ON FLAVOR ANOMALIES

JURE ZUPAN U. OF CINCINNATI

FLAVOR PHYSICS IN ONE SLIDE

- baryon asymmetry implies more CP violation than in the SM
- flavor measurements a way to probe such required new CPV sectors
 - high energy scales and / or small couplings
- probe also other puzzles: dark matter, strong CP problem,...

MANY EXPERIMENTS...

MANY MEASUREMENTS...

- PDG lists $\mathcal{O}(10^4)$ observables
 - branching ratios, angular distributions, CP violating asymmetries,

- focus of this talk:
 - hints of experimental deviations from the SM predictions
 - a sign of new physics?

J. Zupan On flavor anomalies

OUTLINE

- flavor physics as a tool to search for new physics
 - heavy new physics \rightarrow off shell modes
 - light new physics \rightarrow rare decays to light NP states
- experimental anomalies
 - $(g-2)_{\mu}, b \rightarrow s\mu^+\mu^-, b \rightarrow c\tau\nu$
 - if NP, what are it's properties (heavy/light,...)?
- what next?
 - Belle II, LHCb upgrade, etc

PROBING HEAVY NEW PHYSICS

FROM FLAVOR PHYSICS TO HEAVY NEW PHYSICS

- SM@tree level: no Flavor Changing Neutral Currents
 - all FCNC processes loop suppressed
 - e.g., meson mixing
- can be modified by NP
- NP contribs. scale as

 depends on couplings and NP masses

LARGE SCALES PROBED

Physics Briefing Book, 1910.11775

LOW ENERGY PRECISION BOUNDS

UTFit 0707.0636, 1411.7233 see also Bazavov et al, 1706.04622

NP scale A (TeV) 10⁶ 10⁵ 10⁷ UTFit 0707.0636, 1411.7233 Re C_K an impressive 2007→~now Im C_K progress on Im C_D CBd flavor bounds CBS in last 10 years $c\bar{u} \uparrow c\bar{b}s$ • in D, B_s mixing 10⁴ 10³ • also from \mathcal{E}_{K} ds 10² 10 $\frac{1}{\Lambda 2} (\bar{b}_L \gamma^\mu d_L) (\bar{b}_L \gamma_\mu d_L)$ Ç \mathbf{C} LFC21, ECT-Trento (virtual), Sept 10 2021 9

J. Lupan

THE (MID-TERM) FUTURE

Physics Briefing Book, 1910.11775

• just from LHCb:

J. Zupan On flavor anomalies

THE (MID-TERM) FUTURE

Physics Briefing Book, 1910.11775

• just from LHCb:

J. Zupan On flavor anomalies

THE (MID-TERM) FUTURE

Physics Briefing Book, 1910.11775

• just from LHCb:

PROBING LIGHT NEW PHYSICS

SEARCHING FOR LIGHT NEW PHYSICS

- if NP particle is light, can be produced on shell
- search for rare decays $q_j \rightarrow q_i + X_{\rm NP}$, $\ell_j \rightarrow \ell_i + X_{\rm NP}$

FLAVOR VIOLATING PNGBS

- if NP has a spontaneously broken global U(1) ⇒ light (pseudo)Nambu-Goldsone boson
 - interactions with the SM start at dim 5

$$\mathcal{L}_{\text{eff}} = \frac{\alpha_s}{8\pi} \frac{a}{f_a} G\tilde{G} + \frac{E}{N} \frac{\alpha_{\text{em}}}{8\pi} \frac{a}{f_a} F\tilde{F} + \frac{\partial_\mu a}{2f_a} \bar{f}_i \gamma^\mu (C_{f_i f_j}^V + C_{f_i f_j}^A \gamma_5) f_j$$

- in general the couplings can be flavor violating
 - since dim 5, FCNCs probe very high scales
 - even above astrophysics bounds
- concrete examples: FV QCD axion, axiflavon, majoron,...

Calibbi, Redigolo, Ziegler, JZ, 2006.04795

 $F_{f,f}^{V,A}$

Martin Camalich, Pospelov, Vuong, Ziegler, JZ, 2002.04623

BOUNDS ON FLAVOR VIOLATING QCD AXION

J. Zupan On flavor anomalies

EXPERIMENTAL ANOMALIES

EXPERIMENTAL ANOMALIES IN PROCESSES WITH MUONS&TAUS

Muons

✓ Taus

NEWS FROM EARLIER THIS YEAR

- theoretically "clean" observables
 - R_K went from 2.5σ to 3.1σ LHCb 1903.09252, 2103.11769
 - the first single measurement in *B* anomalies to cross the "evidence" threshold
 - $\leq 2\sigma$ tension in $B_s \to \mu^+ \mu^-$

LHCb 2108.09284, 2108.09283

- theoretically "dirty" observables
 - $(g-2)_{\mu}$ went from 3.7 σ to 4.2 σ The Muon g-2 Collaboration, 2104.03281
 - $Br(B_s \rightarrow \phi \mu \mu) 3.6\sigma$ below the nominal SM LHCb 2105.14007 prediction

J. Zupan On flavor anomalies

- the two quark level transitions that show $\sim 4\sigma$ deviations from the SM
 - explanable with NP in V A quark currents

• $(g-2)_{\mu}$ showing 4.2σ deviation from the SM

• in SMEFT from dim6 operator

$$\mathcal{L} \supset -\frac{\sqrt{2}e\,v}{(4\pi\Lambda_{ij})^2}\,\bar{\ell}_{\mathrm{L}}^i\sigma^{\mu\nu}\ell_{\mathrm{R}}^jF_{\mu\nu} + \mathrm{h.c.} \;,$$

 $(g-2)_{\mu} \Rightarrow \Lambda_{22} \sim 15 \,\mathrm{TeV}$

Greljo, Stangl, Thomsen, 2103.13991

 note: any flavor violation needs to be highly suppressed

$$\mu \rightarrow e\gamma \Rightarrow \Lambda_{21} \gtrsim 3500 \,\mathrm{TeV}$$

OUTLINE FOR THE REST OF THE TALK...

- overview of anomalies
 - exp+attempted explanations

•
$$(g-2)_{\mu}$$

- $b \rightarrow c \tau v$
- grand picture?

 $(g - 2)_{\mu}$

A DEVIATION?

• the value of $(g - 2)_{\mu}$ from g-2 coll.

 $a_{\mu}^{\exp} - a_{\mu}^{SM} = 251(59) \times 10^{-10}$

 the SM theory error dominated by hadronic uncert.

QED Electroweak HVP (e^+e^- , LO + NLO + NNLO) HLbL (phenomenology + lattice + NLO) Total SM Value

116 584 718.931(104) 153.6(1.0) 6845(40) 92(18) 116 591 810(43)

The muon g-2 theory initiative, 2006.04822 LFC21, ECT-Trento (virtual), Sept 10 2021

J. Zupan On flavor anomalies

HADRONIC VACUUM POLARIZATION

- HVP the dominant uncertainty
 - a tension between determination using lattice QCD and from R-ratio

PRESENT STATUS BEFORE FERMILAB RESULT

J. Zupan On flavor anomalies

24

PRESENT STATUS AFTER FERMILAB RESULT

J. Zupan On flavor anomalies

 $a_{\mu}^{\exp} - a_{\mu}^{SM} = 251(59) \times 10^{-10}$

- NP models of two types
- chirality flip on SM fermion leg
 - NP need to be light, example: Z' from $L_{\mu} - L_{\tau}$
- chirality flip can be on the NP fermion leg
 - NP can be much heavier
 - example: minimal models with DM

 $\frac{e}{8\pi^2} (\bar{\mu}_L \sigma^{\mu\nu} \mu_R) F_{\mu\nu}$

26

- NP models
- chirality flip
 - NP need example:
- chirality flip
 NP fermion
 - NP can b

• example: with DM

 $a_{\mu}^{\exp} - a_{\mu}^{SM} = 251(59) \times 10^{-10}$

- NP models of two types
- chirality flip on SM fermion leg
 - NP need to be light, example: Z' from $L_{\mu} - L_{\tau}$
- chirality flip can be on the NP fermion leg
 - NP can be much heavier
 - example: minimal models with DM

 $\frac{e}{8\pi^2} (\bar{\mu}_L \sigma^{\mu\nu} \mu_R) F_{\mu\nu}$

26

J. Zupan On flavor anomalies

26

UPSHOT

- $b \rightarrow sll$ flavor anomaly
 - theoretically clean, $\sim 5\sigma$ excess
 - consistent with many additional obs. that require hadronic inputs
 - relatively high NP scale ⇒ less constrained by other probes

UPSHOT

• $b \rightarrow sll$ flavor anomaly • theoretically clean, $\sim 5\sigma$ excess consistent with many additional obs. that require hadronic inputs • relatively high NP scale \Rightarrow less constrained by other probes

