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Studies of high-energy e+e− colliders

Compact Linear Collider (CLIC): CERN
√s = 380 GeV, 1.5 TeV, 3 TeV
Length: 11 km, 29 km, 50 km 

Future Circular Collider (FCC-ee): CERN
√s = 90 - 365 GeV

Circumference: 97.75 km

International Linear Collider (ILC): 
Japan (Kitakami)

√s = 250 - 500 GeV
Length: 20 km, 31 km 

Circular Electron Positron Collider
(CEPC): China

√s = 90 - 240 GeV
Circumference: 100 km
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Studies of high-energy pp colliders

Future Circular Collider (FCC-hh): CERN
√s ≈ 100 TeV

Circumference: 97.75 km

High-Energy LHC
(HE-LHC): CERN

√s ≈ 27 TeV
Circumference: 27 km

→ see talk by S. Gibson
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Reminder: collider parameters

ESU Physics Briefing Book

pp colliders

e+e− colliders

ep colliders

+ muon collider,
advanced e+e−

collider, ...
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ILC detector concepts
Designed for Particle Flow Calorimetry:
• High granularity calorimeters (ECAL and HCAL) inside solenoid
• Low mass trackers → reduce interactions / conversions

ILD (International Large Detector):
• TPC+silicon envelope, radius: 1.8 m
• B-field: 3.5 T
(small option: 1.46 m / 4 T recently studied)

SiD (Silicon Detector):
• Silicon tracking, radius: 1.2 m
• B-field: 5 T
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CLIC detector concept: CLICdet

Basic characteristics:
• B-field: 4 T
• Vertex detector with 3 double layers
• Silicon tracking system (1.5 m radius)
• ECAL with 40 layers (22 X0)
• HCAL with 60 layers (7.5 λ)

Precise timing:
• ≈ 10 ns hit time-stamping in tracking
• 1 ns accuracy for calorimeter hits

CLICdp-Note-2017-001
arXiv:1812.07337

Beam-induced background can be efficiently 
suppressed by applying pT-dependent timing cuts on individual 
reconstructed particles (= particle flow objects)

e+e− → tt at 3 TeV with background from γγ → hadrons overlaid
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FCC-ee detector designs

CLD concept (inspired by CLICdet):
• Smaller magnetic field 
(limited by luminosity goal): 2 T
• Larger tracker radius (2.15 m) to keep 
similar momentum resolution
• Lower √s → HCAL less deep

IDEA detector concept (also for CEPC):
• B-field: 2 T
• Vertex detector: 5 MAPS layers
• Drift chamber with PID, radius: 2 m, 112 layers
→ low material budget
• Double read-out calorimetry
• Instrumented return yoke

arXiv:1911.12230
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FCC-hh detector concept
Reference detector in CDR:
• 4 T solenoid, 10 m diameter
• Forward solenoids
• Silicon tracker
• Barrel ECAL LAr
• Barrel HCAL Fe/Sci
• Endcap HCAL/ECAL LAr
• Forward HCAL/ECAL LAr

≈50 m

• Compared to ATLAS & CMS, 
the forward calorimeters are 
moved far out to reduce 
radiation load and 
increase the granularity

• A shield (brown) is needed 
to stop neutrons escaping to 
the cavern and muon system

FCC-hh CDR
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Top-quark physics at future colliders

Top-quark pair production at e+e− colliders
(mainly based on full simulations):

• Measurements of the mass
• Top-quark EW couplings
• Processes at high energy

A few highlights from FCC-hh

Top-quark FCNC



08/09/2021 Philipp Roloff    Top-quark physics at future colliders 10

e+e− → tt:
• Production threshold at √s ≈ 2mtop

• 365 - 500 GeV is near the maximum
→ large event samples (for rare decays etc.)

