Collider Challenges for QCD

Jennifer Smillie Higgs Centre, University of Edinburgh **LFC 2021**

Photo Credit: Kinrannoch Photography

European Research Council Established by the European Commission

Two types of challenges for QCD:

- Can it pass all these tests?
- Can we calculate well enough to see what the data is telling us?

LFC21 10 Sept 2021

We now have a few persistent possible signs of new physics

- the SM
- Both require difficult calculations of hadronic contributions

LFC21 10 Sept 2021

$$a_{\mu} = g - 2$$
 See

Gerardine's Talk

Both hint at greater differences between electrons and muons than in

Jenni Smillie

But we definitely have many new particles

Image Copyright CERN

LFC21 10 Sept 2021

Meson-meson molecule or tightly-bound state?

Matrix elements at high energies calculated by expansion in couplings, e.g.

- $\sigma = \mathcal{C}_2 \alpha_s^2 + \mathcal{C}_3 \alpha_s^3 + \mathcal{C}_3' \alpha_s^2 \alpha_W + \mathcal{C}_4 \alpha_s^4 + \mathcal{C}_4' \alpha_s^3 \alpha_W + \dots$
- Stand for LHC is Next-to-Leading-Order (NLO) for SM and BSM Possible due to
- Automation of subtraction Unitarity revolution
- Combination with parton showers (MC@NLO, POWHEG)

LFC21 10 Sept 2021

Madgraph5 aMC@NLO

Sherpa

PowhegBox

A few KEY processes at N3LO First cross section, $gg \to H$

Anastasiou, Duhr, Dulat, Herzog, Mislberger arXiv:1503.06056

Now: full $gg \to H$, VBF Higgs, $b\overline{b} \to H$, Drell-Yan

Dreyer, Karlberg arXiv: 1606.00840, 1811.07906; Mistlberger arXiv:1802.00833 Chen, Gehrmann, Glover, Huss, Li, Neill, Schulze, Stewart, Zhu arXiv: 1805.00736 Duhr, Dulat, Hirschi, Mistlberger arXiv:1904.09990, 2004.04752 Duhr, Dulat, Mistlberger arXiv:2001.07717 Chen, Gehrmann, Glover, Huss, Mistlberger, Pelloni arXiv:2102.07607

Now have specialised calculations for many processes at NNLO (to roughly give %-level uncertainties), including $t\bar{t}$ See Grazzini's Talk

Catani, Devoto, Grazzini, Kallweit, Mazzitelli arXiv:2005.00557

Light jet final states more difficult, but have e.g. $pp \rightarrow j, pp \rightarrow H + j, pp \rightarrow W + j, pp \rightarrow 2j, pp \rightarrow 2\gamma + j$ and very recently first study of $pp \rightarrow 3j$

LFC21 10 Sept 2021

Czakon, Mitov, Poncelet arXiv:2008.11133

Czakon, Mitov, Poncelet arXiv:2106.05331

Two key fronts:

2-loop Amplitudes

2021 Analytic results for:

 $u\bar{d} \to W^+ b\bar{b}, gg \to t\bar{t}, pp \to 3j, pp \to 2\gamma + j$

Emphasis now on numerical stability and efficiency

Cancellation of Divergences

Competing Approaches

 q_T Subtraction Antenna Subtraction Nested soft-collinear

N-Jettiness **Forest Formulas**

. . .

Fast development of methods to match NNLO and parton shower

Alioli, Bauer, Broggio, Gavardi, Kallweit, Lim, Nagar, Napoletano, Rottoli arXiv:2102.08390

NNL

Minipopes, GENEVA, UNNLOPS

Mazzitelli, Monni, Nason, Re, Wiesemann, Zanderighi arXiv:2102.08390

First NNLO+PS with colour-charged particles in final state

Event Generators are central to majority of physics analyses at high energy colliders: **signal** & **background** And they're very successful!