EXPERIMENTAL SITUATION

• $b \rightarrow sll$: generated at 1-loop in the SM

- in the SM $b \rightarrow see$ the same as $b \rightarrow s\mu\mu$
 - Lepton Flavor Universality in the SM

J. Zupan On flavor anomalies

$b \rightarrow sll$: EXPERIMENT

• clean observables: $R_{K'}R_{K^*}$, $BR(B_S \rightarrow \mu^+\mu^-)$ two bins

J. Zupan On flavor anomalies

30
$b \rightarrow sll$: EXPERIMENT

INFORMATION JUST FROM THE LFUV RATIOS

see, e.g., Alonso, Grinstein, Martin Camalich, 1407.7044 • $R_{K^{(*)}}$ can only be explained by NP in

$$\mathcal{O}_{9}^{(\prime)\ell} = \frac{\alpha_{\rm em}}{4\pi} (\bar{s}\gamma^{\mu} P_{L(R)} b) \ (\bar{\ell}\gamma_{\mu}\ell), \qquad \mathcal{O}_{10}^{(\prime)\ell} = \frac{\alpha_{\rm em}}{4\pi} (\bar{s}\gamma^{\mu} P_{L(R)} b) \ (\bar{\ell}\gamma_{\mu}\gamma_{5}\ell)$$

- scalar currents constrained by $B_S \rightarrow ll$
- *R_K* and *R_{K*}* different parity, complementary info, e.g. for central bin

see, e.g., D'Amico et al., 1704.05438

- from ratios: NP can be either in muons or electrons
 - in both cases $(\bar{s}b)_L$ ok
 - for electrons also $(\bar{s}b)_R(\bar{e}e)_R$ possible (from quadratic dep.)

J. Zupan On flavor anomalies

INFORMATION JUST FROM

see, e.g., D'Amico et al., 1704.05438

- from ratios: NP can be either in muons or electrons
 - in both cases $(\bar{s}b)_L$ ok
 - for electrons also $(\bar{s}b)_R(\bar{e}e)_R$ possible (from quadratic dep.)

J. Zupan On flavor anomalies

PREFERENCE FOR NP IN MUONS?

• $Br(B_s \rightarrow \mu^+ \mu^-)$ precise SM theory prediction

Geng et al., 2103.12738

see also Alguero et al, 2104.08921; Hurth et al, 2104.10058; Altmannshofer, Stangl, 2103.13370

Γ-Trento (virtual), Sept 10 2021

FIT TO CLEAN OBSERVABLES

- a fit to only the clean
 observables
 - R_K

• *R_{K*}*

•
$$Br(B_s \to \mu\mu)$$

J. Zupan On flavor anomalies

LFC21, ECI-Irento (VIrtual), Sept 10 2021

GLOBAL FITS

- in principle much more info
 - $Br(B \rightarrow K^{(*)}\mu\mu), Br(B_s \rightarrow \phi\mu\mu),$ $Br(B \rightarrow X_s\mu\mu)$
 - angular obs. in $B^0 \rightarrow K^{*0}\mu\mu$, $B_s \rightarrow \phi\mu\mu$
- sensitive to hadronic inputs
 - require form factors predict. (QCD sum rules), charm loops, nonfactor. contribs.
- prefer NP in muons

 $q^2 \,[{\rm GeV}^2/c^4]$

J. Zupan On flavor anomalies

LHCb 2105.14007

GLOBAL FITS

- in principle much more info
 - $Br(B \rightarrow K^{(*)}\mu\mu), Br(B_s \rightarrow \phi\mu\mu),$ $Br(B \rightarrow X_s \mu \mu)$
 - angular obs. in $B^0 \rightarrow K^{*0} \mu \mu$, $B_s \rightarrow \phi \mu \mu$
- sensitive to hadronic inputs
 - require form factors predict. (QCD sum rules), charm loops, nonfactor. contribs.
- prefer NP in muons

J. Zupan On flavor anomalies

LHCb 2105.14007

GLOBAL

- in principle much more info
 - $Br(B \rightarrow K^{(*)}\mu\mu), Br(B_s \rightarrow \phi\mu\mu),$ $Br(B \rightarrow X_s\mu\mu)$
 - angular obs. in $B^0 \rightarrow K^{*0}\mu\mu$, $B_s \rightarrow \phi\mu\mu$
- sensitive to hadronic inputs
 - require form factors predict. (QCD sum rules), charm loops, nonfactor. contribs.
- prefer NP in muons

35

NP JUST IN MUONS?

 from global fits preference for also a nonzero universal coupling to both *e* and μ

What's in the fits?

Alguero talk at Moriond QCD 2021

see also Alguero et al, 2104.08921

$$C_{ie}^{\rm NP} = C_i^{\rm U}$$

246 obs (Global) + 22 obs (LFUV) from LHCb, Belle, ATLAS, CMS

$$C_{i\mu}^{\rm NP} = C_{i\mu}^{\rm V} + C_i^{\rm U}$$

WHAT KIND OF NP?

- from now on will assume that NP in $b \rightarrow s \mu \mu$
- what is the NP scale?

• the Wilson coeffs. in previous slides

$$V_{tb}V_{ts}^* \frac{\alpha_{\rm em}}{4\pi v^2} C_I = \frac{C_I}{(36\,{\rm TeV})^2}$$

$$C_I^{NP} \sim O(1)$$

- types of NP
 - tree level (heavy or light)
 - loop level

J. Zupan On flavor anomalies

TREE LEVEL

- two distinct types:
- mediated by a Z'

• *SU*(2)_{*L*} singlet or triplet

Altmannshofer, Straub, 1308.1501; Altmannshofer, Gori, Pospelov, Yavin, 1403.1269; Greljo, Isidori, Marzocca, 1506.01705; +many refs. J. Zupan On flavor anomalies

- leptoquark
 - spin 0 or 1

see, e.g., Hiller, Nisandzic, 1704.05444; Hiller, Schmaltz, 1411.4773; +many refs LFC21, ECT-Trento (virtual), Sept 10 2021

38

GENERAL CONSIDERATIONS ABOUT Z'

J. Zu

LEPTOQUARKS

Hiller, Nisandzic, 1704.05444

3 options if a single LQ dominates

LEPTOQUARKS

LOOP LEVEL

- three distinct options
- Z'w/loop to bs

Kamenik, Soreq, JZ, 1704.06005

in general in tension

With direct searches

Bélanger, Delaunay, 1603.03333

Gripaios, Nardecchia, Renner, 1509.05020; Bauer, Neubert, 1511.01900; Becirevic, Sumensari, 1704.05835

J. Zupan On flavor anomalies

42

UPSHOT

- $b \rightarrow c \tau v$ flavor anomaly
 - theoretically clean, $\sim 4\sigma$ excess
 - NP effect large: *O*(20%) of SM tree level
 - NP interpr. often in conflict with other constraints

EXPERIMENTAL SITUATION

- seen in several experiments
- theory well under control Bernlochner, Ligeti, Papucci, Robinson, 1703.05330

Fajfer, Kamenik, Nisandzic, 1203.2654

for theory predictions see, e.g.,

Bailey et al, 1206.4992

$$R(D^{(*)}) = \frac{\Gamma(\overline{B} \to D^{(*)}\tau\bar{\nu})}{\Gamma(\overline{B} \to D^{(*)}l\bar{\nu})}, \qquad l = \mu, e$$

MODELS WITH SM NEUTRINO

Freytsis, Ligeti, Ruderman, 1506.08896 Faroughy, Greljo, Kamenik, 1609.07138

- big effect, needs to be tree level
- two types of exchanges
 - color singlet (W', H⁺)
 - color octet (leptoquarks)

NEW PHYSICS INTERPRETATIONS

- the most obvious candidates ruled out
 - charged Higgs: total B_c lifetime, $b \rightarrow c\tau v q^2$ distributions, searches in $pp \rightarrow \tau \tau$

- W': related Z' ruled out from $pp \rightarrow \tau \tau$
- left with leptoquarks, some also ruled out

MODELS WITH RIGHT HANDED NEUTRINO

• experimentally *R*_{*D*}, *R*_{*D**} above SM

- N_R not part of a doublet
 - no interf. between NP and SM
 - avoids some constraints from charged leptons

Robinson, Shakya, JZ, 1807.04753

HIGH *p*_T CONSTRAINTS

- since mediator scale O(TeV), can be searched for at the LHC
- model independent constraints from $pp \rightarrow \tau + MET$
 - rules out most of the solutions with RH neutrino Greljo, Martin Camalich, Ruiz-Alvarez, 1811.07920

HIGH *p*_T CONSTRAINTS

- since mediator scale O(TeV), can be searched for at the LHC
- model independent constraints from $pp \rightarrow \tau + MET$
 - rules out most of the solutions with RH neutrino

Greljo, Martin Camalich, Ruiz-Alvarez, 1811.07920

GRAND VIEW

COMBINED NP EXPLANATIONS

- all anomalies or a subset?
- $R_{K^{(*)}}$ and $R_{D^{(*)}}$
 - vector leptoquark $U_1 \sim (3,1,2/3)$

Cornella et al., 2103.16558 + many refs.

