The theoretical prediction for the muon g-2: the important role of hadronic contributions

Antoine Gérardin

Based on the review : Eur. Phys. J. A 57 (2021) 4, 116

LFC21 - September 7, 2021

Introduction

- The muon is an elementary particle
- Same charge but 200 heavier than the electron
- Spin 1/2 particle
- ullet The magnetic moment of the muon is proportional to the spin $ec{\mu} = g\Big(rac{Qe}{2m}\Big)\,ec{s}$

$$a_{\mu} = \frac{g-2}{2}$$

Why is it interesting?

- 1) can be measured very precisely
- 2) can also be predicted very precisely in the SM
- 3) sensitive to new physics

Introduction

► Corrections to the vertex function : Dirac and Pauli form factors

Assuming Lorentz invariance and P and T symmetries, the vertex function can be decomposed into 2 form factors

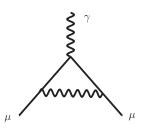
$$= -ie\,\overline{u}(p',\sigma')\Gamma_{\mu}(p',p)u(p,\sigma)$$

$$= -ie\,\overline{u}(p',\sigma')\left[\gamma_{\mu}F_{1}(q^{2}) + \frac{i\sigma_{\mu\nu}q_{\nu}}{2m}F_{2}(q^{2})\right]u(p,\sigma)$$

$$F_1(0) = 1$$
 (charge conservation)

$$F_2(0) = a_\mu = \frac{g-2}{2}$$

▶ Classical result : g = 2 for elementary fermions (Dirac equation)



Quantum field theory : $a_{\mu} = \frac{g-2}{2} \neq 0$

 \hookrightarrow Generated by quantum effects

$$a_{\mu}^{(1)} = \frac{\alpha}{2\pi}$$
 [Schwinger '48]

Standard model contributions: QED

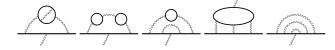
• QED accounts for more than 99.99% of the final result [Aoyama et al. '12 '19]

$$a_{\mu}^{\text{QED}} = \left(\frac{\alpha}{\pi}\right) a_{\mu}^{(1)} + \left(\frac{\alpha}{\pi}\right)^2 a_{\mu}^{(2)} + \left(\frac{\alpha}{\pi}\right)^3 a_{\mu}^{(3)} + \cdots$$

 \rightarrow 5-loop contributions are known!

Order α^4 (7 diagrams)

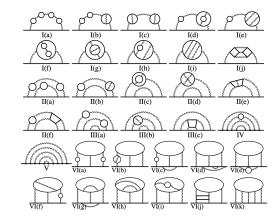
Order α^6 (72 diagrams)



Order α^8 (891 diagrams) ...

n	$a_{\mu}^{(1)} \times 10^{11}$	n	$a_{\mu}^{(1)} \times 10^{11}$
1	116 140 973.321(23)	4	381.004(17)
2	413 217.6258(70)	5	5.0783(59)
3	30 141.90233(33)		

Order α^{10} (12 672 diagrams)



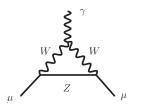
 \rightarrow Uncertainty far below Δa_{μ} . Strong test of QED.

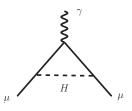
$$a_{\mu}^{\rm QED} = 116~584~718.931(104)\times 10^{-11}$$

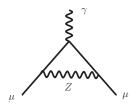
$$a_{\mu}^{\rm SM} = 116~591~810(43)\times 10^{-11}$$

Standard model contributions

• Electroweak corrections [Czarnecki '02] [Gnendiger '13]



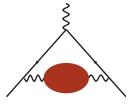




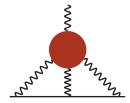
- \rightarrow Two-loop contributions are known : $a_{\mu}^{\rm EW}\times 10^{11}=153.6(1.0)$
- \rightarrow Contributes to only 1.5 ppm (4 × exp. error) \Rightarrow under control

QCD corrections

- ightarrow Quarks and gluons do not directly couple to the muon : contribution via loop diagrams
- ightarrow The two relevant contributions (to reduce the error) are



Hadronic Vacuum Polarisation (LO-HVP, α^2)

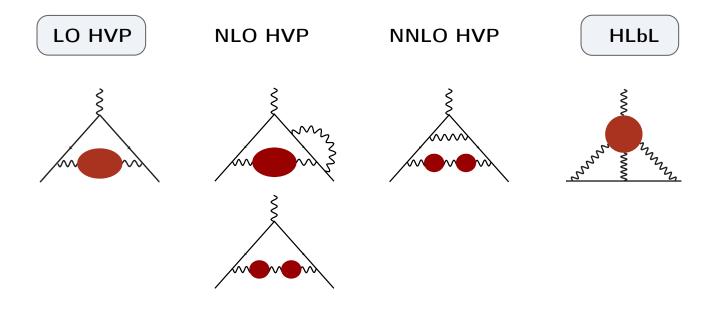


Hadronic Light-by-Light scattering (HLbL, α^3)

• Contribution from unknown particles / interactions (?)

$$a_\ell^{\mathrm{NP}} = \mathcal{C} \, \frac{m_\ell^2}{\Lambda^2}$$

Other hadronic contributions



- NLO HVP and NNLO HVP differ by the QED kernel functions
- Not negligible, but error under control (the required relative precision is smaller)

Theory status in the white-paper

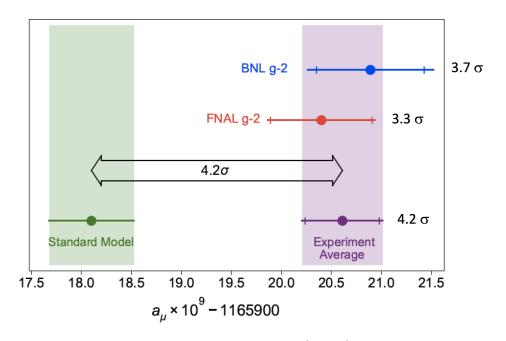
The Muon g-2 Theory Initiative :

