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QUANTUM SIMULATION FOR NP: WHAT IT IMPLIES.

http://www.aerospacengineering.net/
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A RANGE OF QUANTUM SIMULATORS WITH VARING CAPACITY AND CAPABILITY IS AVAILABLE!
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IT IS NOT POSSIBLE TO CONVEY ALL THE EXCITEMENT AND PROGRESS IN THIS TOPIC IN 30"
I'D BE HAPPY TO DELIVER A FEW MESSAGES...

...THIS WILL BE A SOMEWHAT SCATTERED, BUT HOPEFULLY NOT RANDOM,
REVEIW OF LITERATURE FROM MULTIPLE PERSPECTIVES.*

*Apologies to many whose work will not will be properly covered.
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One should leverage both analog and digital

NP is not short of hard computational _ . o
simulations. Hybrid analog-digital protocols may

problems. Quantum simulation may be the

: reduce time to solution in near term.
way forward in some. Much need to be done

to change the game in comp. NP.

Leveraging our classical computing capabilities

Appropriate DOF need to be identified for hybrid classical-quantum simulations.

(QCD DOF, nucleonic DOF, macroscopic and Quantum means to develop better classical
I / . ?
hydrodynamical DOF?), along with most algorithms

efficient mappings to quantum hardware.

. Can we discover deeper connections in

| h | b tum-
NP problems are different from CM and quantum nuciear penomenoiogy by quantim

chemistry problems. A lot can still be learned from
progress in those areas, but new strategies and

information tools? Can prototypes
provide insight?

ideas need to be introduced for NP. ’

Over the next decade, we will witness a
Theory-experiment co-development is a key to new ecosystem, a quantum-skillful NP
progress. Can NP impact quantum-simulation workforce, and unprecedented
hardware developments? interdisciplinary collaborations.
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A NUCLEAR PHYSICS MOTIVATION FOR LEVERAGING QUANTUM TECHNOLOGIES

i) Studies of nuclear isotopes, dense matter, and phase diagram of QCD...
both with lattice QCD and with ab initio nuclear many-body methods.
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A NUCLEAR PHYSICS MOTIVATION FOR LEVERAGING QUANTUM TECHNOLOGIES

ii) Real-time dynamics of matter in heavy-ion collisions or after Big Bang...
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...and a wealth of dynamical response functions, transport properties,
hadron distribution functions, and non-equilibrium physics of QCD.

Path integral formulation: Hamiltonian evolution:

[ eiS[U,qcﬂ [ U(t) = ot H1 ]
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A NUCLEAR PHYSICS ROADMAP FOR LEVERAGING QUANTUM TECHNOLOGIES
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UMD’s ion trap quantum chip,
Image by E. Edwards
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A NUCLEAR PHYSICS ROADMAP FOR LEVERAGING QUANTUM TECHNOLOGIES
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QUANTUM SIMULATION FOR NUCLEAR STRUCTURE AND REACTION: EXAMPLE |
—
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Roggero, Gu, Baroni, Papenbrock,
Roggero, Carlson, Phys. Rev. C 100, 034610 (2019) arXiv:2009.13485 [quant-ph]
/

See also: Lamm, Lawrence, Yamauchi, Phys.
Rev. D 102,

Rev. R 2, 013272 (2020), and Mueller, Tarasov, Venugopalan, Phys.
016007 (2020) for computing structure functions in field theories with quantum algorithms.




QUANTUM SIMULATION FOR NUCLEAR ASTROPHYSICS: EXAMPLE Il

Collective neutrino oscillations are relevant

for core-collapse supernova and neutron-star

merger studies...an extremely hard quantu
many-body problem to solve.

Vacuum and forward vv interaction Hamiltonian:

57 2G L
H = ZwPB - Jp + Z\/_V (1 - cos Opq) Jp
P P.q

J. Carlson and many others.
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Hilbert space size is reduced from 2N to
2N in a mean-field approximation.
Quantum entanglement measures tell us
this might not be a good approximation.

Single-angle but non-mean field approx.
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Cervia, Patwardhan, Balantekin, Coppersmith,
Johnson, Phys. Rev. D 100, 083001 (2019)

Would need quantum simulation!