- UV realization: 4321 model?
- 2 scalar leptoquarks $S_3 \sim (\bar{3}, 3, 1/3), S_1 \sim (\bar{3}, 1, 1/3)$
 - UV realization: composite Higgs? Crivellin, Muller, Ota, 1703.09226 +many refs.
- $R_{K^{(*)}}$ and $(g-2)_{\mu}$
 - 2 scalar leptoquarks $S_3 \sim (\bar{3}, 3, 1/3), S_1 \sim (\bar{3}, 1, 1/3)$ Greljo et al, 2103.13991
 - from simplified DM models in the loop Arcadi, Calibbi, Fedele, Mescia, 2104.03228
- $R_{K^{(*)}}$ and $R_{D^{(*)}}$ and $(g-2)_{\mu}$

J. Zupan On flavor anomalies

51

What LQ scenario?

Model	$R_{D^{(*)}}$	$R_{K^{(*)}}$	$R_{D^{(*)}} \& R_{K^{(*)}}$
$S_1 = (\bar{3}, 1, 1/3)$	\checkmark	×	×
$R_2 = (3, 2, 7/6)$	\checkmark	✓*	×
$S_3 = (ar{3}, 3, 1/3)$	×	\checkmark	×
$U_1=\left(3,1,2/3\right)$	\checkmark	\checkmark	\checkmark
$U_3 = (3, 3, 2/3)$	×	\checkmark	×

from a talk by D. Becirevic at EW Moriond 2021

J. Zupan On flavor anomalies

figure credits, talk by Fuentes Moriond 2021

VECTOR LEPTOQUARK U_1 FOR $R_{K^{(*)}}$ AND $R_{D^{(*)}}$

• effective Lagrangian for $U_1 \sim (3,1,2/3)$ vector leptoquark

$$\mathcal{L} \supset \frac{g_U}{\sqrt{2}} U_1^{\mu} \left[\beta_L^{i\alpha} \left(\bar{q}_L^i \gamma_{\mu} \mathcal{E}_L^{\alpha} \right) + \beta_R^{i\alpha} \left(\bar{d}_R^i \gamma_{\mu} e_R^{\alpha} \right) \right] + \mathbf{h.c.}$$

• $U(2)^3$ MFV flavor structure assumed

• agrees well with data for U_1 as well

Barbieri et al., 1105.2296 Kagan, Perez, Volansky, JZ, 0903.1794

Cornella et al., 2103.16558+many refs

$$Y_{u(d)} = y_{t(b)} \begin{pmatrix} \Delta_{u(d)} & x_{t(b)} & V_q \\ 0 & 1 \end{pmatrix}^{U(2)_q} Y_e = y_\tau \begin{pmatrix} \Delta_e & x_\tau & V_\ell \\ 0 & 1 \end{pmatrix}^{U(2)_\ell} U(2)_e$$

figure credits, talk by Fuentes Moriond 2021

vector leptoquark U_1 for $R_{K^{(*)}}$ and $R_{D^{(*)}}$

• effective Lagrangian for $U_1 \sim (3,1,2/3)$ vector leptoquark

figure credits, talk by Fuentes Moriond 2021

vector leptoquark U_1 for $R_{K^{(*)}}$ and $R_{D^{(*)}}$

• effective Lagrangian for $U_1 \sim (3.1.2/3)$ vector leptoquark

4321 MODEL

Pati, Salam, Phys. Rev. D10 (1974) 275

- cannot be flavor universal: $K_L \rightarrow \mu e$ would bound $M_U > 100 \text{ TeV}$
- 3rd generation gauged under SU(4)
- additional states: G', Z'

J. Zupan On flavor anomalies

$R_{K^{(*)}}$ and $(g-2)_{\mu}$

SINGLE MEDIATOR?

Greljo, Soreq, Stangl, Thomsen, JZ, 2107.07518

- can a single mediator explain both $(g 2)_{\mu}$ and $b \rightarrow s\mu\mu$ anomalies?
 - each separately possible with neutral spin-1 boson X_{μ}
 - for $(g 2)_{\mu}$ required to be light, $m_X \leq \mathcal{O}(\text{few GeV})$
 - for b → sµµ can be light ~GeV or very heavy ~10s
 TeV
- however, not possible to explain both at the same time
 - ⇒ combined explanation requires at least two new states

57

SINGLE MEDIATOR?

- can a single mediator explain both $(g 2)_{\mu}$ and $b \rightarrow s\mu\mu$ anomalies?
- the relevant effective interactions

$$\mathcal{L}_{\text{eff}} \supset + g_X \left(q_V + q_A \right) \overline{\nu_{\mu L}} \not X \nu_{\mu L} + g_X \overline{\mu} \not X \left(q_V - q_A \gamma_5 \right) \mu \\ + \left[\overline{b} \not X \left(g_L^{bs} P_L + g_R^{bs} P_R \right) s + \text{H.c.} \right] ,$$

• for
$$(g-2)_{\mu}$$
 need $g_V \gg g_A$

$$g_X = \left(\frac{\Delta a_{\mu}}{251 \times 10^{-11}}\right)^{1/2} \begin{cases} 4.5 \times 10^{-4} \left[q_V^2 - 2 \, q_A^2 \, r_{\mu}^2\right]^{-1/2}, & m_X \ll m_{\mu}, \\ 5.5 \times 10^{-4} r_{\mu}^{-1/2} \left[q_V^2 - 5 \, q_A^2\right]^{-1/2}, & m_X \gg m_{\mu}. \end{cases}$$

• $\Rightarrow X_{\mu}$ necessarily couples to neutrinos*

* as long as EFT applies, i.e. dim 6 ops not cancelled by dim 8

J. Zupan On flavor anomalies

58

SINGLE MEDIATOR?

Greljo, Soreq, Stangl, Thomsen, JZ, 2107.07518

- because of X_μ couplings to neutrinos competing requirements
 - $B \rightarrow K\nu\nu$ bound implies small g_L^{bs}
 - neutrino trident bound implies small $g_X(q_V + q_A)$
 - $B \rightarrow K \mu \mu$ requires large enough $g_L^{bs} g_X q_{V,A}$
 - $(g 2)_{\mu}$ requires large enough $g_X q_V$

$(g-2)_{\mu}, b \rightarrow s\mu\mu$ FROM $U(1)_X$ AND LQ

Greljo, Soreq, Stangl, Thomsen, JZ, 2107.07518

- $R_{K^{(*)}}$ from tree-level LQ exchange
 - for instance from $S_3 = (\bar{3}, 3, 1/3)_{8/3}$
- $(g 2)_{\mu}$ from $U(1)_X$ gauge boson
- the $U(1)_X$ solves the flavor problem
 - gauge charges such that S₃ only couples to muons, not τ,
 e ⇒ LQ is a "muoquark"
 - \Rightarrow no FCNC problems
 - universal charges for quarks
 - gauge charges such that forbid (too fast) proton decay
 - no dim5 ops. mediating proton decay

$(g-2)_{\mu}, b \rightarrow s\mu\mu$ FROM $U(1)_X$ AND LQ

Greljo, Soreq, Stangl, Thomsen, JZ, 2107.07518

- exploration of viable charge assignments for SM+ $3\nu_R$ field content
- require anomaly free charge assignments
 - keeping max charge ratios $\leq 10 \Rightarrow 273$ models (out of ~ $2 \cdot 10^7$)
 - two categories of charge assignments

vector category: $X_{L_i} = X_{E_i}$ for all i = 1, 2, 3, chiral category: the rest.

- in vector category 3 parameter families of solutions, with the lepton charges given by (up to flavor permutations)
 - Class 1: $X_e = X_{N_1}, \quad X_\mu = X_{N_2}, \quad X_\tau = X_{N_3},$ Class 2: $X_e = X_{N_1}, \quad X_\mu = -X_\tau, \quad X_{N_2} = -X_{N_3},$ Class 3: the rest.
- note: the classes may overlap, e.g., $L_{\mu} L_{\tau}$ is both Class 1 and 2 J. Zupan On flavor anomalies 62 LFC21, ECT-Trento (virtual), Sept 10 2021

BENCHMARKS

- several relevant constraints
 - neutrino trident, light resonance searches, neutrino electron scattering (Borexino), nonstandard neutrino interactions
- benchmark models that can explain $b \rightarrow s\mu\mu$ through S_3 exchange and $(g 2)_{\mu}$ through $U(1)_X$ gauge boson

•
$$L_{\mu} - L_{\tau}$$
: viable region near $m_X \sim 20 \text{MeV}$

- $L_{\mu} L_{e}$: viable region if kinetic mixing recudes couplings to electrons $X_{\text{eff}} = X_{e} - \frac{e}{g_{X}} \varepsilon$
- chiral $\tilde{L}_{\mu-\tau}$: possible viable region near $m_X \sim 20 \text{MeV}$
- other possible benchmarks, $B 3L_{\mu}$, $\tilde{L} 3B$,...