ATLAS arXiv:2109.00925

LFC21 10 Sept 2021

		Process	Generator	ME Order	PDF	Parton Shower		
			SM process samples					
		Strong $V\gamma$ + jets	Sherpa 2.2.8	NLO (up to 1-jet), LO (up to 3-jets)	NNPDF3.0nnlo	Sherpa MEPS@NLO		
а		EW $V\gamma$ + jets	MadGraph5_aMC@NLO 2.6.5	LO	NNPDF3.1LO	Рутніа 8.240		
ertaint	У	EW VV+ jets	Sherpa 2.2.1 or Sherpa v2.2.2	LO	NNPDF3.0nnlo	Sherpa MEPS@NLO		
<i>Ζ+γ</i> ong <i>Ζ</i> +	γ Many	VV+jets	Sherpa 2.2.1 or Sherpa 2.2.2	NLO (up to 1-jet), LO (up to 3-jets)	NNPDF3.0nnlo	Sherpa MEPS@NLO		
W +γ		EW V+ jets	Herwig 7.1.3 or Herwig 7.2.0	NLO	MMHT2014nlo68cl	Herwig 7.1.3		
ng W+ Vγγ		Strong $W(\rightarrow \mu \nu) + \text{jets}/$ $W(\rightarrow \tau \nu) + \text{jets}$	Sherpa 2.2.7	NLO (up to 2-jets), LO (up to 4-jets)	NNPDF3.0nnlo	Sherpa MEPS@NLO		
et		$t\bar{t}\gamma$	MadGraph5_aMC@NLO2.2.3	NLO	NNPDF2.3LO	Рутніа 8.186		
γ >γ > C	simulations	tī/Wt	Powheg Box v2	NLO	NNPDF3.0nlo	Рутніа 8.230		
	in every analysis	$V\gamma\gamma$	SHERPA 2.2.2 (at 0-jet), LO (up to 2-jets)	NLO	NNPDF3.0nnlo	Sherpa MEPS@NLO		
		γ + jet	Sherpa 2.2.2	NLO (up to 2-jets), LO (up to 4-jets)	NNPDF3.0nnlo	Sherpa MEPS@NLO		
			Higgs-related samples					
		ggF Higgs	Powheg v2 NNLOPS	NNLO	PDF4LHC15	Рутніа 8.230		
		Higgs + γ	MadGraph5_aMC@NLO2.6.2	NLO	PDF4LHC15	Herwig 7.1.3p		
TeV]		ggF Higgs $\rightarrow \gamma \gamma_{\rm d}$	Powheg v2 NNLOPS	NNLO	PDF4LHC15	Рутніа 8.244р		
		VBF Higgs $\rightarrow \gamma \gamma_1$	Powheg v2	NLO	CTEQ6L1	Рутніа 8.244р		
			Systematic variation samples					
		$V\gamma$ + jets α^4 interference	MadGraph5_aMC@NLO2.6.2	LO	NNPDF3.1LO	Рутніа 8.240		

Current topics of development (driven by experiment needs)

- Merging with higher-order fixed order
- Logarithmic accuracy defining and increasing
- Improved colour description

With a close eye on computational requirements - an issue already for HL-LHC, also for FCC...

LFC21 10 Sept 2021

BUT MC uncertainties (often differences between tools)

Parton showers for soft/coll. emissions at all α_s^n are perfect example where fixed order not enough In general:

 $\log(p_T/m_H)$

NNLL Cieri, Coradeschi, de Florian arXiv:1505.03162

LFC21 10 Sept 2021

Logs Trouble

Bizoń, Gehrmann-De Ridder, Gehrmann, Glover, Huss, Monni, Re, Rottoli, Walker arXiv:1905.05171

Jenni Smillie

age Copyright CERN **12 jets** with **D** > **50 GeV** at CMS (13 TeV)

Simpler form allows inclusion of quark masses in Higgs couplings to arbitrary multiplicity (fixed order, H+3j LO)

Cuts to study HWW couplings in Hjj (VBF) require large rapidity and m_{jj} This exactly enhances the logs!

