studies:**
 - Baryon & strangeness production. Colour string dynamics.
 - Final-state correlations (spin: BE, FD; momenta; space)
 - Bound state formation: Onia, multi-quark states, glueballs, ...

LFC21, ECT*-Trento, Sept'21

Partial summary: QCD at FCC-ee & FCC-pp

The precision needed to fully exploit all future ee/pp/ep/eA/AA SM & BSM programs requires exquisite control of pQCD & non-pQCD physics.
 Unique QCD precision studies accessible at FCC-ee, FCC-pp:

Physics at FCC e⁺e⁻ & pp machines

(1) <u>QCD</u>: α_s coupling

(2) <u>QCD</u>: Parton Distribution Functions

(3) QCD: Jet substructure & flavour tagging

(4) <u>QCD</u>: Non-perturbative regime

(5) Higgs sector

(6) BSM searches

Higgs physics at FCC-pp & FCC-ee

Huge number of Higgs expected: 2.10¹⁰ (FCC-pp), 1.2.10⁶ (FCC-ee)

 $\sigma(pp \rightarrow H+X) \approx 0.9 \text{ nb} (ttH/HH/HHH access)$ $\sigma(e^+e^- \rightarrow H+X) \approx 200 \text{ fb} (low bckgd, no pileup)$

H couplings (down to 0.2%), rare & BSM decays, and H self-coupling

LFC21, ECT*-Trento, Sept'21

Rare & invisible Higgs decays (FCC-pp)

- background p_T spectrum from $Z \rightarrow vv$ constrained to the % level

- ultimate precision: $BR(H \rightarrow inv) \le 2.5 \ 10^{-4}$ • SM (BR(H \rightarrow 4v) = 0.11%) reached with ~1 ab⁻¹

David d'Enterria (CERN)

Higgs self-couplings (λ_3, λ_4) at FCC-pp

■ Double (triple) Higgs cross section ≈ 1.9 pb (5 fb)

[R. Contino et al., arXiv:1606.09408]

bb(bb) yy most sensitive channel: Critical flavor-tagging performances.

 Precisions on coupling: Trilinear (g_{HH})~ 3–6%
 Quartic (g_{HHH}) mildly constrained: 2σ But various diagrams contribute to $\sigma_{HH}, \sigma_{HHH}$: ~diluted sensitivity to λ_3, λ_4

process	precision on σ_{SM}	68% CL interval on Higgs self-couplings
$HH ightarrow b \overline{b} \gamma \gamma$	3%	$\lambda_3 \in [0.97, 1.03]$
$HH \to b \bar{b} b \bar{b}$	5%	$\lambda_3 \in [0.9, 1.5]$
$HH \to b\bar{b}4\ell$	O(25%)	$\lambda_3 \in [0.6, 1.4]$
$HH \to b \bar{b} \ell^+ \ell^-$	O(15%)	$\lambda_3 \in [0.8, 1.2]$
$HH \to b \bar{b} \ell^+ \ell^- \gamma$	—	-
$HHH \rightarrow b\bar{b}b\bar{b}\gamma\gamma$	O(100%)	$\lambda_4 \in [-4, +16]$

Higgs self-couplings (λ_3, λ_4) at FCC-pp

1D maximum likelihood fits of the BDT discriminants

68% CL uncertainty on κ_{λ} :

bbyy	bbπ	bbbb	combined
3.5-8.5%	12-13%	24-26%	2.9-5.5%

 driven by the bbγγ channel, limited by systematics

- A few remarks:
 - small impact of (eg QCD) background relies on the fact that the data will help to constrain the normalisations
 - precision achievable only if good measurements of other couplings:
 1% uncertainty on y_t ⇒ 5% uncertainty on κ_λ
 - uncertainty on $\sigma_{\rm HH}$: 0.5%-1.5% (~5% today): needs at least one order beyond NLO with full top-mass dependence, possibly beyond N³LO in the infinite top-mass limit
- Evolution with luminosity:
 - 10% precision achievable with 3 ab⁻¹ of data, ie a 3-5 year early run

Higgs self-coupling (λ_3) at FCC-ee

• Higgs trilinear indirectly constrained through loop corrections to $\sigma(H+Z)$:

Self-coupling correction δ_h : energy-dependent δ_z : energy-independent (distinguishable).