J. Zupan On flavor anomalies

63

J. Zupan On flavor anomalies

63

J. Zupan On flavor anomalies

SIMPLIFIED DM MODELS FOR $R_{K^{(*)}}$ AND $(g-2)_{\mu}$

- $b \rightarrow s\mu\mu$ and $(g 2)_{\mu}$ both from loops
- finite number of simplified models, if DM candidate required

Label	Φ_q/Ψ_q	Φ_ℓ/Ψ_ℓ	Ψ/Φ	Φ_ℓ'/Ψ_ℓ'	Ψ'/Φ'
$\mathcal{F}_{\mathrm{Ia}}/\mathcal{S}_{\mathrm{Ia}}$	$({f 3},{f 2},1/6)$	(1, 2, -1/2)	(1, 1, 0)	(1, 1, -1)	_
$\mathcal{F}_{\mathrm{Ib}}/\mathcal{S}_{\mathrm{Ib}}$	$({f 3},{f 2},1/6)$	(1, 2, -1/2)	$({\bf 1},{\bf 1},0)$	-	(1, 2, -1/2)
$\mathcal{F}_{ m Ic}/\mathcal{S}_{ m Ic}$	$({f 3},{f 2},7/6)$	(1, 2, 1/2)	(1 , 1 ,-1)	(1, 1, 0)	—
$\mathcal{F}_{\mathrm{IIa}}/\mathcal{S}_{\mathrm{IIa}}$	$({f 3},{f 1},2/3)$	(1 , 1 ,0)	(1, 2, -1/2)	(1, 2, -1/2)	-
$\mathcal{F}_{\mathrm{IIb}}/\mathcal{S}_{\mathrm{IIb}}$	(3 , 1 ,2/3)	(1 , 1 ,0)	(1, 2, -1/2)	-	(1, 1, -1)
$\mathcal{F}_{ ext{IIc}}/\mathcal{S}_{ ext{IIc}}$	$({\bf 3},{\bf 1},-1/3)$	(1, 1, -1)	(1, 2, 1/2)	-	(1, 1, 0)
$\mathcal{F}_{\mathrm{Va}}/\mathcal{S}_{\mathrm{Va}}$	$({\bf 3},{\bf 3},2/3)$	$({f 1},{f 1},0)$	(1, 2, -1/2)	(1, 2, -1/2)	_
$\mathcal{F}_{ m Vb}/\mathcal{S}_{ m Vb}$	$({\bf 3},{\bf 3},2/3)$	$({f 1},{f 1},0)$	$({f 1},{f 2},-1/2)$	_	$({f 1},{f 1},-1)$
$\mathcal{F}_{ m Vc}/\mathcal{S}_{ m Vc}$	$({f 3},{f 3},-1/3)$	(1 , 1 ,-1)	$({f 1},{f 2},1/2)$	-	(1, 1, 0)

SIMPLIFIED DM MODELS **FOR** $R_{K^{(*)}}$ **AND** $(g-2)_{\mu}$

- $b \rightarrow s\mu\mu$ and (a 2) both fro
- fir sir ca

Label

 $\mathcal{F}_{\mathrm{Ia}}/\mathcal{S}_{\mathrm{Ia}}$

 $\mathcal{F}_{\mathrm{Ib}}/\mathcal{S}_{\mathrm{Ib}}$

 $\mathcal{F}_{
m Ic}/\mathcal{S}_{
m Ic}$

 $\mathcal{F}_{\mathrm{IIa}}/\mathcal{S}_{\mathrm{IIa}}$

 $\mathcal{F}_{\mathrm{IIb}}/\mathcal{S}_{\mathrm{IIb}}$

 $\mathcal{F}_{\mathrm{IIc}}/\mathcal{S}_{\mathrm{IIc}}$

 $\mathcal{F}_{\mathrm{Va}}/\mathcal{S}_{\mathrm{Va}}$

 $\mathcal{F}_{\mathrm{Vb}}/\mathcal{S}_{\mathrm{Vb}}$

 $\mathcal{F}_{
m Vc}/\mathcal{S}_{
m Vc}$

 Φ_q/Ψ_q

(3, 2, 1/6)

(3, 2, 1/6)

(3, 2, 7/6)

(3, 1, 2/3)

(3, 1, 2/3)

(3, 1, -1/3)

(3, 3, 2/3)

(3, 3, 2/3)

(3, 3, -1/3)

1.		10.000	₂ =0.7 TeV	$ar{\mu}_L$			
om 10	ops	10000	F	PLANCK	for \mathcal{F}_{1b} mo	odel ·	
nite numbe		5000			B-anomalies		Φ_ℓ
nplified m		2000	-				μ_L
ndidate re		[GeV] 小[GeV]	-	Δa _μ		1T(SI)	
Φ_ℓ/Ψ_ℓ	Ψ/Φ	< 500	H→inv				2
(1, 2, -1/2)	$({f 1},{f 1},0)$						2
(1, 2, -1/2)	$({f 1},{f 1},0)$						
(1, 2, 1/2)	(1 , 1 ,-1)	200	-				``
$({f 1},{f 1},0)$	(1, 2, -1/2)	100		$\langle \rangle$			۱ ۱
$({f 1},{f 1},0)$	(1, 2, -1/2)	100	10 20	50 100 200	500 1000 2000	500010000	μ_R
(1, 1, -1)	(1, 2, 1/2)			Μψ[(GeV]	į	é
(1, 1, 0)	(1, 2, -1/2)	(1, 2, -1/2)	_				
$({f 1},{f 1},0)$	$({f 1},{f 2},-1/2)$	_	(1 , 1 ,-1)				
(1, 1, -1)	(1, 2, 1/2)	_	(1, 1, 0)	LFC2	1, ECT-Trento (virtual), Sep	ot 10 2021

Arcadi, Calibbi, Fedele, Mescia, 2104.03228

$R_{K^{(*)}}$ and $R_{D^{(*)}}$ and $(g-2)_{\mu}$

S_1 and S_3 leptoquarks for $R_{K^{(*)}}$ and $R_{D^{(*)}}$ and $(g-2)_{\mu}$

- $R_{K^{(*)}}$ from tree-level S_3 exchange
- $(g 2)_{\mu}$ from muon-philic S_1 at 1 loop
- $R_{D^{(*)}}$ from tau-philic S_1 at tree-level
 - symmetry structure realizable in gauged $L_{\mu} L_{\tau}$ (±1 charges for S_1 's)

Greljo et al, 2103.13991

S_1 and charged singlet for $R_{K^{(*)}}$ and $R_{D^{(*)}}$ and $(g-2)_{\mu}$

• two new fields

Marzocca, Trifinopoulos, 2104.05730

10 2021

 $S_1 \sim (\bar{\mathbf{3}}, \mathbf{1})_{1/3} , \qquad \phi^+ \sim (\mathbf{1}, \mathbf{1})_1$

• in addition to resolving $R_{K^{(*)}}$, $(g - 2)_{\mu}$ also possible to resolve the Cabibbo angle anomaly

• 3.6 σ (or 5.1 σ) discrepancy in V_{us} from $K \to \pi \ell \nu$ vs. V_{ud} (+CKM unitarity) from super- allowed nuclear β decays see also Crivellin et al, 2012.09845; Belfatto et al, 1906.02714

67

J. Zupan On flavor anomalies

S_1 and charged singlet for $R_{K^{(*)}}$ and $R_{D^{(*)}}$ and $(g-2)_{\mu}$

THE FUTURE

THE FUTURE

- many related modes/observables in $b \rightarrow c\tau v$ and $b \rightarrow s\mu\mu$
 - $\Lambda_b \rightarrow \Lambda_c \tau v, B_C \rightarrow J/\psi \tau v, B_S \rightarrow D_s^* \tau v, B_s \rightarrow \phi ll, b \rightarrow sll$ inclusive, LFU in angular obs., ...
- a rule of thumb: Belle 2 50x statistics of Belle
 - corresponds to ~reach in Λ_{NP} of 450=2.7x
 - like going from 13TeV LHC to 35TeV LHC
- similar for LHCb (Phase 2 Upgrade 100x stat.)
- Muon g-2/EDM experiment at J-PARC
- many of the heavier states could be produced at high p_T
 - ATLAS, CMS, 100 TeV pp, muon collider,

THE FUTURE - BELLE II

talk by Carsten Niebuhr at EPS-HEP 2021

THE FUTURE - LHCB

WG4 Yellow Report, 1812.07638

THE FUTURE - LHCB

J. Zupan On flavor anomalies

71

CONCLUSIONS

- FCNCs very sensitive probes of new physics
- growing tensions in $(g 2)_{\mu}$, $R_{K^{(*)}}$
 - evidence of new physics?

