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The microscopic model of nuclear theory

In the low-energy regime, quark and gluons are confined within hadrons and the relevant
degrees of freedoms are protons, neutrons, and pions

Effective field theories are the link between QCD and nuclear observables. They exploit the
separation between the “hard” (nucleon mass) and “soft” (exchanged momentum) scales




“Conventional” continuum nuclear
quantum Monte Carlo methods




Variational Monte Carlo

In variational Monte Carlo, one assumes a suitable form for the trial wave function
wr) = (1+ Zij) (ST #)l@r)
1<

The best variational parameters are found by optimizing the variational energy
Er = (Up|H|Vr) > Ey

The long-range antisymmetric is typically a Slater determinant of single-particle orbitals




Variational Monte Carlo

In variational Monte Carlo, one assumes a suitable form for the trial wave function
wr) = (1+ Zij) (ST #)l@r)
1<

The best variational parameters are found by optimizing the variational energy
Er = (Up|H|Vr) > Ey

The correlation operator reflects the spin-isospin dependence of the nuclear interaction
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Green’s function Monte Carlo

GFMC overcomes the limitations of the variational wave-function by using an imaginary-
time projection technique

Any trial wave function can be expanded in the complete set of eigenstates of the the
Hamiltonian according to

W) = ch’an> H|Y,) = E,|¥,)

n

GFMC projects out the exact lowest-energy state, provided the trial wave function it is not
orthogonal to the ground state.
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Green’s function Monte Carlo

In the GFMC, a sum over all the many-body spin-isospin states is performed
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Many-body spin-isospin states are utilized =3 unfavorable exponential scaling
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GFMC is extremely accurate but limited to A<12 nuclei and small (A <14) neutron systems



Auxiliary-field difftusion Monte Carlo

The AFDMC method uses a spin-isospin basis given by the outer product of single-nucleon spinors
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In purely neutron systems 7;; = 1 and the spin-dependent part of the potential reads
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To preserve the single-particle representation, the short-time propagator is linearized utilizing the

Hubbard-Stratonovich transformation
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At each imaginary-time step the single particle spinors are rotated
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AFDMC scales polynomially with the number of nucleons but is limited to simplified potentials

K. E. Schmidt et al., PLB 446, 99 (1999)
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Exponential complexity

An exponential in the particle number operations is required to evaluate the correlation operator
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Consider simple spin-pair correlation (no tensor)

Eij = f(rij) + [7(rij)oy; €= 04 =2P] —1

Let us apply the correlation operator to a three-body spin state

(f12 + fT2012)(f15 + f13013)(fa5 + [33023)|51, 52, 83)



Exponential complexity

An exponential in the particle number operations is required to evaluate the correlation operator
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Consider simple spin-pair correlation (no tensor)

Eij = f(rij) + [7(rij)oy; €= 04 =2P] —1

Let us apply the correlation operator to a three-body spin state

(fio + fl2012)(fi3 + f13013)(f33 + f33023)|81, 52, 83)
=(fl2 + [12012)(f1i3 + f13013)|(f35 — f23)[51, 52, 83) + 2f35]51, 83, 52))]



Exponential complexity

An exponential in the particle number operations is required to evaluate the correlation operator
(ST Es)1®)
1<J
Consider simple spin-pair correlation (no tensor)

Eij = f(rij) + [7(rij)oy; €= 04 =2P] —1

Let us apply the correlation operator to a three-body spin state

(fio + fl2012)(fi3 + f13013)(f33 + f33023)|81, 52, 83)
(fi2 + f12012)(fis + [13013)[(f33 — f33)[s1, 82, 83) + 2f35]51, 83, 52)]

(fi2 + [12012) [(fi3 — f13) (a3 — f23)|51, 52, 83) + 2(f15 — f13)[25]51, 83, 52)
+ 2f75(f33 — f33)|83, 82, 81) + 4f15 /35|52, 53, 51)]

Sampling the spin-isospin state and evaluating the trial wave function’s amplitude for that sampled
state still requires a number of operations exponential in the particle number



E/A (MeV)

10 |
12 |
14 |

16 .