Many coloured-charged, hard particles with p_T , s_{ij} , \hat{s}

Large logs in s_{ij}/p_T^2 damage convergence of pert. expansion

Fortunately, the matrix elements of these processes simplify in the High Energy limit: $s_{ij} \to \infty$, $|p_{Ti}|$ finite

Can sum up all $\alpha_s^{2+k} \log^k(\hat{s}/p_T^2)$ implemented in High Energy Jets (HEJ)

Andersen, JMS arXiv:0908.2786, 0910.5113

Impact of logs enhanced again with increase to 13 TeV, and much more at 100 TeV

Increased min jet p_T controls cross section, but tails fall much less steeply

LFC21 10 Sept 2021

Ongoing work to combine log treatment with NLO and PS

WAT large values of p_T in this *dijet* sample, contribution from 4j, 5j, ... components numerically significant

Scale uncertainties reduced low enough that other sources of error become very significant

$\sigma(pp \to H b \bar{b})$											
S [TeV]	σ [pb]	δ (scale) [%]	$\delta(a)$	$\alpha_{\beta} + PDF)$ [\checkmark]	δ (PDF-TH) [%]	$\delta(m_b)$ [%]					
7	0.172	$+2.50 \\ -2.63$		± 9.05	± 3.85	$+1.44 \\ -0.95$					
8	0.222	$+2.64 \\ -3.01$		± 9.02	± 3.54	$+1.44 \\ -0.95$					
13	0.535	$+2.52 \\ -4.11$		\pm 8.37	± 2.49	$+1.44 \\ -0.95$					
14	0.604	$+2.67 \\ -4.31$		\pm 8.31	± 2.36	$+1.44 \\ -0.95$					
27	1.68	$+2.57 \\ -5.92$		\pm 7.59	± 1.22	$+1.44 \\ -0.95$					
100	9.21	$+3.26 \\ -9.38$		± 6.68	±1.00	$+1.44 \\ -0.95$					

hin pdf fits, experimental errors now low enough that other sources of error become very significant

E.g. W/Z p_T data from LHC causes issues in standard fits: exp error ~0.1%, th. error ~1%

Inclusion of theory errors is subtle, but important

Harland-Lang, Thorne arXiv:1811.08434 Ball, Pearson arXiv:2105.05114

Nuclear effects also important

Now have possibility to calculate pdfs on the lattice

LFC21 10 Sept 2021

E.g. Xiangdong Ji arXiv:1305.1539

Mature enough to compare with state-of-the-art global

Opportunities for approaches to improve each other (also nPDFs, TMDs, GPDs)

LFC21 10 Sept 2021

DPS: one collision contains **two separate** hard scatters E.g. Evidence of impact in J/ ψ data from LHCb "A fit to the differential cross sections using simple DPS plus SPS models indicates a significant DPS contribution."

Toy model

LFC21 10 Sept 2021

- SPS + DPS 280 300 m_{ZZ} [GeV]

New Monte Carlo implementation of DPS, dShower, allows combination of SPS and DPS at same time Cabouat, Gaunt, Ostrolenk arXiv:1906.04669, 2008.01442

For a process at a fixed scale, increase in collider energy gives an increase in DPS relative to SPS

<u>Unexpected</u> result from the LHC is the observation of flow-like effects in p-p collisions

Vnamics

ALICE arXiv:2101.03110

fluid

LFC21 10 Sept 2021

and multi-particle correlation measurements at ALICE, ATLAS & CMS all well-described by

It's important to remember that we can still be caught by surprise!

Jenni Smillie

We still have a lot to learn from the LHC! At least 15 more years of data, integrated luminosity x 20!

- Tarbalising programme of different experiments to come
- Experimental precision is pushing theory to the limit... and we're responding!

LFC21 10 Sept 2021

Exciting times ahead!