BACKUP SLIDES

EXPERIMENTAL PROGRESS

- example: mini-split SUSY
 - *O*(1-10*TeV*) gauginos at LHC or future collider; PeV sfermions from low energy precision probes

EXPERIMENTAL PROGRESS

• and will improve dramatically in the future

EXPERIMENTAL PROGRESS

Physics Briefing Book, 1910.11775

 further orders of magnitude experimental progress expected in CLFV transitions

AXION

Peccei, Quinn, PRL 38, 1440 (1977) Weinberg, PRL 40, 223, (1978) Wilczek, PRL 46, 279 (1978) Vafa, Witten, PRL 53, 535 (1984)

- if $\bar{\theta}(x)$ a dynamical field and couples only to $\bar{\theta}G\tilde{G} \Rightarrow$ potential min. at $\bar{\theta}(x) = 0$ $F_{f_if_j}^{V,A} \equiv$
 - new ultra-light particle axion

$$\mathcal{L}_{\text{eff}} = \frac{\alpha_s}{8\pi} \frac{a}{f_a} G\tilde{G} + \frac{E}{N} \frac{\alpha_{\text{em}}}{8\pi} \frac{a}{f_a} F\tilde{F} + \frac{\partial_\mu a}{2f_a} \bar{f}_i \gamma^\mu (C_{f_i f_j}^V + C_{f_i f_j}^A \gamma_5) f_j$$

• obtains mass from QCD anomaly

$$m_a = 5.70(7) \,\mu\text{eV}\left(\frac{10^{12}\,\text{GeV}}{f_a}\right)$$

viable cold dark matter candidate for

$$10^{-8} \,\mathrm{eV} \lesssim m_a \lesssim 10^{-3} \,\mathrm{eV}$$

J. Zupan Flavored axions - searches and constraints 77

PIKIMO-10, Northwestern U., Apr 10 2021

SUSY?

- a_{μ} via chargino-sneutrino and neutralino-smuon loops
- bino-like neutralino is DM
- requires cancellations in DM direct detection xsec
 - "blind spot": *h* and *H* exch. with opposite signs
- can evade LHC constraints in the soft region

• a_{μ} via chargino-sneutrino

- requires cancellations in DM direct detection xsec
 - "blind spot": *h* and *H* exch. with opposite sign
- can evade LHC constraints in the soft region

J. Zupan On flavor anomalies

$a_{\mu}(SM) = 0.00116591810(43) \rightarrow 368 \text{ ppb}$

The Z' models

- bounds from ATLAS, CMS from $pp \rightarrow Z' \rightarrow \mu \mu$
 - e.g., for MFV ansatz

$$c_{Q_{ij}L_{22}}^{(3,1)} \sim \left(\mathbf{1} + \alpha Y_u Y_u^{\dagger} + \beta Y_d Y_d^{\dagger}\right)_{ij}$$
$$J_{\mu} = g_Q^{(1),ij} (\bar{Q}_i \gamma_{\mu} Q_j) + g_L^{(1),kl} (\bar{L}_k \gamma^{\mu} L_l)$$

• "LHC safe" models

Altmannshofer et al, 1403.1269

81

Greljo, Marzocca, 1704.09015

- $U(1)_{\mu-\tau}$ models with vector-like quarks
- models with more than one mediator (mixing suppression), e.g. U(1)_q xU(1)_{μ-τ}
- composite ρ exchanges Carmona, Goertz, 1510.07658
 - fully horizontal Z' models with third-family charges only, e.g., U(1)_{B3-τ}, U(1)_{B3-3μ}
 - interesting textures in the neutrino mass matrix

Bhatia, Chakraborty, Dighe, 1701.05825

J. Zupan On flavor anomalies

Crivellin, Fuentes, Greljo, Isidori, 1611.02703

Carmona, Goertz, 1510.07658; Megías et al, 1608.02362, 1705.04822;

Alonso, Cox, Han, Yanagida, 1705.03858; Bonilla, Modak, Srivastava, Valle, 1705.00915

J. Zupan On flavor anomalies

HADRONIC VACUUM

SENSITIVITY TO NEW PHYSICS

- SM@tree level: no Flavor Changing Neutral Currents
 - all FCNC processes loop suppressed
 - e.g., meson mixing
- can be modified by NP
- NP contribs. scale as

 $\delta C^{\rm NP} \propto \frac{\sin \theta_i \sin \theta_j}{M_{\rm NP}^2}$

 depends on mix. angles and NP masses

LOW ENERGY PRECISION BOUNDS

UTFit 0707.0636, 1411.7233 for latest charm see also Bazavov et al, 1706.04622

- an impressive progress on flavor bounds in last 10 years
- in D, B_s mixing
- also from ε_K

 $\frac{\mathbf{L}}{\Lambda 2} (\bar{b}_L \gamma^\mu d_L) (\bar{b}_L \gamma_\mu d_L)$

J. Lupan

LOW ENERGY PRECISION BOUNDS

86

UTFit 0707.0636, 1411.7233

- an impressive progress on flavor bounds in last 10 years
- in D, B_s mixing
- also from ε_K

 $\frac{1}{\Lambda 2} (\bar{b}_L \gamma^\mu d_L) (\bar{b}_L \gamma_\mu d_L)$

J. Lupan

LOW ENERGY PRECISION BOUNDS

UTFit 0707.0636, 1411.7233

- an impressive progress on flavor bounds in last 10 years
- in D, B_s mixing
- also from ε_K

 $\frac{1}{\Lambda 2} (\bar{b}_L \gamma^\mu d_L) (\bar{b}_L \gamma_\mu d_L)$

LEPTOQUARKS UPSHOT

L. di Luzio, 1706.01868

Simplified Model	Spin	SM irrep	c_1/c_3	$R_{D^{(*)}}$	$R_{K^{(*)}}$	No $d_i \to d_j \nu \overline{\nu}$
Z'	1	(1, 1, 0)	0	×	\checkmark	×
V'	1	(1,3,0)	∞	\checkmark	\checkmark	×
S_1	0	$(\overline{3}, 1, 1/3)$	-1	\checkmark	×	×
S_3	0	$(\overline{3}, 3, 1/3)$	3	\checkmark	\checkmark	×
U_1	1	(3, 1, 2/3)	1	\checkmark	\checkmark	\checkmark
U_3	1	(3, 3, 2/3)	-3	\checkmark	\checkmark	×

Anomaly	\mathcal{O}	FS_Q	FS_L	$\Lambda_A[{ m TeV}]$	$ \Lambda_{\mathcal{O}} $ [TeV]	$\Lambda_U[{ m TeV}]$	$M_{\star}[\text{TeV}]$
$b \to c \tau \overline{\nu}$	$Q_{23}L_{33}$	1	1	3.4	3.4	9.2	43
$b \to c \tau \overline{\nu}$	$Q_{33}L_{33}$	$ V_{cb} $	1	3.4	0.7	1.9	8.7
$b o s \mu \overline{\mu}$	$Q_{23}L_{22}$	1	1	31	31	84	390
$b ightarrow s \mu \overline{\mu}$	$Q_{33}L_{22}$	$ V_{ts} $	1	31	6.2	17	78
$b o s \mu \overline{\mu}$	$Q_{33}L_{33}$	$ V_{ts} $	$^{\ddagger}m_{\mu}/m_{ au}$	31	1.5	4.1	19
$b o s \mu \overline{\mu}$	$Q_{33}L_{33}$	$ V_{ts} $	$(m_\mu/m_ au)^2$	31	0.4	1.0	4.7

J. Zupan On flavor anomalies

 R_K vs. R_{K^*}

Geng et al, 1704.05446

J. Zupan On flavor anomalies

LOW q^2 BIN

D'Amico et al., 1704.05438

J. Zupan On flavor anomalies

SENSITIVITY TO NEW PHYSICS

- sensitivity to NP from virtual corrections
 - e.g. $b \rightarrow sl^+l^-$
- NP contribs. scale as $\sin \theta_i \sin \theta_j$ $\delta C^{
 m NP}$

 \propto

fig. from talk by G. Hiller at The First Three years of LHC, Mainz, Mar 2013

BOUNDS ON MODELS

• $B_s \rightarrow \mu \mu$ important discriminator of models

OTHER CONSTRAINTS

 $b \rightarrow c \tau v$

numerical values

	R(D)	$R(D^*)$
BaBar	$0.440 \pm 0.058 \pm 0.042$	$0.332 \pm 0.024 \pm 0.018$
Belle	$0.375^{+0.064}_{-0.063} \pm 0.026$	$0.293^{+0.039}_{-0.037} \pm 0.015$
LHCb		$0.336 \pm 0.027 \pm 0.030$
Exp. average	0.388 ± 0.047	0.321 ± 0.021
SM expectation	0.300 ± 0.010	0.252 ± 0.005
Belle II, 50 ab^{-1}	± 0.010	± 0.005