Exponential complexity

Recent AFDMC calculations employ a linear approximation to spin-isospin dependent correlations.
Simple but it violates the factorization theorem.

S. Gandolfi, AL et al.,

PRC 90, 061306 (2014)
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L epton-nucleus scattering with
ML methods
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L epton-nucleus scattering

The inclusive cross section is characterized by a variety Q-
. . ~
of reaction mechanisms
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The response functions contain all information on the structure and dynamics of the target

Rap(w,q) = Y (WolJL(Q)|W ) (Vs]J5(q)|Vo)d(w — Ef + Ep)
f



Lepton-nucleus scattering

0.04 T T T T
On type of integral transform is the Laplace o O'O(ﬁﬁ;’/ﬁz o
transform - 0.01 MeV-1 —----
o I 7= 0.05 MoV~ =weeeee ]
Eaﬁ (7_7 q) = / dwe_WTRaﬁ (wv q) T%O.OQ - ’
= .
At finite imaginary time the contributions from %0 T I
large energy transfer are quickly suppressed
0 l
50 100 150 200 250 300
w[MeV]

The system is first heated up by the transition operator.
Its cooling determines the Euclidean response of the system
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L epton-nucleus scattering

The Euclidean response formalism allows one to extract dynamical properties of the system
from ground-state calculations

Inverting the Euclidean response is an ill posed problem: any set of observations is limited and
noisy and the situation is even worse since the kernel is a smoothing operator.
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Maximum-entropy techniques:

 Reliable enough for quasi-elastic responses;
+ Fail to reproduce the low-energy structure of the response functions;

400



M | N | BOOﬂe Cross SeCUOﬂS AL et al., Phys. Rev. X 10, 031068 (2020)

First microscopic calculation of neutrino-12C cross section
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Treating larger nuclei, including 18O and 40Ar:

+ Higher noise level in the Euclidean responses; = Need to go beyond Maximum Entropy
* Non-negligible low-energy transitions;
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Lepton-nucleus scattering

Several works have demonstrated that ML approaches are suitable for tackling inverse problems in
condensed-matter physics

H. Yoo et al., Phys. Rev. B 98, 245101 (2018) R. Fournier et al., Phys. Rev. Lett. 124, 056401 (2020)

We propose a Physics-inspired ANN to approximate the inverse of the Laplace transform of
nuclear electromagnetic response functions
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Neural Network Quantum
States for Atomic Nuclei




Neural-network quantum states

* Artificial neural networks (ANNs) can compactly represent complex high-dimensional functions;

 Variational representations of spin-systems quantum
states based on ANNs have been found to outperform
conventional variational ansatz;

G. Carleo et al. Science 355, 602 (2017)

G. Carleo et al. Nat. Commun. 9, 532 (2018)

* Applications to the continuum to few-body systems and quantum chemistry problems have

followed shortly thereafter;
input hidden  output

H. Saito, J. Phys. Soc. Jpn. 87, 074002 (2018)

Pfau et al., arXiv:1909.02487 (2019)
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Hermann et al., arXiv:1909.08423 (2019)
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Machine-learning the deuteron

 ANN were recently applied to solve the deuteron in momentum space using the sophisticated N3LO
Entem-Machleidt chiral-EFT nucleon-nucleon force

e The parameters of the ANN are optimized minimizing the variational energy using RMSprop
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Light nuclel with an ANN Jastrow ansatz

* We consider a the leading-order pionless-EFT Hamiltonian, which includes a three-body force
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* WWe introduce an ANN representation of the variational wave function of the form
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* More general Ansatz than standard product of two- and three-body Jastrow terms
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* For the s-shell nuclei that we consider, we assume the mean-field part to only depend upon the
spin and isospin degrees of freedom
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Light nuclel with an ANN Jastrow ansatz

The correlation factor is parameterized with an ANN comprised of four fully connected layers
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» The center of mass contributions to the kinetic energy are removed by T; = r; — Rowm
« The kinetic energy requires the derivatives of (/. We use differentiable softplus activation functions.