- website : https ://muon-gm2-theory.illinois.edu/
- Organized 7 workshops between 2017-2021
- White Paper posted 10 June 2020

The anomalous magnetic moment of the muon in the Standard Model [Phys.Rept. 887 (2020) 1-166]

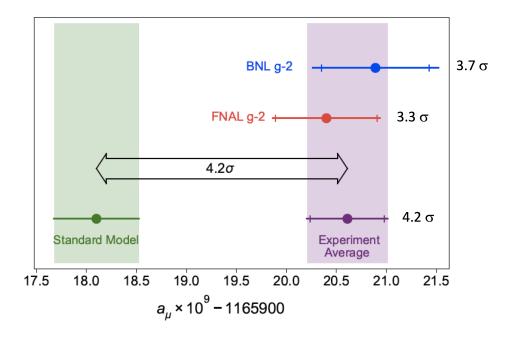
Contribution	$a_{\mu} \times 10^{11}$	
- QED (leptons, $10^{\rm th}$ order)	$116\ 584\ 718.95 \pm 0.08$	[Aoyama et al. '12]
- Electroweak	153.6 ± 1.0	[Gnendiger et al. "13]
- Strong contributions		
HVP (LO)	6931 ± 40	[DHMZ 19, KNT 20]
HVP (NLO)	-98.3 ± 0.7	[Hagiwara et al. 11]
HVP (NNLO)	12.4 ± 0.1	[Kurtz et al. '14]
HLbL	94 ± 19	[See WP]
Total (theory)	$116\ 591\ 810 \pm 43$	
· · · · · · · · · · · · · · · · · · ·		

Status after the first run of the E989 experiment at Fermilab



- Remarkable confirmation of the Brookhaven result (2004)
- Similar precision for both theory and experiment
- This is a large discrepancy $(2 \times \text{ electroweak contribution !})$
- Theory error is dominated by hadronic contributions
 - \rightarrow reduction of the theory error by a factor of 3-4 needed to match upcoming experiments

Status after the first run of the E989 experiment at Fermilab

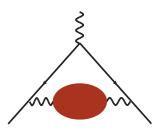


BUT:

- does not include the most recent lattice results
 - ightarrow new complete lattice calculation of the HLbL contribution by Mainz
 - \rightarrow first sub-percent calculation of the HVP contribution by BMW

Outline of the talk: hadronic contributions

▶ Hadronic Vacuum Polarisation (HVP, α^2)

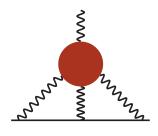


- Blobs : all possible intermediate hadronic states $(\rho, \pi\pi, \cdots)$
- Precision physics (Goal : precision < 0.3%)

$$\Pi_{\mu\nu}(Q) = \bigvee_{\gamma} = \left(Q_{\mu}Q_{\nu} - \delta_{\mu\nu}Q^{2}\right) \Pi(Q^{2})$$

$$= \int d^{4}x \, e^{iQ \cdot x} \, \langle V_{\mu}(x)V_{\nu}(0) \rangle$$

▶ Hadronic Light-by-Light scattering (HLbL, α^3)



Hadronic light-by-light tensor $\Pi_{\mu\nu\lambda\sigma}(p_1,p_2,p_3)$

- Small but contributes to the total uncertainty!
- 4-point correlation function
- More difficult, but need 10% precision

Standard model prediction of hadronic contributions

- ▶ Perturbative QCD can not be used : we need non-perturbative methods
- ► Two first-principle approaches :

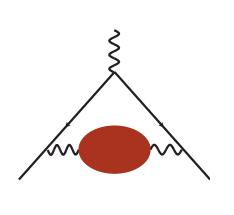
The dispersive framework (data-driven)

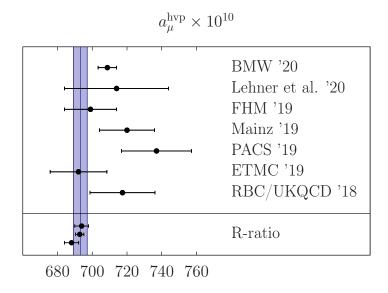
- \rightarrow based on analyticity, unitarity ...
- \rightarrow ... but relies on experimental data (needs a careful propagation of exp. uncertainties)
- → several group have published results for the HVP [Davier et al. '19] [Keshavarzi et al. '20]
- → more difficult for the LbL (analytic structure of the 4-point function more difficult, exp. data sometimes missing)

Lattice QCD

- \rightarrow ab-initio calculations
- \rightarrow but we need to control all sources of error (huge challenge at this level of precision)
- \rightarrow many groups are working on this subject : cross-checks possible
- ▶ It provides two completely independent determinations

Hadronic vacuum polarization



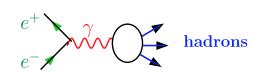


- → Many lattice collaborations (with different systematic errors)
- → Precision of about 2% for lattice, 0.6% for the data driven approach
- ightarrow Recent lattice calculation below 1% by the Budapest-Marseille-Wuppertal collaboration

Hadronic vacuum polarization : dispersive framework

• Use analyticity + optical theorem

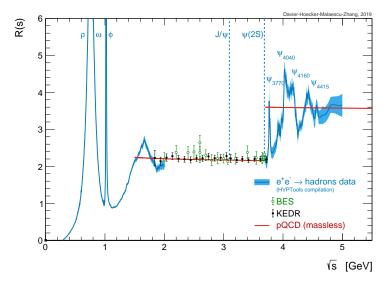
$$R_{\rm had}(s) = \frac{\sigma^0(e^+e^- \to \gamma^* \to {\rm hadrons})}{(4\pi\alpha^2/3s)}$$