Ongoing work by Baroni, Carlson, Hall, Roggero (2020).
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QUANTUM SIMULATION OF QUANTUM FIELD THEORIES: NTYITI 6
IMPLEMENTATION AND BENCHMARK DIGITAL EXAMPLES ~WWWWV
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QUANTUM SIMULATION OF QUANTUM FIELD THEORIES: TV 6
IMPLEMENTATION AND BENCHMARK ANALOG EXAMPLE

A realization of lattice Schwinger model within QLM with cold
atoms in a trapping potential
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QUANTUM SIMULATION OF GAUGE FIELD THEORIES: THEORY DEVELOPMENTS

Hamiltonian formalism maybe more natural than the path integral formalism for quantum

simulation/computation:

Kogut and Susskind formulation:
g2

1
Hoew = =13 ey (WUl + W UL ) + m 3 sl + S (4 By — s Y (U4 U).
[

{(xy) (xy)
Fermion hopping term Fermion Energy of color Energy of color
mass electric field magnetic field
Gz 7 0
qz = U
Gz 7 0 gz # 0

Generator of infinitesimal G? = fj)»fl] Z( xx—l—k+ R kx) |:> G hb {q(z)})> (Z)hb({q })>

gauge transformation
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Hamiltonian formalism maybe more natural than the path integral formalism for quantum
simulation/computation:

Kogut and Susskind formulation:
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ZD, Raychowdhury, and Shaw, arXiv:2009.11802 [hep-lat]
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QUANTUM SIMULATION OF GAUGE FIELD THEORIES: THEORY DEVELOPMENTS

Either start from locally gauge-invariant ..-Or try 10 suppress gauge-symmetry
building blocks: Loop String Hadron violation in the implementation.
framework for SU(2) LGT... Gauss's law operator
a:.: 0 r=1 Add to the Hamiltonian: VHg = VZCjGj'
Building the Prergs A
Hilbert space is
1) o — =
easy and ‘ o
0,0,00” ® |0,1,1)®* efficient as non- =
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2) O law is solved. =
| VD | —
0,0, ®[0,1,0)™” Incoming strings 1 v g#0
3) ® O Outgoing strings
1~ O —
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10~* .
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A point-splitting procedure allows
generalization to all dimensions.

o = Zj ¢jGj, compliant sequence
L L L ol Lo
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Raychowdhury, Stryker, Phys. : : Halimeh, Lang, Mildenberger, Jiang, Hauke,
Rev. D 101, 114502 (2020). arxXiv:2007.00668 [quant-ph]

\ J/ \ /

See also Stannigel, Hauke, Marcos, Hafezi, Diehl, Dalmonte, Zoller, Phys. Rev. Lett. 112, 120406, Tran, Su, Carney, Taylor
arXiv:2006.16248 [quant-ph] and Lamm, Lawrence, Yamauchi, arXiv:2005.12688 [quant-ph] for similar symmetry-protection ideas.




QUANTUM SIMULATION OF QUANTUM FIELD THEORIES: EXAMPLE Il

Algorithmic developments \Q

Implementation and benchmark

Theory developments



[ QUANTUM SIMULATION OF GAUGE FIELD THEORIES: ALGORITHMIC DEVELOPMENTS

Klco, Savage, Phys.

Rev. A 99, 052335 (2019).

Recourse analysis of scalar field theory digitization
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Similar feature in SU(2) in 1+1D as a function
of gauge cutoff
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QUANTUM SIMULATION OF GAUGE FIELD THEORIES: \/\/\/V\/\/\/\~
ALGORITHMIC DEVELOPMENTS ~WWWWV
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Recourse analysis for lattice Schwinger model
6y = 1073 6y = 1074 6y =107° 6y =107° 6y = 1077
é2 | CNOT €2 CNOT €2 CNOT €2 CNQOT €2 CNOT
r=10"% | — | 7.3e4 — 1.6e5 — | 3.4é5 — 7.3¢5 | 5.6e-2 | 1.6e6
Near term r=10"1 | — | 1.6e4 — 3.5e4 — 7.5e4 | 5.9e-2 | 1.6edb | 2.7e-3 | 3.5€b
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Far term N =16, A=2
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SOME SIMILARITIES BUT MAJOR DIFFERENCES

Starting from the nucelar Hamiltonian

More complex Hamiltonian, itself unknown
with arbitrary accuracy, short, intermediate,
and long-range interactions, three and multi-
body interactions, pions (bosons) and other
hadrons can become dynamical.

Starting from the Standard Model

Both bosonic and fermionic DOF are
dynamical and coupled, exhibit both global
and local (gauge) symmetries, relativistic
hence particle number not conserved, vacuum
state nontrivial in strongly interacting theories.
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Starting from the nucelar Hamiltonian

More complex Hamiltonian, itself unknown
with arbitrary accuracy, short, intermediate,
and long-range interactions, three and multi-
body interactions, pions (bosons) and other
hadrons can become dynamical.