e+e− → ttH:
• Maximum near 800 GeV

e+e− → ttνeνe (Vector Boson Fusion):
• Benefits from highest energies

Top-quark pair production in e+e− collisions

ISR included
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Top-quark mass

Direct and indirect constraints on 
top (and W) mass

EPJ C 78, 675 (2018)
CERN-LPCC-2018-03

Complementary methods at e+e− collider:
• Threshold scan
• Direct reconstruction
• Radiative events
→ discussed in the following slides
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Top-quark pair production at threshold

Frank Simon
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Mass: expected sensitivity (2)

arXiv:1902.07246

→ sensitivity on different 
parameters depends on position 
along the threshold

Example: threshold scan 
at ILC with 200 fb−1
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Mass: expected sensitivity (3)

arXiv:1902.07246

Example: threshold scan 
at ILC with 200 fb−1 → theory and parametric uncertainties 

large compared to statistical precision
with current knowledge
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Optimisation of the threshold scan

JHEP 07, 070 (2021)

Baseline scenario:
Optimised for mass & width:

Precision on top mass:

• Optimisation of quantity and centre-of-mass energy for 
the individual cross section measurements
→ 25% better statistical precision on top mass compared 
to 10 equidistant measurements

• Main difference between colliders: luminosity spectra

10 points of 10 fb−1 each
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Top mass in the continuum

JHEP 11, 003 (2019)

Example: CLIC at 380 GeV

• Template fit to reconstructed 
top candidate mass distributions:
30 MeV (40 MeV) statistical  
precision for hadronic 
(semi-leptonic) events
with 1 ab−1

• Excellent knowledge of jet 
(including b-jet) energy scales 
needed → short calibration run 
at Z-pole each year?

• Interpretation of measured 
mass value induces significant 
theoretical uncertainties

Fully hadronic: Semi-leptonic:
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Radiative events: e+e− → ttγ

PLB 804, 135353 (2020)

• Radiative events allow to extract the 
top mass in a well-defined mass scheme
above threshold

• Using matched NNLL threshold 
+ N3LO continuum calculation 
and CLIC/ILC luminosity spectra 
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Running of the top-quark mass

PLB 804, 135353 (2020)

→ 5σ evidence for scale evolution 
(= “running”) of MSR mass form the
ILC data at 500 GeV
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Top-quark electroweak couplings
• Top quark pairs are produced via Z/γ* in electron-positron collisions
• The general form of the coupling can be described as: arXiv:hep-ph/0601112

CP conserving CPV

• At linear colliders, the γ and Z form factors 
can be disentangled using beam polarisation
→ measure σ and AFB for different polarisation 
configurations

• The γ and Z contributions can also be 
separated using the lepton energy and 
angular distributions in semi-leptonic events
→ Form-factor measurement also possible 
at circular colliders

→ Both approaches are complementary
AFB
t

=
N (cosθ t>0)−N (cosθ t<0)

N (cosθ t>0)+N (cosθ t<0)
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Sensitivity to form factors
• Top quark pairs are produced via Z/γ* in electron-positron collisions
• The general form of the coupling can be described as: arXiv:hep-ph/0601112

CP conserving CPV

R. Pöschl, EPS-HEP 2021

→ Lepton colliders provide significant improvement 
compared to HL-LHC
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Boosted top quarks at CLIC

• e+e− detectors (fine-grained calorimeters) and clean 
environment ideal for detailed jet substructure studies

• Boosted hadronic top-quark decays reconstructed using 
techniques developed for hadron colliders
(re-clustering, John Hopkins tagger)

JHEP 11, 003 (2019)
arXiv:2008.05526

Example: Extraction 
of AFB at 3 TeV
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Global EFT analysis of e+e− → tt

JHEP 11, 003 (2019)

Example: full CLIC program with three energy stages 
→ sensitivity to scales far beyond the centre-of-mass energy

→ Significant improvement from “statistically optimal observables”, which make 
the best use of the fully differential bW+bW− distributions, instead of σ and AFB
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EFT analysis: comparison of e+e− colliders