Tiny effect, but visible thanks to extreme (0.4%) precision on σ_{ZH} coupling reachable at FCC-ee.

Indirect limits on trilinear λ coupling at ~40% level combining 240+350GeV

Final Higgs self-coupling precision (FCC-all): 2–3%

Precision H couplings, width, mass (FCC-ee)

Recoil method in H-Z(ll) unique to lepton collider: reconstruct H 4-mom. independent of H decay mode. High-precision (0.4%) $\sigma_{_{ZH}}$ provides model-independent

 g_7 coupling: $\sigma(ee \rightarrow ZH) \propto g_7^2$, with $\pm 0.2\%$ uncert.

Total width (Γ_{H}) with ~1% precision by combining $\sigma(ZH)$ and BR(H \rightarrow ZZ): $\sigma(ee \to ZH)BR(H \to ZZ) \propto \frac{g_{HZZ}^4}{\Gamma} \Rightarrow \Gamma$ **Rest of Yukawa from other decays:** $\sigma(ee \rightarrow ZH)BR(H \rightarrow XX) \propto \frac{g_{HZZ}^2 g_{HXX}^2}{\Gamma} \Rightarrow g_{HXX}^2$

 \mathbf{Z}

Ζ

Precision Higgs couplings (FCC-ee,FCC-pp)

FCC-ee provides ×2–20 improvement in couplings uncertainties w.r.t. (model-dependent) HL-LHC expectations (2-5%):

Collider	HL-LHC	$\text{FCC-ee}_{240 \rightarrow 365}$	FCC-INT		
Lumi (ab^{-1})	3	5 + 0.2 + 1.5	30		
Years	10	3 + 1 + 4	25		
$g_{\rm HZZ}$ (%)	1.5	0.18 / 0.17	0.17/0.16		
$g_{\rm HWW}$ (%)	1.7	$0.44 \ / \ 0.41$	0.20/0.19		
$g_{\rm Hbb}$ (%)	5.1	$0.69 \ / \ 0.64$	0.48/0.48		ee.ep
$g_{\rm Hcc}$ (%)	(SM)	1.3 / 1.3	0.96/0.96		
g_{Hgg} (%)	2.5	1.0 / 0.89	0.52/0.5		
$g_{\mathrm{H}\tau\tau}$ (%)	1.9	$0.74 \ / \ 0.66$	0.49/0.46		
$g_{\mathrm{H}\mu\mu}$ (%)	(4.4)	8.9 / 3.9	0.43/0.43		
$g_{\mathrm{H}\gamma\gamma}$ (%)	(1.8)	3.9 / 1.2	0.32/0.32		
$g_{\mathrm{HZ}\gamma}$ (%)	$\overline{11}$.	- / 10.	0.71/0.7		hh
$g_{\mathrm{Htt}} \ (\%)$	(3.4)	10. / 3.1	1.0/0.95		
a	50	44./33.	(*)		
$g_{\rm HHH}$ (70)	50.	27./24.	2-3		
$\Gamma_{\rm H}$ (%)	(SM)	1.1	0.91	ee	
BR_{inv} (%)	1.9	0.19	0.024		
BR_{EXO} (%)	SM(0.0)	1.1	1		

Most precise $g_{77} \approx 0.17\%$ coupling sets limit on new scalar-coupled

physics at: $\Lambda \gtrsim (1 \text{ TeV}) / \sqrt{(\delta g_{HXX} / g_{HXX}^{SM})} / 5\% > 6 \text{ TeV}$ LFC21, ECT*-Trento, Sept'21

David d'Enterria (CERN)

Few-MeV m_H mass determination (FCC-ee)

David d'Enterria (CERN)

Few-MeV m_H mass determination (FCC-ee)

Can m_H be accurately reconstructed via σ(HZ) line shape scan?
 Preliminary MG5@NLO studies (Paolo Azzurri):

• Optimal data-taking point for min Δm_{μ} (stat): $\sqrt{s} \simeq mZ + mH - 0.2 \simeq 217 \text{ GeV}$

Vσ_{ZH}(dm_H/dσ_{ZH})_{min}=350 MeV/Vfb With 5/ab @ 217 GeV: $\delta m_{H} = \pm 5$ MeV Need systematics control: $\delta E_{beam} < 5$ MeV (5·10⁻⁵), $\delta \epsilon/\epsilon$, $\delta L/L < 10⁻³$, $\delta \sigma_{B} < 0.1$ fb (~10⁻³)

Combining threshold HZ x-section with m_{HZ} (recoil) should give: $\delta m_{H} = \pm 3.5 \text{ MeV}$

Generation of lightest fermion (u,d,s,v's) masses?