 \bullet K(s) is a known kernel function

$$a_{\mu}^{\text{HVP}} = \left(\frac{\alpha m_{\mu}}{3\pi}\right)^2 \left\{ \int_{m_{\pi}^2}^{E_{\text{cut}}^2} \mathrm{d}s \frac{R_{\text{had}}^{\text{data}}(s) \widehat{K}(s)}{s^2} + \int_{E_{\text{cut}}^2}^{\infty} \mathrm{d}s \frac{R_{\text{had}}^{\text{pQCD}}(s) \widehat{K}(s)}{s^2} \right\}$$

Compilation of experimental data from many experiments



Hadronic vacuum polarization : dispersive framework

Compilation of results :

• DHMZ19 [Eur. Phys. J. C80, 241 (2020)]

$$a_{\mu}^{\text{hvp}} = 694.0(1.0)_{\text{stat}}(2.5)_{\text{syst}}(0.7)_{\text{QCD}}(2.8)_{\text{KLOE/BABAR}} \times 10^{-10}$$
 [0.58%]

• KNT19 [Phys. Rev. D101, 014029 (2020)]

$$a_{\mu}^{\text{hvp}} = 692.78(1.21)_{\text{stat}}(1.97)_{\text{syst}}(0.21)_{\text{vp}}(0.7)_{\text{fsr}} \times 10^{-10}$$
 [0.35%]

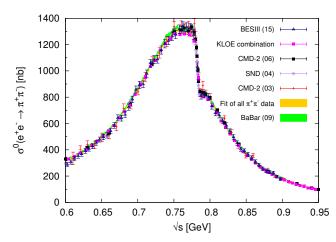
White paper average

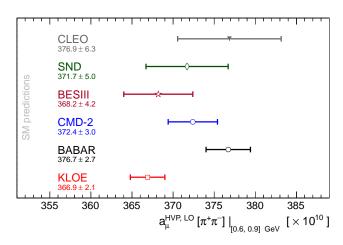
$$a_{\mu}^{\text{hvp}} = 693.1(2.8)_{\text{stat}}(0.7)_{\text{DV+QCD}}(2.8)_{\text{KLOE/BABAR}} \times 10^{-10}$$
 [0.58%]

- ightarrow obtained with the same experimental data sets
- → error dominated by the « KLOE/BABAR » discrepancy
- \rightarrow good agreement (... for the sum over all contributions)

Hadronic vacuum polarization and dispersive theory

- Most precise determination so far
- Subject to experimental uncertainties : careful propagation of experimental uncertainties
 - → Groups with ≠ methodologies are in good agreement [Davier et al. '19] [Keshavarzi et al. '20]
 - → But local discrepancies (tensions already there in the experimental data)!
 - \rightarrow Problematic for the dominant $\pi\pi$ channel





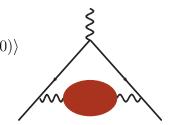
Difference between BABAR and KLOE : $\Delta a_{\mu} = 9.8(3.4) \times 10^{-10}$

Difference pheno / exp for the g-2 : $\Delta a_{\mu}=28(8)\times 10^{-10}$

Lattice QCD approach to the hadronic vacuum polarization (HVP)

$$\Pi_{\mu\nu}(Q) = \bigvee_{\gamma} \qquad = \left(Q_{\mu}Q_{\nu} - \delta_{\mu\nu}Q^{2}\right) \Pi(Q^{2}) = \int d^{4}x \, e^{iQ\cdot x} \, \langle V_{\mu}(x)V_{\nu}(0)\rangle$$

 $\mathsf{EM \ current} : V_\mu(x) = \tfrac{2}{3}\overline{u}(x)\gamma_\mu u(x) - \tfrac{1}{3}\overline{d}(x)\gamma_\mu d(x) - \tfrac{1}{3}\overline{s}(x)\gamma_\mu s(x) + \tfrac{2}{3}\overline{c}(x)\gamma_\mu c(x) + \cdots$



► Integral representation over Euclidean momenta

$$a_{\mu}^{\text{HVP}} = 4\alpha^2 \int_0^{\infty} dQ^2 f(x_0) \left(\Pi(Q^2) - \Pi(0) \right)$$

► Time-momentum representation [Blum '02] [Bernecker, Meyer '11]

$$a_{\mu}^{\text{HVP}} = \left(\frac{\alpha}{\pi}\right)^2 \int_0^{\infty} dx_0 \ K(x_0) \ G(x_0) \ , \qquad G(x_0) = -\frac{1}{3} \sum_{k=1}^3 \sum_{\vec{x}} \langle V_k(x) V_k(0) \rangle$$

▶ Iso-symmetric QCD : two sets of Wick contractions

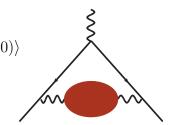
Connected contribution

(quark) disconnected contribution

Lattice QCD approach to the hadronic vacuum polarization (HVP)

$$\Pi_{\mu\nu}(Q) = \bigvee_{\gamma} \qquad = \left(Q_{\mu}Q_{\nu} - \delta_{\mu\nu}Q^{2}\right) \Pi(Q^{2}) = \int d^{4}x \, e^{iQ\cdot x} \, \langle V_{\mu}(x)V_{\nu}(0)\rangle$$

EM current : $V_{\mu}(x) = \frac{2}{3}\overline{u}(x)\gamma_{\mu}u(x) - \frac{1}{3}\overline{d}(x)\gamma_{\mu}d(x) - \frac{1}{3}\overline{s}(x)\gamma_{\mu}s(x) + \frac{2}{3}\overline{c}(x)\gamma_{\mu}c(x) + \cdots$



► Integral representation over Euclidean momenta

$$a_{\mu}^{\text{HVP}} = 4\alpha^2 \int_0^{\infty} dQ^2 f(x_0) \left(\Pi(Q^2) - \Pi(0) \right)$$