A Gaussian function is added to effectively confine the nucleons within a finite volume
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Light nuclel with an ANN Jastrow ansatz

The optimal values of the 18304 trainable parameters are found minimizing
(Wy |H|Py)
(Py [Py)

Using a pre-conditioner based on the quantum Fisher information (analogous to the stochastic
reconfiguration method) is more efficient than stochastic gradient descent
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Light nuclel with an ANN Jastrow ansatz

*The ANN ansatz outperforms standard Jastrow correlations, but lacks spin-isospin correlations

A |VMC-ANN VMC-JS GFMC GFMC.
2H 4 fm™'| —2.224(1) —2.223(1) —2.224(1) -
6 fm~'| —2.224(4) —2.220(1) —2.225(1) -
3 4 fm~'| —7.81(1) —7.80(1) —8.38(2) —7.82(1)
6 fm~'| —7.79(3) —7.74(1) —8.38(2) —7.81(1)
e 4 fm~'| —22.76(3) —22.54(1) —23.62(3) —22.77(2)
6 fm™'| —23.99(6) —23.44(2) —25.06(3) —24.10(2)

e Excellent results for ground-state energies and for single-nucleon densities
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Some perspectives

We are improving the convergence of the training combining SR with state-of-the-art optimization
methods developed in ML applications;

G, —> (S+MN);'G

As a first example, we considered the “Momentum” method, which helps accelerate SGD in the
relevant direction and dampens oscillations;

vS — (SS + A),;lGS ‘|"7US_1

ps—|—1 _ ps o US

. R—
Minimum Gradient Descent Momentum

With momentum we already achieved a tenfold speedup in the convergence. We plan to test
RMSprop and Adam, two of the most popular optimization methods.



Some perspectives

Including spin-dependent correlations requires encoding the anti-symmetry of the wave function.
We are investigating the use of a generalized back-flow ansatz

(¢1(331;33j7£1) ¢1(3325{33j;é2}) ¢1($A5{$j7éA})\
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\QbA(fUl;ij;él) ¢A($2;{$j¢2}) ¢A(33A3.{37j7£14}))

Hermann et al., arXiv:1909.08423 (2019) Pfau et al., arXiv:1909.02487 (2019)

* We introduced the generalized coordinate T; = {ri7 Sfa tf}

« The functions @; (% xj;éi) must be invariant under the exchange of the order of Z;;: need to
Generalization of the Deep Set architecture to the complex case
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Wagstaff et al., arXiv:1901.09006 (2019)




Some perspectives

Our primary goal is to devise accurate wave functions for medium-mass nuclei otherwise
inaccessible by conventional nuclear QMC methods;

ANN allows study properties of excited states, a central task and nontrivial challenge for several
nuclear many-body quantum approaches;

K. Choo et al. Phys. Rev. Lett. 121, 167204 (2018)

ANN can be extended to solve the time-dependent Schrédinger equation, similarly to the time-
dependent variational Monte Carlo method. The distance to be minimized is




Summary and outlook

* \We have developed a noise-resilient ML-based protocol for inverting the Laplace transform

 More accurate than Maximum Entropy, especially in the low energy-transfer region;
* Resilient to noise in the input Euclidean response, see Krishnan’s talk;

« Applicable to other integral-transform, including the Lorentz and the Gauss;

* Encouraging results with ANN representation of nuclear variational states

 The ANN correlation outperforms existing two- and three-body Jastrow ansatz;

» Using the SR method enables relatively fast training, further improved when used in
combination with state-of-the-art ML optimization methods;

e Correct behavior of single-particle densities, including the slowly decaying tail;

» Extension to spin-isospin dependent correlation (and to larger nuclei) requires
encoding permutation-invariant symmetry;

» Access to excited states and nuclear response functions;