MODELS WITH RIGHT HANDED NEUTRINO

SBOTTOM SOLUTION

J. Zupan On flavor anomalies

R_D, R_D* PREDICTIONS

Bernlochner, Ligeti, Papucci, Robinson, 1703.05330

without light cone sum rule estimates

96

J. Zupan On flavor anomalies

• $b \rightarrow c\tau v$ also implies a $1/V_{cb}$ enhanced $b\bar{b} \rightarrow \tau^+ \tau^-$

	Color singlet	Color triplet
Scalar	2HDM	Scalar LQ
Vector	W'	Vector LQ

RADIATIVE CORRECTIONS

- loop corrections important Feruglio, Paradisi, Pattori, 1705.00929, 1606.00524
 - modifications of the W, Z couplings to leptons
 - induced τ decays

J. Zupan On flavor anomalies

NEW PHYSICS INTERPRETATIONS

- the most obvious candidates ruled out
 - charged Higgs: total B_c lifetime, b→cτυ q²
 distributions, searches in pp→ττ
 - W': related Z' ruled out from $pp \rightarrow \tau \tau$
- left with leptoquarks, will show two
 - RPV sbottom: explains $b \rightarrow c\tau v$, not $b \rightarrow s\mu \mu$
 - vector leptoquark: explains $b \rightarrow c \tau v \& b \rightarrow s \mu \mu$
 - also possible if more than one scalar leptoquark
 Crivellin, Muller, Ota, 1703.09226

99

RPV $\tilde{b}_{R,L}$

Altmannshofer, Dev, Soni, 1704.06659

• leptoquarks: $\tilde{b}_{R,L}$ with RPV interactions

 $\lambda_{ijk}' L_i Q_j D_k^c$

- to avoid proton decay constraints: 1st, 2nd gen. squarks taken heavy
- direct searches $pp \rightarrow tt\tau\tau$: $m(\tilde{b}_R) > 650 \text{GeV}$
- unification still possible
- cannot explain $b \rightarrow s \mu \mu$

Deshpande, He, 1608.04817; Becirevic et al. 1608.07583

• $b \rightarrow c\tau v$ also implies a $1/V_{cb}$ enhanced $b\bar{b} \rightarrow \tau^+ \tau^-$

	Color singlet	Color triplet
Scalar	2HDM	Scalar LQ
Vector	W'	Vector LQ

TOP-PHILIC Z'

Kamenik, Soreq, JZ, 1704.06005

cf. NA62 reach:

10% of the SM

- where is the flavor structure coming from?
- why the $(\bar{s}b)_{V-A}$ chiral structure?
- automatic for top-philic Z'
 - $b \rightarrow s$ due to SM W in the loop

SM value

J. Zupan

omalies

• MFV structure: all FV due to CKM

• there is a correlated signal in $K \rightarrow \pi v v$

$$\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) \simeq (8.4 \pm 1.0) \times 10^{-11} \times \frac{1}{3} \sum_{\ell} \left| 1 + 0.11 (C_9^{\ell, \text{NP}} - C_{10}^{\ell, \text{NP}}) \right|^2$$

102

see also Bordone, Buttazzo, Isidori, Monnard, 1705.10729 LFC21, ECT-Trento (virtual), Sept 10 2021

MINIMAL U(1)' MODEL

- new U(1)' gauge symmetry
 - scalar Φ ~(1,1,0,q') $\Phi = (\phi + \tilde{v})/\sqrt{2}$
 - vectorlike fermion *T'*~(3, 1, 2/3, *q'*) <u>su(3)xSU(2)xU(1)xU(1)</u>
 - all the SM fields singlets under U(1)'
- interactions with the SM through only three terms

$$\mathcal{L}_{\text{mix}} = -\lambda' |\Phi|^2 |H|^2 - \epsilon B^{\mu\nu} F'_{\mu\nu} - (y_T^i \bar{T}' \Phi u_R^i + \text{h.c.})$$

- assume alignment with the SM up Yukawa $y_u^{ij} \sim \text{diag}(0, 0, y_t)$ $y_T^i \sim (0, 0, y_T^t)$
- for us the interesting limit $|y_T^t| \gg \lambda', \varepsilon$

J. Zupan On flavor anomalies

Kamenik, Soreq, JZ, 1704.06005

SIZE OF $b \rightarrow s \mu \mu$

• *t*–*T* mass matrix

$$\mathcal{M}_u^{t-T'} = \begin{pmatrix} y_t v / \sqrt{2} & 0\\ y_T^t \tilde{v} / \sqrt{2} & M_T \end{pmatrix}$$

the mixing angles for the two chiralities

• main effects due to mixing with t_R

• the induced $b \rightarrow sll$

$$C_{9,10}^{\mu,\mathrm{NP}} = \frac{1}{2} q' q'_{\mu,V,A} \frac{m_t^2}{m_{Z'}^2} \frac{\tilde{g}^2}{e^2} s_R^2 \log\left(\frac{m_T^2}{m_W^2}\right) + \dots,$$

 d^{\imath} Z' d^{a} d^l d^{i}

- fits the anomaly for $m_{Z'} \sim O(500 \text{ GeV}), \tilde{g}q' \sim O(1)$
- couplings to muons due to mixing with vectorlike leptons
 - depending on the details could explain $(g-2)_{\mu}$

DIRECT SEARCHES

- contraints from dimuon searches:
- production channels:
 - tree level $pp \rightarrow \bar{t}tZ'$,
 - 1-loop: $pp \rightarrow ZZ', jZ'$
- depends on $Br(Z' \rightarrow \mu \mu)$
 - e.g. below *t* threshold:
 - coupling to $\mu_L \Rightarrow Br(Z' \rightarrow \mu\mu) = 0.5$
 - coupling to $\mu_L, \tau_L \Rightarrow Br(Z' \rightarrow \mu\mu) = 0.25$
- interesting possible searches at LHC
 - $pp \rightarrow \overline{t}t(Z' \rightarrow \mu\mu), \overline{t}t(Z' \rightarrow \tau\tau), \overline{t}t(Z' \rightarrow \overline{t}t)$

DIRECT SEARCHES

- contraints from dimuon searches:
- production channels:
 - tree level $pp \rightarrow \bar{t}tZ'$,
 - 1-loop: $pp \rightarrow ZZ', jZ'$
- depends on $Br(Z' \rightarrow \mu \mu)$
 - e.g. below *t* threshold:
 - coupling to $\mu_L \Rightarrow Br(Z' \rightarrow \mu\mu) = 0.5$
 - coupling to $\mu_L, \tau_L \Rightarrow Br(Z' \rightarrow \mu\mu) = 0.25$
- interesting possible searches at LHC
 - $pp \rightarrow \overline{t}t(Z' \rightarrow \mu\mu), \overline{t}t(Z' \rightarrow \tau\tau), \overline{t}t(Z' \rightarrow \overline{t}t)$