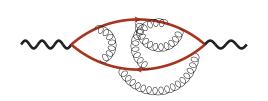
▶ Time-momentum representation [Blum '02] [Bernecker, Meyer '11]

$$a_{\mu}^{\text{HVP}} = \left(\frac{\alpha}{\pi}\right)^2 \int_0^{\infty} dx_0 \ K(x_0) \ G(x_0) \ , \qquad G(x_0) = -\frac{1}{3} \sum_{k=1}^3 \sum_{\vec{x}} \langle V_k(x) V_k(0) \rangle$$

▶ Iso-symmetric QCD : two sets of Wick contractions

Connected contribution

(quark) disconnected contribution



Systematic errors in lattice QCD

Statistical error

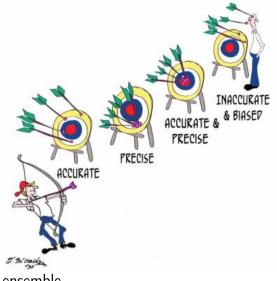
- lacktriangle Monte-Carlo algorithm : statistical error $ightarrow \sim 1/\sqrt{N_{
 m meas}}$
 - \rightarrow noise/signal $\propto \exp((m_V m_\pi)t)$

Systematic errors

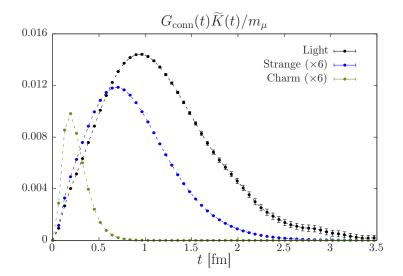
- Finite lattice spacing : $a \neq 0$
 - \rightarrow need several (small!) lattice spacings
- ► Finite volume *V*
 - \rightarrow one should take the infinite volume limit
 - $\rightarrow \chi$ PT can help in some cases (pion dominates FSE)
- ▶ Unphysical quark masses
 - \rightarrow All collaborations now have at least one physical pion mass ensemble.
- ▶ Isospin-breaking corrections
 - → Need to be included at this level of precision

Lattice actions

- ▶ Different lattice actions are used : Staggered, Wilson-Clover, Twisted mass, Domain wall
- lacktriangle They are all equivalent in the continuum limit (ightarrow QCD!)
- ▶ But they have different features at finite value of the lattice spacing



Light, strange and charm quark contributions at the physical pion mass



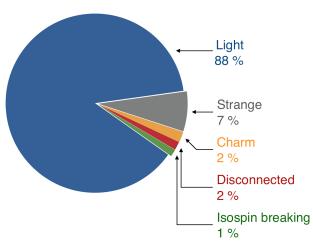
Challenges for a high-precision calculation :

- Light contribution dominates
 - \rightarrow noise/signal increases exponentially with t
 - → finite-size effects O(3%) at physical point
- Disconnected diagrams of the order of O(2-3%)
- Continuum extrapolation
- QED + strong isospin breaking corrections : O(1%)

- \bullet Physical pion mass with $a=0.065~\mathrm{fm}$
- Flavor decomposition :

$$G(t) = G_l(t) + G_s(t) + G_c(t) + G_{disc}(t)$$

$$a_{\mu}^{\mathrm{HVP},f} = \left(\frac{\alpha}{\pi}\right)^2 \sum_{t=0}^{\infty} K(t) G_f(t)$$



Solution to the noise problem

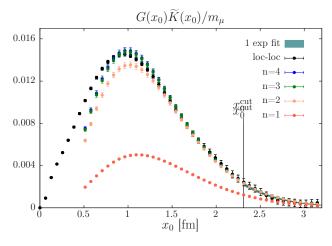
Signal / noise problem

Solution to the noise problem

The vector correlators admits a spectral decomposition :

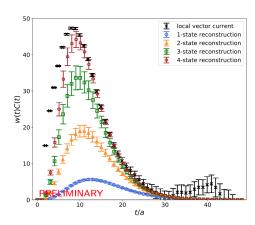
$$\langle V(x_0)V(0)\rangle = \sum_{n} \langle 0|V|n\rangle \frac{1}{2E_n} \langle n|V(0)|0\rangle e^{-E_n x_0}$$

- $|n\rangle$ are the eigenstates in finite volume
- ullet E_n and $\langle 0|V|n \rangle$ can be computed on the lattice using sophisticated spectroscopy methods



[A. Gerardin et al, Phys.Rev. D100 (2019), 014510]

[Mainz and RBC/UKQCD Collaborations]



[Plot by A. Meyer (RBC/UKQCD) @ Lattice 2019]

- → Only a few number of states are needed (but more states needed at the physical pion mass)
- \rightarrow Noise now grows linearly with x_0 (not exponentially)
- → Other algorithmic improvement : low-mode averaging (exact all-to-all propagator)

Corrections for finite-size effects

Finite volumes effects

Corrections for finite-size effects

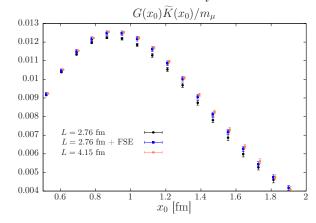
► Chiral perturbation theory : NLO not enough, NNLO corrections are quite large [Aubin et al. '20]

[C. Aubin et al, arXiv:1905.09307], [J. Bijnens et al, JHEP 1712 (2017) 114]

► Correction based on the time-like pion form factor [H. Meyer, Phys.Rev.Lett. 107 (2011)]

$$G^{I=1}(x_0, \infty) = \frac{1}{48\pi^2} \int_{2m_{\pi}}^{\infty} d\omega \, \omega^2 \, \rho(\omega^2) \, e^{-\omega x_0} \,, \quad \rho(\omega^2) = \left(1 - \frac{4m_{\pi}^2}{\omega^2}\right)^{3/2} |F_{\pi}(\omega)|^2$$

$$G^{I=1}(x_0, L) = \sum |A_i|^2 \, e^{-E_i x_0} \,, \quad A_i : \text{obtained from } F_{\pi}$$