Starting from the Standard Model

Both bosonic and fermionic DOF are
dynamical and coupled, exhibit both global

. . Attempts to cast QFT problems in a language
and |Oca| (gauge) Symmetﬂes, relatIVIStIC closer to quantum chemistry and NR simulations:

- Kreshchuk, Kirby, Goldstein, Beauchemin, Love,
hence particle number not conserved, vacuum  |arxiv:2002.04016 [quant-ph]

. . i . . Liu, Xin, arXiv:2004.13234 [hep-th]

state nontrivial in strongly interacting theories. |sarata , mueller, Tarasov, venugopalan (2020)




EXAMPLE I: QUANTUM CHEMISTRY VS. NP IN ANALOG SIMULATIONS

Long-range interactions between electrons mediated
with Mott insulator spin excitations. Already challenging.

a Electronic molecular Hamiltonian
Kinetic Nuclear Electronic
+ . + :
term attraction repulsion
tr
Vo
o

_FE fo VE: Zn te Vo frste
t (4,9) o ’ ”j—rn”fj Ji Z TE fi fifi fi
'iyj j,n i,j

o @ P

L2 excitation

Fermionic atom Mediating atom

V &
Effective potential ~ V(r) = C + ﬁe /E

Argiiello-Luengo, Gonzalez-Tudela, Shi, Zoller,
Cirac, Nature 574, 215-218 (2019)

How about analog schemes for nuclear Hamiltonian
with more complex interactions?
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EXAMPLE II: QUANTUM CHEMISTRY/CM VS. NP IN DIGITAL SIMULATIONS
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Evolve with
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—1H1 0t
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) ‘ —1H5 ot
e | :
t = Not
Childs, Su, Tran, Wiebe, Zhu,
arXiv:1912.08854 [quant-ph]
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EXAMPLE II: QUANTUM CHEMISTRY/CM VS. NP IN DIGITAL SIMULATIONS

Analog

Evolve with

e—th

Digital \( H=Hy+Hy+---
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—1Hq 0t
~~
T
t = Not

No such scaling studies performed for NP
Hamiltonian. Limited studies started for
quantum field theories.

Jordan, Lee, and Shaw, Lougovski, Stryker,

Preskill, Quant. Inf. [|Wiebe, Quantum 4, 306 (2020)

Comput.14,1014 (2014)




EXAMPLE II: QUANTUM CHEMISTRY/CM VS. NP IN DIGITAL SIMULATIONS

Jordan-Wigner transformation is not efficient for

- - - - encoding Fermionic statistics in qubits in D>1.
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EXAMPLE II: QUANTUM CHEMISTRY/CM VS. NP IN DIGITAL SIMULATIONS

Jordan-Wigner transformation is not efficient for
encoding Fermionic statistics in qubits in D>1.
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EXAMPLE II: QUANTUM CHEMISTRY/CM VS. NP IN DIGITAL SIMULATIONS

30) G.) (32) (33)
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Jordan-Wigner transformation is not efficient for
encoding Fermionic statistics in qubits in D>1.
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1 2 3 4 5 6 7 8 9 10 11 12 & 14 15 16
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Again a complete study of the most efficient
fermionic mapping given the structure of nuclear
Hamiltonian is needed. First steps are taken.

\ Roggero, Li, Carlson, Gupta, Perdue, [/
Phys. Rev. D 101, 074038 (2020)
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NP problems are different from CM and quantum nuciear penomenoiogy by quantim

chemistry problems. A lot can still be learned from
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AN EXAMPLE FROM THE WORLD OF ANALOG SIMULATIONS

Credit: Shaw/Davoudi, UMD



EXAMPLE: A TRAPPED-ION ANALOG SIMULATOR
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Zhang et al, Nature 551, 601-604 (2017).