JHEP 10, 168 (2018)

≈ FCC-ee

≈ ILC

≈ CLIC

NB: lower luminosities than in ILC 
and CLIC baseline projections

→ Higher energy (and 
polarisation) significantly 
enhance the reach
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Top-quark compositeness

JHEP 11, 003 (2019)

• “optimistic” (light colour) and “pessimistic” (dark colour) 5σ discovery regions 
in two benchmark scenarios
• Limits for CLIC derived from tt global EFT fit and from ttH production

m
*
: compositeness scale

g
*
: coupling strength of the composite sector

5σ discovery region 5σ discovery region
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e+e− → ttH and top-Yukawa coupling

arXiv:1903.01629
JHEP 11, 003 (2019)
CERN-THESIS-2020-232

Sensitivity to CP mixing
in the ttH coupling:
• Differential information 
provides significant 
improvement compared to 
the cross section alone

Most important final states:
e+e− → ttH → qqblνbbb
e+e− → ttH → qqbqqbbb
→ Roughly similar sensitivity

ILC: 
• √s = 550 GeV, L = 4 ab−1

→ Δg
ttH

/g
ttH

 = 2.8%
• √s = 1 TeV, L = 2.5 ab−1

→ Δg
ttH

/g
ttH

 = 2%

gttH
2

• Very interesting for even higher 
energies (e.g. muon collider, …):
e+e−/μ+μ− → ttHνeνe

CLIC: 
• √s = 1.4 TeV, L = 2.5 ab−1

→ Δg
ttH

/g
ttH

 = 2.7%
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e+e− → ttνeνe at high energy

JHEP 11, 003 (2019)

Example: CLIC at 3 TeV

• More detailed simulation studies needed

• Single-operator sensitivities, 
combination with e+e− → tt could be beneficial

• Very interesting for even higher 
energies (e.g. muon collider, ...)
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Top-quark physics at future colliders

Top-quark pair production at e+e− colliders
(mainly based on full simulations):

• Measurements of the mass
• Top-quark EW couplings
• Processes at high energy

A few highlights from FCC-hh

Top-quark FCNC
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top-Yukawa coupling at FCC-hh

Michele Selvaggi
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Anomalous top-gluon couplings from pp → tt

FCC-hh CDR

dV(dA): chromomagnetic (chromoelectric)
diplole moment

Strongly boosted: 
mtt > 10 TeV is optimal choice from 
cross section analysis
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pp → tttt at FCC-hh

JHEP 02, 043 (2021)

95% CL limits from individual operators

FCC-hh: same-sign di-lepton and tri-lepton 
final states combined

Example: same-sign di-lepton final state

Composite Higgs
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Top-quark physics at future colliders

Top-quark pair production at e+e− colliders
(mainly based on full simulations):

• Measurements of the mass
• Top-quark EW couplings
• Processes at high energy

A few highlights from FCC-hh

Top-quark FCNC
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Top-quark FCNC: current status

• SM branching ratios strongly suppressed (10−16...10−12)
→ strong enhancement in certain BSM models possible
• Current 95% CL limits typically at the level of 10−3 to 10−4
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Top-quark FCNC: t→Hq branching ratios

500 GeV ILC and 380 GeV CLIC:
A few million top decays near threshold,
H→bb decays used, best suited for 
decays with charm quarks

ESU Physics Briefing Book

HL-LHC:
Based on ATLAS studies using H→bb 
and H→γγ 

FCC-hh:
Large statistics allows usage of clean 
H→γγ decays, combination of semi-leptonic
and fully hadronic final states
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Top-quark FCNC: t→Zq branching ratios

FCC-ee:
BR(t→Zq) from anomalous single top 
production: e+e− → Z*/γ* → tq (tq)
→ further improvement from combination 
of both energy stages possible