[Phys. Rev. D 100, 014510 (2019)]

On a typical lattice L=6 fm :

$$\Delta a_{\mu} = 22.7 \times 10^{-10} \qquad [\sim 3\%]$$

- ightarrow similar results for ETMC
- ightarrow and RBC-UKQCD [C. Lehner, Talk at Lattice 2019]
- ▶ Direct lattice calculation in very large volume : 11 fm [Budapest-Marseille-Wuppertal '21]
 - \rightarrow Finite size effects correction $18.1(2.5)(1.4)\times10^{-10}$ compared to a 6 fm box
 - → This correction is now well understood
- ▶ New Hamiltonian approach in [M. Hansen, A. Patella, arXiv :1904.10010]

Isospin-breaking corrections

 ${\sf QED} + {\sf strong} \ {\sf isospin-breaking} \ {\sf effects}$

Isospin-breaking corrections

• Most lattice simulations are performed with QCD only and in the isospin symmetric limit

$$m_u \neq m_d$$
 : $O(\frac{m_u - m_d}{\Lambda_{\rm QCD}}) \approx 1/100$

Strong isospin breaking

$$Q_u \neq Q_d$$
: $O(\alpha_{\rm em}) \approx 1/100$

Electromagnetic isospin breaking

- \rightarrow Separation of strong IB and QED effects is prescription dependent
- \rightarrow Furthermore, the definition of the iso-symmetric theory is also scheme dependent.
- ullet Small effects O(1%) but challenging to compute
- ullet Strategy 1 : expand the path integral in (m_u-m_d) and $lpha_{
 m em}$

[RM123, JHEP 1204 (2012) 124] [RM123, Phys.Rev. D87 (2013), 114505]

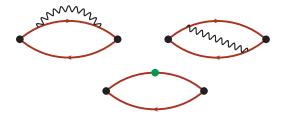
- ightarrow Non-compact QED in finite volume : dynamical variable is the gauge potential $A_{\mu}(x)$
- \rightarrow Finite-size effect : $1/L^2$ absent, $1/L^3$ (might be negligible at our level of precision)

[J. Bijnens et al, Phys.Rev. D100 (2019), 014508]

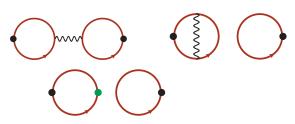
• Strategy 2 : generate gauge configurations for QED+QCD theory (usually electro-quenched)

Isospin-breaking corrections

Corrections to the connected part :



► Corrections to the disconnected part :

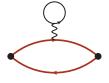


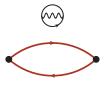
► Three collaborations have published (partial) results so far

		Conn.	Disc.
ETMC	6.0(2.3)	1.1(1.0)	×
RBC-UKQCD	10.6(4.3)	5.9(5.7)	-6.9(2.1)
HPQCD-Fermilab-MILC	9.0(2.3)	×	×

(in units of 10^{-10})

▶ Challenging : beyond the electro-quenched approximation (diagrams are $1/N_c$ suppressed)







▶ BMW '21 : first calculation that includes all diagrams. About 1% of the full contribution.

20

Determination of the lattice spacing

Lattice spacing and the continuum extrapolation

21

Determination of the lattice spacing

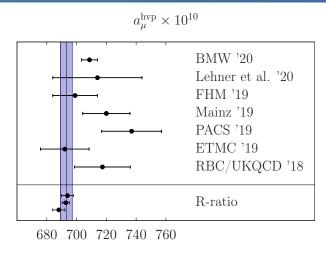
- The results of a lattice simulations is in lattice units (am_{π}, af_{π})
- The conversion in physical requires the knowledge of the lattice spacing in physical units
- But a_{μ} is a dimensionless quantity : so why does it matter?
 - \rightarrow Because the muon mass is an external scale
 - \rightarrow We need to know the muon mass in lattice units!
 - → Error propagation [DellaMorte '17] :

$$\Delta a_{\mu}^{\text{hvp}} = \left| a \frac{\mathrm{d} a_{\mu}^{\text{hvp}}}{\mathrm{d} a} \right| \cdot \frac{\Delta a}{a} = \left| m_{\mu} \frac{\mathrm{d} a_{\mu}^{\text{hvp}}}{\mathrm{d} m_{\mu}} \right| \cdot \frac{\Delta a}{a} \approx 2 \frac{\Delta a}{a}$$

We want few permil precision : one of the biggest challenge for lattice

- ightarrow The BMWc uses the Ω Baryon mass to set the scale (mass well known experimentally) : few permil. Other possibility : pion decay constant (but QED corrections are more involved)
 - Also important for the continuum extrapolation

HVP: conclusion



- ► First sub-percent lattice calculation by BMWc (competitive with data-driven approach)
- \blacktriangleright If confirmed, would reduce the discrepancy with experiment to $<2\sigma$
- ▶ Need confirmation by other lattice groups (expected within 1 year)
- lacktriangle Other cross-checks are important (windows, running α)
- ► **Goal** : 0.2%
 - average between lattice and dispersive might help ...
 - ... but only if they agree
 - ullet It is probably too soon to quote a "SM estimate of the LO-HVP" with $\sim 0.5\%$ precision

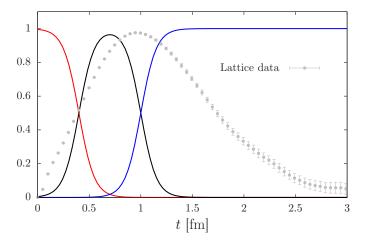
- → Current situation : two incompatible determinations (R-ratio vs Lattice)
- ightarrow Before concluding on the presence or not of NP : we need to agree on the SM estimate!

What could go wrong on the lattice?