EXAMPLE: A TRAPPED-ION DIGITAL SIMULATOR
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An individual addressing scheme ‘# Y
for digital computation
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Shehab et al, Phys. Rev. A 100, 062319 (2019)




EXAMPLE: A TRAPPED-ION ANALOG SIMULATOR

(

An enhanced individual addressing

scheme for analog simulation

A

~

Engineering a Heisenberg model Hamiltonian
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For Schwinger model, Z_2 gauge theory in 2+1D,

Chern-Simons theory in 2+1D.
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ion index 12

ZD, HAFEZI, MONROE, PAGANO, SEIF AND SHAW, Phys. Rev. R 2, 023015 (2020)

ion index j
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EXAMPLE: AN ANALOG-DIGITAL QPU FOR NP

Programmable gates with superconducting qudits

........................................................................
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arXiv:2005.13165
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Holland et al., Phys. Rev. A 101, 062307 (2020)
Wu, Wendt, Kravvaris, Ormand, DuBois, Rosen,
Pederiva, and Quaglioni (2020).
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EXAMPLES OF ENHANCING SIMULATIONS IN THE NEAR TERM WITH CLASSICAL
AND QUANTUM SIMULATING METHODS COMBINED...

Veritasium@VYutube



EXAMPLE [|: VARIATIONAL QUANTUM SIMULATION OF LATTICE SCHWINGER MODEL

Hamiltonian under which the system evolves
respects some symmetries of the original theory
and is implemented in an analog fashion.
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Kokail et al, Nature 569, 355 (2019).

See alo the VQE applied to calculation of neutron binding
in Dumitrescu, McCaskey, Hagen, Jansen, Morris,
Papenbrock, Pooser, Dean, Lougovski Phys. Rev. Lett. 120,
210501 (2018)
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EXAMPLE [l: STATE PREPARATION ROUTINE FOR LATTICE GAUGE THEORIES

State preparation can be done using Monte Carlo methods if no sign or signal-to-noise problems
occur, and time evolution can be ported to quantum hardware.
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EXAMPLE I1l: TENSOR NETWORKS FORM CLASSICAL TO QUANTUM COMPUTING
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For a recent nice review see: Meurice,
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TWO EXAMPLES TO DEMONSTRATE THIS POINT...




EXAMPLE I: QUANTUM ENTANGLEMENT IN LOW-ENERGY NUCLEAR PHYSICS

NN interactions at low energies are consistent ...as are low-energy BB interactions as obtained

with vanishing entanglement... with lattice QCD. bl
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EXAMPLE II: SPIN MODELS AS PROTOTYPES OF QCD? CAN THEY REVEAL ENTANGLEMENT
ASPECTS OF CONFINEMENT AND COLLISIONS?
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Tan, Becker, Liu, Pagano, Collins, De, Feng, Kaplan, Kyprianidis,
Lundgren, Morong, Whitsitt, Gorshkov, Monroe, arXiv:1912.11117 [quant-ph]

See also F. Pederiva’s talk regarding similar explorations at Trento.
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WITH THE INVOLVEMENT OF NP GROUPS AT UNIVERSITIES AND NATIONAL LABORATORIES,
NUCLEAR PHYSICS IS ON THE PATH TO DEVELOPING A QIS-EXEPRT WORKFORCE.

www.shutterstock.com



IN PARTICULAR, THE ACTIVITIES IN THE U.S. HAVE RAMPED UP IN 2020...

Office of Science
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Million for Quantum Information Science
Research for Nuclear Physics

University of Colorado

University of Maryland

Michigan State
University

Massachusetts Institute
of Technology

Pacific Northwest
National Laboratory

University of Colorado

Pacific Northwest
National Laboratory

OCTOBER 29, 2020

Argonne National
Laboratory

Argonne National
Laboratory

University of
Washington

Lawrence Berkeley
National Laboratory

Lawrence Livermore
National Laboratory

Massachusetts Institute
of Technology

Pacific Northwest
National Laboratory

Lawrence Livermore
National Laborator

Purdue University

Mississippi State
University, Mississippi
State, Mississippi

Argonne National
Laboratory (ANL),
Lemont, IL

University of
Connecticut

Thomas Jefferson
National Accelerator
Laboratory

Department of Energy

Department of Energy Announces $625
Million for New Quantum Centers

JANUARY 10, 2020

Q-NEXT - Next Generation Quantum Science and Engineering &

Director: David Awschalom

Lead Institution: Argonne National Laboratory

C2QA - Co-design Center for Quantum Advantage
Director: Steve Girvin

Lead Institution: Brookhaven National Laboratory

QSA - Quantum Systems Accelerator

Director: Irfan Siddiqi
Lead Institution: Lawrence Berkeley National Laboratory

SQMS - Superconducting Quantum Materials and Systems Center (¢

Director: Anna Grassellino
Lead Institution: Fermi National Accelerator Laboratory

QSC - The Quantum Science Center

Director: David Dean
Lead Institution: Oak Ridge National Laboratory
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