LHC can only access 3rd (plus few 2nd)-gen.Yukawas. What about the rest?

Light quarks Yukawas (FCC-pp, FCC-ee)

Constraints on light Yukawa obtained from the upper limits on BR to all untagged particles, using global fits in κ framework

FCC-ee+eh+hh:

- first generation: 95% CL limits $\kappa_u < 280$, $\kappa_d < 130$
- second generation: 95% CL limit $\kappa_s < 6.4$, κ_c measured with precision of <1%

LFC21, ECT*-Trento, Sept'21

e Yukawa via s-channel $e^+e^- \rightarrow H$ (FCC-ee)

- Monochromatization improvable beyond ($\sqrt{s_{spread}}$, \mathscr{L}_{int}) \approx (7 MeV, 2 ab⁻¹)?
- Fundamental unique physics accessible:
 - → Electron Yukawa coupling: Limits ×100 (×30) better than HL-LHC (FCC-hh)

→ BSM scale affecting e[±] Yukawa pushed up to Λ_{BSM} > 110 TeV

David d'Enterria (CERN)

Physics at FCC e⁺e⁻ & pp machines

(1) <u>QCD</u>: α_s coupling

(2) <u>QCD</u>: Parton Distribution Functions

(3) QCD: Jet substructure & flavour tagging

(4) <u>QCD</u>: Non-perturbative regime

(5) Higgs sector

(6) BSM searches

Indirect BSM searches (EW coupled) at FCC-ee

Indirect EW-coupled new physics EFT limits pushed up to O(50 TeV) thanks to ultraprecise EWPO measurements in e^+e^- collisions with 10¹² Z's and 10⁸ W's: $(m_Z, \Gamma_Z, A_{\text{FB}}, R_x, \alpha(m_Z), m_W, m_t, \text{ etc.})$

David d'Enterria (CERN)

Indirect BSM searches (Higgs coupled) at FCC

Indirect scalar-coupled new physics EFT limits pushed up to O(6 TeV) thanks to precision H partial widths down to permil level:

Direct BSM searches at FCC-hh

Direct heavy-mass reach (e.g. SUSY) in p-p at 100 TeV is x(5-10) times LHC:

LFC21, ECT*-Trento, Sept'21

Direct BSM searches at FCC-ee: FIPs

Summary

FCC provides unparalleled c.m. energies (100 TeV) & lumis (20, 150 ab⁻¹) in p-p and e⁺e⁻ colls. to address many HEP fundamental open problems.
 High-precision Z, W, H, top studies (FCC-ee) & high-mass (FCC-pp) allow setting direct/indirect constraints on BSM up to Λ≥ 50 TeV

Plus: 1st gen. Yukawas, right-handed v's, dark matter, QCD, flavour, ...

DELPHI

LFC21, ECT*-Trento, Sept'21

10

 10^{2}

 m_N (GeV)

David d'Enterria (CERN)

Backup slides

BSM physics reach at FCC

LFC21, ECT*-Trento, Sept'21

David d'Enterria (CERN)

Direct BSM searches at FCC-ee: DM via H,Z decays

■ Precision (<10⁻³ and <10⁻¹) measurements of invisible Z & H widths are best collider option to test any $m_{DM} < m_{Z,H}/2$ that couples via SM mediators.