Given the importance of this quantity, it would be preferable to have a second observable :

- ▶ based on the same input (vector correlator) + easy to calculate
- ▶ less affected by systematic error (and statistical error)
- ▶ that allows for cross checks between different collaborations ...
- ▶ ... and also with R-ratio data

$$a_{\mu}^{\text{win}} = \left(\frac{\alpha}{\pi}\right)^2 \sum_{t} G(t) K(t) W(t; t_0, t_1)$$



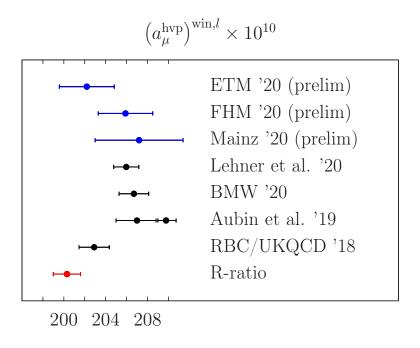
- ▶ the sum over the 3 windows gives the full contribution
- ▶ each window has different systematic errors

Short-distance	Intermediate-distance	Long-distance
stat. precise	stat. precise	noise problem
discretization effects	small finite volume effect	finite volume corrections
		large taste breaking (staggered)

- ▶ on the lattice : flavor decomposition for internal cross checks
- ► focus on the light quark contribution (or iso-vector contribution)
 - \rightarrow contributes to most of the signal
- ▶ Intermediate window : most systematics are significantly reduced
 - \rightarrow the continuum extrapolation is still needed!
 - → difficult for sub-percent precision
 - → Importance of different lattice results with difference discretiations

▶ workshop organized in November to discuss those issues

[https://indico.cern.ch/event/956699/]



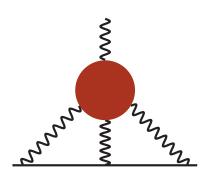
- ▶ lattice results systematically above the *R*-ratio
- ▶ agreement between lattice calculations not yet satisfactory : need to be improved!
- lacktriangleright not discussed here : the running of electromagnetic coupling lpha

Hadronic light-by-light scattering contribution

scalar + tensor

charm + heavy q

q-loops / short. dist. cstr



$$O(\alpha^3)$$

$$\Delta a_{\mu}^{\text{exp}} = 28 \times 10^{-10} \approx 3 \times a_{\mu}^{\text{hlbl}}$$

 $a_{\mu} \times 10^{11} \qquad a_{\mu} \times 10^{11}$ $\pi^{0}, \ \eta, \ \eta' \qquad \qquad 114 \pm 13 \qquad 93.8 \pm 4$ $\text{pion/kaon loops} \qquad \qquad -19 \pm 19 \qquad -16.4 \pm 0.2$ $\text{S-wave } \pi\pi \qquad \qquad \qquad -8 \pm 1$ $\text{axial vector} \qquad \qquad 15 \pm 10 \qquad 6 \pm 6$

► Glasgow consensus ('09) → dispersive framework

total HLbL	105 ± 26	92 ± 19

LO HVP
$$6931 \pm 40$$

[J. Prades, E. de Rafael, A. Vainshtein '09] [White paper '20]

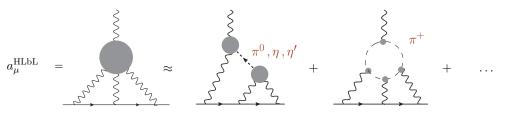
 -7 ± 7 -1 ± 3

 15 ± 10

 3 ± 1

2

Status before 2014: model calculations



[de Rafael '94]

- 1) Chiral counting
- 2) N_c counting

[extracted from A. Nyffeler's slide], units : $a_{\mu} \times 10^{11}$

Contribution	BPP	HKS, HK	KN	MV	BP, MdRR	PdRV	N, JN
π^0, η, η'	85±13	82.7±6.4	83±12	114±10	_	114±13	99 ± 16
axial vectors	2.5±1.0	1.7±1.7	_	22±5	_	15 \pm 10	22 ± 5
scalars	-6.8 ± 2.0	_	_	_	_	−7 ±7	−7±2
π , K loops	-19 ± 13	-4.5 ± 8.1	_	_	_	-19 ± 19	-19 ± 13
π , K loops $+$ subl. N_C	_	_	_	0±10	_	_	_
quark loops	21±3	9.7±11.1	-	_	_	2.3 (c-quark)	21±3
Total	83±32	89.6±15.4	80±40	136±25	110±40	105 \pm 26	116 ± 39

BPP = Bijnens, Pallante, Prades '95, '96, '02; HKS = Hayakawa, Kinoshita, Sanda '95, '96; HK = Hayakawa, Kinoshita '98, '02; KN = Knecht, AN '02; MV = Melnikov, Vainshtein '04; BP = Bijnens, Prades '07; MdRR = Miller, de Rafael, Roberts '07; PdRV = Prades, de Rafael, Vainshtein '09; N = AN '09, JN = Jegerlehner, AN '09

- 1) Pseudoscalar contributions dominate numerically : transition form factors $\pi, \eta, \eta' \to \gamma^* \gamma^*$ as input
- 2) Glasgow consensus : $a_{\mu}^{\rm HLbL} = (105 \pm 26) \times 10^{-11}$
- 3) Results are in good agreement but errors are difficult to estimate (model calculations)

Hadronic light-by-light : data-driven approach

► HVP : single scalar function

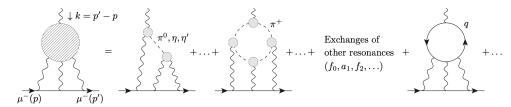
$$\Pi_{\mu\nu}(Q) = (Q_{\mu}Q_{\nu} - \delta_{\mu\nu}Q^{2}) \Pi(Q^{2}) = \int d^{4}x \, e^{iQ \cdot x} \, \langle V_{\mu}(x)V_{\nu}(0) \rangle$$

- ► HLbL [Colangelo, Hoferichter, Procura, Stoffer (2015)]
 - \rightarrow complicated analytical structure (4-point instead of 2-point function for the HVP)