R_D, R_D* PREDICTIONS

Bernlochner, Ligeti, Papucci, Robinson, 1703.05330

without light cone sum rule estimates

J. Zupan On flavor anomalies

MODELS WITH SM NEUTRINO

Freytsis, Ligeti, Ruderman, 1506.08896

	-				
	Operator	Fierz identity	Allowed Current	$\delta \mathcal{L}_{ ext{int}}$	
\mathcal{O}_{V_L}	$(\bar{c}\gamma_{\mu}P_{L}b)(\bar{\tau}\gamma^{\mu}P_{L}\nu)$	($({f 1},{f 3})_0$	$(g_q ar q_L oldsymbol{ au} \gamma^\mu q_L + g_\ell ar \ell_L oldsymbol{ au} \gamma^\mu \ell_L) W_\mu'$	
${\cal O}_{V_R}$	$(\bar{c}\gamma_{\mu}P_{R}b)(\bar{\tau}\gamma^{\mu}P_{L} u)$	2 color singl	et		
\mathcal{O}_{S_R}	$(\bar{c}P_Rb)(\bar{\tau}P_L u)$	1.		$(\lambda = 1, (\lambda = \lambda = \dots = (1, \lambda = \lambda))$	
\mathcal{O}_{S_L}	$(\bar{c}P_Lb)(\bar{\tau}P_L\nu)$	mediators	$(1,2)_{1/2}$	$(\lambda_d q_L d_R \phi + \lambda_u q_L u_R i \tau_2 \phi' + \lambda_\ell \ell_L e_R \phi)$	
\mathcal{O}_T	$(\bar{c}\sigma^{\mu\nu}P_Lb)(\bar{\tau}\sigma_{\mu\nu}P_L\nu)$				
\mathcal{O}_{V_L}'	$(\bar{\tau}\gamma_{\mu}P_{L}b)(\bar{c}\gamma^{\mu}P_{L}\nu)$	$\longleftrightarrow \mathcal{O}_{V_L} \langle$	$({f 3},{f 3})_{2/3}$	$\lambda ar{q}_L oldsymbol{ au} \gamma_\mu \ell_L oldsymbol{U}^\mu$	
\mathcal{O}_{V_R}'	$(\bar{\tau}\gamma_{\mu}P_{R}b)(\bar{c}\gamma^{\mu}P_{L}\nu)$	$\longleftrightarrow -2\mathcal{O}_{S_R}$	$\left. ight angle ({f 3},{f 1})_{2/3}$	$(\lambda ar q_L \gamma_\mu \ell_L + ilde \lambda ar d_R \gamma_\mu e_R) U^\mu$	
\mathcal{O}'_{S_R}	$(ar{ au} P_R b) (ar{c} P_L u)$	$\longleftrightarrow -\frac{1}{2}\mathcal{O}_{V_R}$		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
\mathcal{O}'_{S_L}	$(\bar{\tau}P_Lb)(\bar{c}P_L\nu)$	$\longleftrightarrow -\frac{1}{2}\mathcal{O}_{S_L} - \frac{1}{8}\mathcal{O}_T$	$({f 3},{f 2})_{7/6}$	$(\lambda \bar{u}_R \ell_L + \lambda \bar{q}_L i \tau_2 e_R) R$ 6 lepto	qu
${\mathcal O}_T'$	$(\bar{\tau}\sigma^{\mu\nu}P_Lb)(\bar{c}\sigma_{\mu\nu}P_L\nu)$	$\leftrightarrow -6\mathcal{O}_{S_L} + \frac{1}{2}\mathcal{O}_T$		media	ato
${\cal O}_{V_L}''$	$(ar{ au}\gamma_{\mu}P_{L}c^{c})(ar{b}^{c}\gamma^{\mu}P_{L} u)$	$\longleftrightarrow -\mathcal{O}_{V_R}$			
${\cal O}_{V_R}''$	$(ar{ au}\gamma_{\mu}P_{R}c^{c})(ar{b}^{c}\gamma^{\mu}P_{L} u)$	$\longleftrightarrow -2\mathcal{O}_{S_R}$	$(ar{3}, 2)_{5/3}$	$(\lambda ar{d}_R^c \gamma_\mu \ell_L + ilde{\lambda} ar{q}_L^c \gamma_\mu e_R) V^\mu$	
${\cal O}_{S_R}''$	$(ar{ au} P_R c^c) (ar{b}^c P_L u)$	$\longleftrightarrow \frac{1}{2}\mathcal{O}_{V_L} \left\langle \right\rangle$	$(\bar{3},3)_{1/3}$	$\lambdaar{q}_L^{ m c}i au_2oldsymbol{ au}\ell_Loldsymbol{S}$	
\mathcal{O}_{S_L}''	$(ar{ au} P_L c^c) (ar{b}^c P_L u)$	$\longleftrightarrow -\frac{1}{2}\mathcal{O}_{S_L} + \frac{1}{8}\mathcal{O}_T$	$\left. \left. \left. \left\langle oldsymbol{ar{3}}, oldsymbol{1} ight angle_{1/3} ight. ight. ight.$	$(\lambda \bar{q}_L^c i \tau_2 \ell_L + \tilde{\lambda} \bar{u}_R^c e_R) S$	
${\cal O}_T''$	$(\bar{\tau}\sigma^{\mu\nu}P_Lc^c)(\bar{b}^c\sigma_{\mu\nu}P_L\nu)$	$\longleftrightarrow -6\mathcal{O}_{S_L} - \frac{1}{2}\mathcal{O}_T$			

THE MASS SCALE

- NP models with SM neutrino
 - color singlets: W', scalar doublet
 - color triplets: leptoquarks

 -0.46 ± 0.09

Coefficient(s)

 C_{V_L}

 C_T

 C_{S_T}''

• typical mass ~500GeV for O(1) coupl.

Best fit value(s) ($\Lambda = 1$ TeV)

 $0.18 \pm 0.04, -2.88 \pm 0.04$

 $0.52 \pm 0.02, -0.07 \pm 0.02$

$$\begin{array}{c|cccc} (C_R, C_L) & (1.25, -1.02), & (-2.84, 3.08) & \phi \sim (1, 2)_{1/2} \\ (C_{V_R}', C_{V_L}') & (-0.01, 0.18), & (0.01, -2.88) & U^{\mu} \sim (3, 1)_{2/3} \\ (C_{S_R}', C_{S_L}'') & (0.35, -0.03), & (0.96, 2.41), & S \sim (1, 3)_{1/3} \\ & (-5.74, 0.03), & (-6.34, -2.39) & 1, \text{ECT-Trento (virtual), Sept 10 2021} \end{array}$$

BOUNDS ON SIMPLIFIED MODELS

• all the four tree level mediators couple to LH quarks

Freytsis, Ligeti, Ruderman, 1506.08896

$$(g_{4}\bar{q}_{L}\tau\gamma^{\mu}q_{L}) + g_{\ell}\bar{\ell}_{L}\tau\gamma^{\mu}\ell_{L})W_{\mu}'$$

$$(\lambda_d \bar{q}_L) l_R \phi + \lambda_u \bar{q}_L) \iota_R i \tau_2 \phi^\dagger + \lambda_\ell \bar{\ell}_L e_R \phi)$$

$$(\lambda \bar{q}_L) \gamma_\mu \ell_L + \tilde{\lambda} \bar{d}_R \gamma_\mu e_R) U^\mu$$

$$(\lambda \bar{q}_L^c i \tau_2 \ell_L + \tilde{\lambda} \bar{u}_R^c e_R) S$$

Faroughy, Greljo, Kamenik, 1609.07138

- the *q*^{*L*} flavor struct. that roughly minimizes constraints $Q_3 = \begin{pmatrix} V_{ub}u_L + V_{cb}c_L + V_{tb}t_L \\ b_L \end{pmatrix}$
 - only coupling to
 - then $b \rightarrow c\tau v$ is V_{cb} suppressed

J. Zupan On flavor anomalies

- $b \rightarrow c\tau v$ implies a $1/V_{cb}$ enhanced $b\bar{b} \rightarrow \tau^+ \tau^-$
- severe bounds from LHC

for $b \rightarrow c \tau v$ need:

• for instance for scalar doublet

• vector triplet: W', Z'

Faroughy, Greljo, Kamenik, 1609.07138

 either nonperturbative or very light and weakly coupled to quarks

gu

 $(\lambda \bar{q}_L^3 \gamma_\mu \ell_L + \tilde{\lambda} d_R \gamma_\mu e_R) U^\mu$

- vector leptoquark: U_μ
 - bounds depend somewhat on flavor structure assumed

gu

• vector leptoquark: U_{μ}

J. Zupan On flavor anomalies

 bounds depend somewhat on flavor Buttazzo, Greljo, Isidori, Marzocca, 1706.07808 structure assumed

allowing $\mathcal{O}(V_{cb})\bar{q}_L^2\gamma\tau_L U_\mu$ Faroughy, Greljo, Kamenik, 1609.07138 [1609.07138] 3.0 Vector LQ exclusion AS 8 TeV 20 fb⁻ ATLAS ττ: 13 TeV, 3.2 fb⁻¹ 2.5 ATLAS *ττ*: 8 TeV, 19.5 fb⁻¹ 4 2.0 CMS 13 D 1.5 3 2.01560 g_U 1.0 13ToV, 500 fb 0.5 Vector LQ 0.0 0└ 0.5 0.5 1.0 1.5 2.0 1.0 1.5 M_U (TeV) M_U (TeV)

112

bserved xpected -

4000

[GeV]

09.07242

1σ

2σ

 $(\lambda \bar{q}_L^3 \gamma_\mu \ell_L + \tilde{\lambda} d_R \gamma_\mu e_R) U^\mu$

 1σ

 2σ

2.0

MODELS WITH RIGHT-HANDED NEUTRINO

Robinson, Shakya, JZ, 1807.04753

J. Zupan On flavor anomalies

MODELS WITH RIGHT-

J. Zupan On flavor anomalies

MODELS WITH RIGHT-HANDED NEUTRINO

Robinson, Shakya, JZ, 1807.04753

J. Zupan On flavor anomalies

MODELS WITH RIGHT-HANDED NEUTRINO

- left with three simplified models: W', U_1 , S_1
- couplings of *U*₁,*S*₁ further constrained
 - potentially too large contribs.
 to neutrino masses
 at 2 loops

 net result: all three match predominantly onto EFT operator

$$\mathcal{O}_{\mathrm{VR}} = \left(\bar{c}_R \gamma^\mu b_R\right) \left(\bar{\tau}_R \gamma_\mu N_R\right),\,$$