FCC-eh and LHeC: 
BR(t→Zq) from DIS production of 
single top quarks

ESU Physics Briefing Book

HL-LHC:
Based on ATLAS study for 
tt → bWqZ → bℓνqℓℓ

FCC-hh:
Estimate using HL-LHC projection
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Top-quark FCNC: t→γq branching ratios

FCC-ee:
BR(t→γq) from anomalous single top 
production: e+e− → Z*/γ* → tq (tq)

FCC-eh and LHeC: 
BR(t→γq) from DIS production of 
single top quarks

ESU Physics Briefing Book

500 GeV ILC and 380 GeV CLIC:
A few million top decays near threshold, H→bb decays used, 
best suited for decays with charm quarks

HL-LHC:
BR(t→γu) and BR(t→γu) from CMS study 
of single top production in association with a photon

FCC-hh:
Delphes study focussing on the 
boosted top regime (p

T
 > 400 GeV)
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Top-quark FCNC: t→gq branching ratios

HL-LHC:
BR(t→gu) and BR(t→gu) from CMS study 
of single top production

HE-LHC:
BR(t→gu) and BR(t→gu) from CMS study 
of single top production

ESU Physics Briefing Book CERN-LPCC-2018-06
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Top-quark FCNC: t→gq branching ratios

Conclusions:
• Complementary set of possible 
measurements in e+e−, ep and pp colliders

• By far not all possibilities explored yet!

• Generally improvements by 1-2 orders of 
magnitude compared to HL-LHC possible

ESU Physics Briefing Book

HL-LHC:
BR(t→gu) and BR(t→gu) from CMS study 
of single top production

HE-LHC:
BR(t→gu) and BR(t→gu) from CMS study 
of single top production
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Top-quark FCNC: EFT for HL-LHC

Sec. 8.1 of CERN-LPCC-2018-06

Sensitivity to top-quark FCNC effects can be studied using EFT

Input: limits on FCNC branching ratios, limits on e+e− → tj from LEP II

White marks: individual limits
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Top-quark FCNC: e+e− → tj at CLIC

CERN-2018-009-M

Black arrows: decays at CLIC (see slide X)
Red arrows: current LHC
Magenta arrows: HL-LHC projections
Dots: CLIC without beam polarisation

• The high-energy runs significantly improve 
the sensitivity for “four-fermion” operators
• e+e− → tj much more powerful than the 
decays at high-energy lepton colliders

95% C.L. limits on top-quark FCNC operator coefficients

100 TeV 10 TeV 1 TeV
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Summary and conclusions

• The top-quark plays an important role at any future high-energy collider facility

• Well-defined program for an e+e− collider at and above the pair-production threshold:
- A threshold scan is the best possible mass measurement with ≈ 50 MeV precision
- Operation well above threshold improves the top-quark EW couplings by at least 
an order of magnitude
- A direct measurement of the top-Yukawa coupling requires at least 550 GeV, also access 
to CP mixing in the ttH coupling

• Four-fermion operators benefit from the highest possible energies (at e+e− and 
hadron colliders)

• Large amount of complementarity between different collider options and energy stages
for top-quark FCNC-effects

• Many issues still to be studied, in particular for very high energies

Thank you!
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Backup slides
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Hadron and e+e− colliders

• Proton is compound object
→ Initial state unknown
→ Limits achievable precision

• High-energy circular colliders possible

• High rates of QCD backgrounds
→ Complex triggers
→ High levels of radiation

Hadron colliders: e+e− colliders:

• e+e− are pointlike
→ Initial state well-defined (√s, polarisation)
→ High-precision measurements

• High energies (√s ≥ 380 GeV) require 
linear colliders

• Clean experimental environment
→ Less / no need for triggers
→ Lower radiation levels
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pp and e+e− collisions

8 orders of
magnitude!

pp collisions:
Interesting events need to be
found in huge number of collisions

e+e− collisions:
More “clean”, all events usable
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