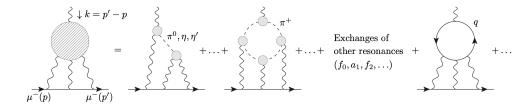
$$\Pi^{\mu\nu\lambda\sigma} = \sum_{i=1}^{54} T_i^{\mu\nu\lambda\sigma} \Pi_i$$

$$a_{\mu}^{\text{HLbL}} = -e^{6} \int \frac{d^{4}q_{1}}{(2\pi)^{4}} \frac{d^{4}q_{2}}{(2\pi)^{4}} \frac{\sum_{i=1}^{12} \hat{T}_{i}(q_{1}, q_{2}; p) \hat{\Pi}_{i}(q_{1}, q_{2}, -q_{1} - q_{2})}{q_{1}^{2}q_{2}^{2}(q_{1} + q_{2})^{2}[(p + q_{1})^{2} - m_{\mu}^{2}][(p - q_{2})^{2} - m_{\mu}^{2}]}$$

- → 7 independent scalar functions determined using dispersive relations
- → notion of large/small momenta less clear than for HVP (only one virtuality)
- ► Make the following decomposition rigorous :



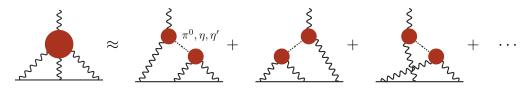
Hadronic light-by-light : data-driven approach



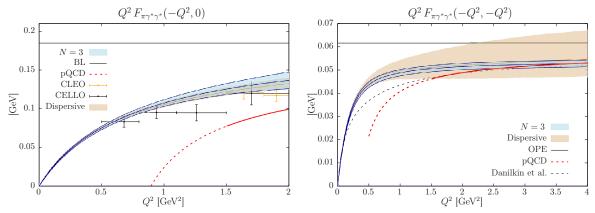
- ▶ Impressive improvement in the last few years
- ▶ The pseudoscalar-pole contributions are well-defined and dominant

	$a_{\mu} \times 10^{11}$	$a_{\mu} \times 10^{11}$
π^0 , η , η' pion/kaon loops S-wave $\pi\pi$ axial vector scalar + tensor q-loops / short. dist. cstr charm + heavy q	114 ± 13 -19 ± 19 15 ± 10 -7 ± 7 2	93.8 ± 4 -16.4 ± 0.2 -8 ± 1 6 ± 6 -1 ± 3 15 ± 10 3 ± 1
total HLbL	105 ± 26	92 ± 19

Lattice inputs for the dispersive framework : the pion-pole contribution



Pion transition form factor



• Fully model independant

$$a_{\mu}^{\mathrm{HLbL};\pi^{0}} = (59.9 \pm 3.6) \times 10^{-11}$$

ightarrow Compatible with the dispersive result

$$a_{\mu}^{\mathrm{HLbL};\pi^{0}} = 62.6^{+3.0}_{-2.5} \times 10^{-11}$$

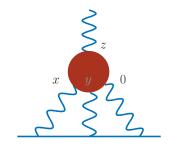
[Hoferichter et al. '18]

[A. G et al, Phys.Rev. D100 (2019)]

ullet The ETM collaboration has presented very preliminary results for the η and η'

Direct lattice calculation of the Hadronic light-by-light contribution

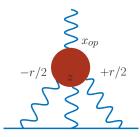
- Two collaborations : RBC/UKQCD and Mainz, both using position space approaches
- Mainz approach : [PoS LATTICE2015 (2016) 109] [arXiv :1911.05573]



$$a_{\mu}^{\mathrm{HLbL}} = \frac{me^{6}}{3} \int d^{4}y \int d^{4}x \, \mathcal{L}_{[\rho,\sigma];\mu\nu\lambda}(x,y) \, i\widehat{\Pi}_{\rho,\mu\nu\lambda\sigma}(x,y)$$

$$i\widehat{\Pi}_{\rho,\mu\nu\lambda\sigma}(x,y) = -\int d^4z \, z_\rho \, \langle J_\mu(x)J_\nu(y)J_\sigma(z)J_\lambda(0)\rangle$$

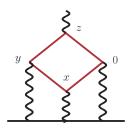
- $\to \mathcal{L}_{[\rho,\sigma];\mu\nu\lambda}(x,y)$ is the QED kernel, computed semi-analytically in infinite volume
- \rightarrow Avoid $1/L^2$ finite-volume effects from the massless photons
- RBC/UKQCD approach : [T. Blum et al, Phys.Rev. D93 (2016)] [arXiv :1911.08123]



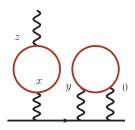
- exact photon propagators
 - \rightarrow QED_L: photon in finite volume, power-law volume corrections
 - $\rightarrow \mathsf{QED}_{\infty}$: photons in infinite volume
- ullet stochastic evaluation of sum over r

Wick contractions: 5 classes of diagrams

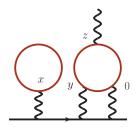
• Fully connected contribution

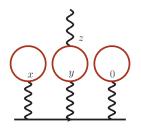


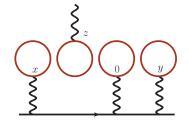
• Leading 2+2 (quark) disconnected contribution



• Sub-dominant disconnected contributions (3+1, 2+1+1, 1+1+1+1)



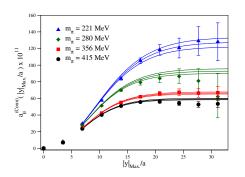


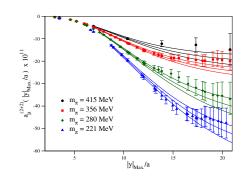


- Second set of diagrams vanish in the SU(3) limit (at least one quark loop which couple to a single photon)
 - \rightarrow Smaller contributions, have been shown to be irrelevant at the 10% level [Mainz '21 : 2104.02632]
- 2+2 disconnected diagrams are not negligible!
 - \rightarrow Large- N_c prediction : 2+2 disc \approx 50 % \times connected [Bijnens '16]
 - \rightarrow Cancellation \Rightarrow more difficult (correlations does not seems to help in practice ...)