'3221' GAUGE MODEL

- straightforward to UV complete W' model
- '3221' gauge model: $SU(3)_c \times SU(2)_L \times SU(2)_V \times U(1)'$
 - $SU(2)_V \times U(1)' \rightarrow U(1)_Y$ breaking, e.g., via $SU(2)_V$ doublet, H_V
 - extra vector-like fermions

Field	$SU(3)_c$	$SU(2)_L$	$SU(2)_V$	U(1)'			
Extra vector-like fermions							
$Q_{L,R}^{\prime i}$	3	1	2	1/6			
$L_{L,R}^{\prime i}$	1	1	2	-1/2			

• large mixing with b_R , c_R , τ_R , ν_R ($\lambda v_V/M \gg 1$)

RIGHT-HANDED NEUTRINO

- the N_R in $b \rightarrow c\tau N_R$ is Majorana, mostly from L_R'
- for single generation neutrino mass matrix

$$\mathcal{M}_{\nu} = \begin{pmatrix} 0 & \frac{y_{\nu}v_{\rm EW}}{\sqrt{2}} & 0 & 0 \\ \frac{y_{\nu}v_{\rm EW}}{\sqrt{2}} & \mu & \frac{\lambda_{\nu}v_{V}}{\sqrt{2}} & 0 \\ 0 & \frac{\lambda_{\nu}v_{V}}{\sqrt{2}} & 0 & M_{L} \\ 0 & 0 & M_{L} & 0 \end{pmatrix}$$

$$(\nu_L',\nu_R'^c,N_L',N_R'^c)$$

• for $v_{EW} = 0$, SM neutrino v_L' decouples

• for $\mu = 0$ a massless Majorana neutrino is the state

$$N_R^c = \cos\theta_N \nu_R^{\prime c} - \sin\theta_N N_R^{\prime c} \quad \tan\theta_N = (\lambda_\nu v_V) / (\sqrt{2}M_R)$$

for λ_νv_V≫M_L the massless RH neutrino has a large admixture of N_R'

J. Zupan On flavor anomalies
LHC CONSTRAINTS

- assume minimal flavor structure needed for the anomaly
 - large couplings to *b*,*c*,*τ*
- LHC constraints from $pp \rightarrow W' \rightarrow \tau N_R$, $pp \rightarrow Z' \rightarrow \tau \tau$ searches
- if only the SM channels open $Br(W \rightarrow \tau N_R)$: $Br(W \rightarrow cb) \approx 1.3$
- reduced, if vector-like fermions light enough

LHC CONSTRAINTS

vor structure needed for $m pp \rightarrow W' \rightarrow \tau N_R, pp \rightarrow$

nels open
$$Br(W \rightarrow \tau N_R)$$
:

reduced, in vector-like fermions light enough

LHC CONSTRAINTS

LEPTOQUARK FOR BOTH $b \rightarrow c\tau v$ and $b \rightarrow s\mu \mu$

119

Buttazzo, Greljo, Isidori, Marzocca, 1706.07808
 in EFT possible to explain all anomalies

 $\frac{1}{v^2}\lambda^q_{ij}\lambda^\ell_{\alpha\beta}\left[C_T \ (\bar{Q}^i_L\gamma_\mu\sigma^a Q^j_L)(\bar{L}^\alpha_L\gamma^\mu\sigma^a L^\beta_L) + C_S \ (\bar{Q}^i_L\gamma_\mu Q^j_L)(\bar{L}^\alpha_L\gamma^\mu L^\beta_L)\right]$

 $\lambda_{sb}^q = \mathcal{O}(|V_{cb}|) \;, \;\;\; \lambda_{ au\mu}^\ell = \mathcal{O}(|V_{ au\mu}|) \;, \;\;\; \lambda_{\mu\mu}^\ell = \mathcal{O}(|V_{ au\mu}|^2)^{-1}$

with MFV-like flavor structure

- predicts $Br(b \rightarrow s\tau\tau) \sim O(100)x SM$
- if NP contribs.
 dominated by one field
 - only one option:
 vector leptoquark

$$U_1^{\mu} \equiv (\mathbf{3},\mathbf{1},2/3)$$

LEPTOQUARK FOR BOTH $b \rightarrow c\tau v$ and $b \rightarrow s\mu \mu$

Buttazzo, Greljo, Isidori, Marzocca, 1706.07808
 in EFT possible to explain all anomalies

 $\left|\frac{1}{v^2}\lambda^q_{ij}\lambda^\ell_{\alpha\beta}\left[C_T \ (\bar{Q}^i_L\gamma_\mu\sigma^a Q^j_L)(\bar{L}^\alpha_L\gamma^\mu\sigma^a L^\beta_L) + C_S \ (\bar{Q}^i_L\gamma_\mu Q^j_L)(\bar{L}^\alpha_L\gamma^\mu L^\beta_L)\right]\right|$

 $\lambda_{sb}^q = \mathcal{O}(|V_{cb}|) \;, \;\;\; \lambda_{ au\mu}^\ell = \mathcal{O}(|V_{ au\mu}|) \;, \;\;\; \lambda_{\mu\mu}^\ell = \mathcal{O}(|V_{ au\mu}|^2)$

- with MFV-like flavor
- predicts $Br(b \rightarrow s\tau\tau) \sim C$
- if NP contribs.
 dominated by one field
 - only one option:
 vector leptoquark

 $U_1^{\mu} \equiv (\mathbf{3}, \mathbf{1}, 2/3)$

LEPTOQUARK FOR BOTH

Scenarios

V. Gherardi, E. Venturini, D.M. [2008.09548]

In each scenario we allow only a subset of all couplings to be non-vanishing*. No other assumptions are imposed.

Model	Couplings	CC	NC	$(g-2)_{\mu}$
$S_1^{(CC)}$	$\lambda_{a\pi}^{1R}, \lambda_{b\pi}^{1L}$		×	×
$\left \begin{array}{c} \Sigma_{1} \\ S_{1}^{(NC)} \end{array} \right $	$\left[egin{array}{c} \lambda_{b\mu}^{1L},\lambda_{s\mu}^{1L} \ \lambda_{b\mu}^{1L},\lambda_{s\mu}^{1L} \end{array} ight]$	×	\otimes	×
$S_1^{(a_\mu)}$	$\lambda^{1R}_{t\mu},\lambda^{1L}_{b\mu}$	×	×	\checkmark
$S_1^{(CC+a_\mu)}$	$\lambda_{t au}^{1R}, \lambda_{c au}^{1R}, \lambda_{t\mu}^{1R}, \lambda_{b au}^{1L}, \lambda_{b\mu}^{1L}$	\checkmark	×	
$S_3^{(CC+NC)}$	$\lambda^{3L}_{b au}, \lambda^{3L}_{s au}, \lambda^{3L}_{b\mu}, \lambda^{3L}_{s\mu}$	×	~	×
$S_1+{S_3}^{ m (LH)}$	$\lambda_{b au}^{1L},\lambda_{s au}^{1L},\lambda_{b au}^{3L},\lambda_{s au}^{3L},\lambda_{b\mu}^{3L},\lambda_{s\mu}^{3L}$	~	~	×
$S_1+{S_3}^{(\mathrm{all})}$	$\lambda_{b\tau}^{1L}, \lambda_{s\tau}^{1L}, \lambda_{b\mu}^{1L}, \lambda_{t\tau}^{1R}, \lambda_{c\tau}^{1R}, \lambda_{t\mu}^{1R}, \lambda_{b\tau}^{3L}, \lambda_{s\tau}^{3L}, \lambda_{b\mu}^{3L}, \lambda_{s\mu}^{3L}$	\checkmark	~	

CKM UNITARITY

 a test: CKM matrix is unitary in the Standard Model

$$\frac{-g}{\sqrt{2}}(\overline{u_L}, \overline{c_L}, \overline{t_L})\gamma^{\mu} W^+_{\mu} V_{\text{CKM}} \begin{pmatrix} d_L \\ s_L \\ b_L \end{pmatrix} + \text{h.c.},$$

$$V_{\rm CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

J. Zupan On flavor anomalies

 V_{ub}

b

U

THE PLAYERS

- B-factories
 - Belle (1999-2010): ~ 1.5 x 10⁹ B mesons
 - Babar (1999-2008): ~ 0.9 x 10⁹ B mesons
- (super)B-factories
 - LHCb(2010-2030?): ~ up to 10¹¹ (useful) *B's*
 - Belle-II (2018- 2024?): ~ 8 x 10¹⁰ B mesons

THE PLAYERS

J. Zupan On flavor anomalies

LFC21, ECT-Trento (virtual), Sept 10 2021

1al), Sept 10 2021

J. Zupan

J. Zupar

al), Sept 10 2021

ctual), Sept 10 2021

J. Zupa

'tual), Sept 10 2021

tual), Sept 10 2021