LFC21, ECT*-Trento, Sept'21

α_s from photon QCD structure function (NLO)

arXiv:0907.2782

Visius

 $L_{int} = 20 \text{ fb}^{\dagger}$

David d'Enterria (CERN)

Q² [GeV²

 10^{3}

FCC-ee = Higgs boson factory

■ Higgs cross sections: $\sigma(e^+e^- \rightarrow H + X) \approx 200 (HZ) + 50 (VBF) fb$

1.2M Higgs bosons produced:

- Small & very well controlled backgrounds (S/B~10⁻²–10⁻³)
- Extra-clean environment w/o pileup:

	5/ab @ 240 GeV	0.2/ab @ 350 GeV 1.5/ab @ 365 GeV
# Higgs from HZ	1,000,000	200,000
# Higgs from VBF	25,000	50,000

Access to precise (down to 0.15%) Higgs couplings & rare & b

High-precision parton FFs (FCC-ee)

Parton-to-hadron fragment. functions evolution known at NNLO at high-z &

provide additional QCD coupling extractions:

Mathad	Current $\delta \alpha_{\rm s}({\rm m_z^2})/\alpha_{\rm s}({\rm m_z^2})$ uncertainty	Future $\delta \alpha_{\rm s}({ m m_z^2})/\alpha_{\rm s}({ m m_z^2})$ uncertainty
Method	(theory & experiment state-of-the-art)	(theory & experiment progress)
soft FFs	$1.8\%_{ m th} \oplus 0.7\%_{ m exp} pprox 2\%$	$0.7\%_{\rm th} \oplus 0.7\%_{\rm exp} \approx 1\% \;(\sim 2 \; {\rm yrs}), < 1\% \; ({ m FCC-ee})$
	(NNLO * only (+NNLL), npQCD small)	(NNLO+NNLL. More precise e^+e^- data: 90–350 GeV)
hard FFs	$1\%_{ m th} \oplus 5\%_{ m exp} pprox 5\%$	$0.7\%_{\rm th} \oplus 2\%_{\rm exp} \approx 2\%$ (+B-factories), <1% (FCC-ee)
	(NLO only. LEP data only)	(NNLO. More precise e^+e^- data)

FCC-ee (much broader z range) allows for α_{s} extraction with $\delta \alpha_{s} < 1\%$
α_s from lattice QCD

Comparison of short-distance quantities (Wilson loops, q static potential, vacuum polariz.,...) computed at NNLO in pQCD, to lattice QCD "data":

 $K^{\rm NP} = K^{\rm PT} = \sum_{i=0}^{n} c_i \alpha_s^i$

 Currently, it's extraction with smallest uncertainties: ±1% (lattice spacing & statistics).

Extracted value depends on observables:

Uncertainty increased: 2013 (±0.4%) → 2017 (±1.0%)

Future prospects:

- Uncertainty in α_s could be halved with (much) better numerical data.
- Reaching ±0.1% requires 4th-loop perturbation theory (~10 years?)

HPQCD (Wilson loops) HPQCD (c-c correlators) Maltmann (Wilson loops) PACS-CS (SF scheme) ETM (ghost-gluon vertex) BBGPSV (static potent.) 0.11 0.115 0.12 0.125 0.13 $\alpha_s = 0.1184 \pm 0.0012 (\pm 1.0\%)$

[FLAG Collab. http://itpwiki.unibe.ch/flag]

Heavy-quark production (FCC-pp)

Parton lumis at FCC "precision" region

"Precision" region at FCC-pp: 5–7% PDF uncertainty for σ(W,Z,H)

14 TeV

LFC21, ECT*-Trento, Sept'21

David d'Enterria (CERN)

Higgs self-coupling (λ_3) at FCC-ee

FCC-ee + HL-LHC

- Higgs self-coupling constrained to within ~40%.
- Addition of FCC-ee 240+350GeV Higgs cross section solves 2^{nd} minimum on λ from HL-LHC data alone.

Final Higgs self-coupling precision (FCC-all): 2-3%

Higgs coupling to neutrinos (FCC-ee,hh)

- Low-mass seesaw scenario with sterile v (N_i) that mix with the SM v with O(1) Yukawa couplings & EW-scale masses.
- I_{i} N_i decay to Higgs+v. Exp. signature: mono-Higgs(jj+ME).

(Also via invisible $H \rightarrow N_i v$ decays for $m_N < m_H$)

[Antusch, Cazzato, Fischer, IJMPA 32 (2017)1750078]

With Z (EWPO), sensitivity down to active-sterile mix $|\theta|^2 \sim 10^{-11}$ for m_N>10 GeV