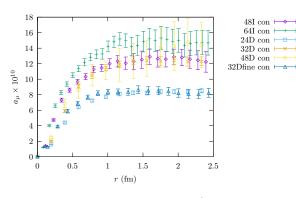
Large cancellation between the two leading contributions

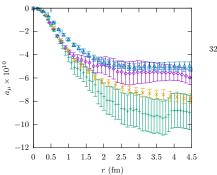
• Connected and disconnected contributions from Mainz ($m_{\pi} = 200$ MeV)





• Connected and disconnected contribution from RBC/UKQCD at the physical pion mass



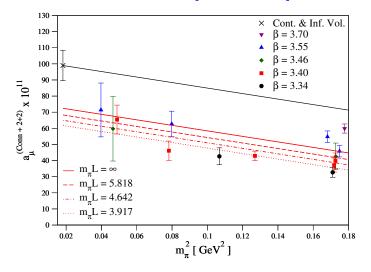


48I discon ⊢→ 64I discon ⊢ 24D discon ⊢□ 32D discon ⊢×⊢ 32Dfine discon ⊢△

• Major difficulties: signal/noise problem, finite-size effects are important

Which errors are relevant

Mainz group [2104.02632]

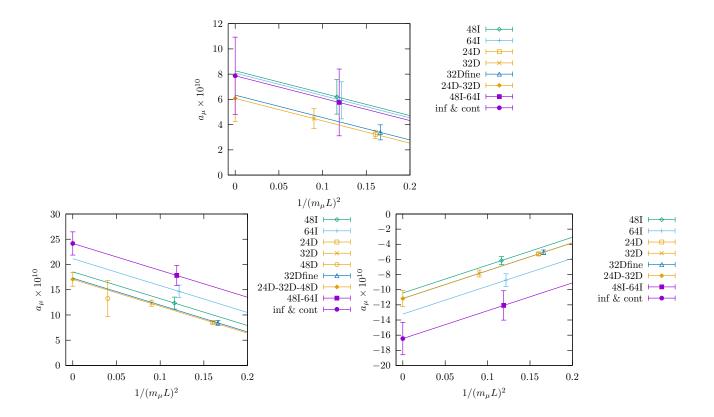


- Statistical noise at long distances
- Finite-volume effects are large
- Continuum extrapolation

- \rightarrow Chiral extrapolation milder than expected (based on π^0 -pole contribution)
- → Sub-dominant diagrams smaller than the required precision
- → Isospin-breaking corrections are not relevant here

Which errors are relevant

• Similar observation from RBC-UKQCD [Phys. Rev. Lett. 124, 132002 (2020)]



Summary of lattice results

• 2017 : RBC-UKQCD : first publication [Phys.Rev.Lett. 118 (2017)]

$$a_{\mu}^{\mathrm{HLbL}} = (53.5 \pm 13.5) \times 10^{-10}$$

- \rightarrow errror is statistical only
- \rightarrow no continuum extrapolation, no finite-size effect study
- 2020 : pdate that includes a systematic error estimate [Phys.Rev.Lett. 124 (2020)]

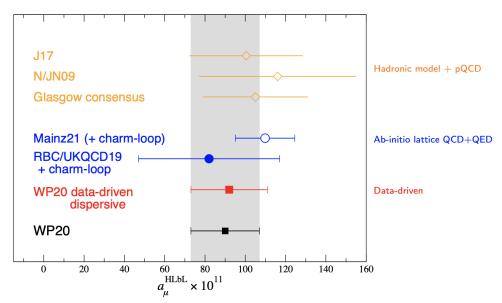
$$a_{\mu}^{\text{HLbL}} = 72(40)_{\text{stat}}(17)_{\text{syst}} \times 10^{-10}$$

- \rightarrow QED_L (QED in finite volume)
- \rightarrow finite-size effects are large
- 2020 : Mainz : first publication that focus on systematics [Eur.Phys.J.C 80 (2020)]
 - \rightarrow not yet at the physical point $(m_{\pi} \approx 400 \text{ MeV})$
 - \rightarrow finite-size correction + study of discretization effects
- 2021 : Mainz : recent update with a first complete calculation [2104.02632]

$$a_{\mu}^{\mathrm{HLbL}} = (107.4 \pm 11.3 \pm 9.2) \times 10^{-10}$$

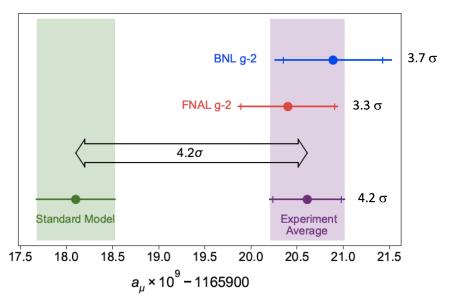
Conclusion HLbL

Status of hadronic light-by-light contribution



- ► First lattice QCD results are now published
 - \rightarrow In good agreement with the dispersive framework
 - ightarrow But systematic errors are sizeable, cross-checks would be welcome
- ► Lattice can also provide input to the dispersive framework
 - ightarrow pseudoscalar-pole contribution
- \blacktriangleright Close, but not yet at the target precision (< 10%)

Conclusion



- ightharpoonup First run pprox 1/20 of the expected total statistics
 - \rightarrow are we close to NP discovery?
 - → non-perturbative hadronic contributions dominate the error
 - \rightarrow The recent BMW lattice result reduces the tension!
- ► Rapid progress on the lattice
 - → first sub-percent lattice calculation by BMW, but in tension with R-ratio estimates
 - \rightarrow first complete calculation by Mainz : confirm the size of the HLbL contribution