Nuclear Physics Entering a Quantum-simulation Era: Lessons from the Past, Vision for the Future

ZOHREH DAVOUDI
UNIVERSITY OF MARYLAND AND RIKEN FELLOW

Alfred P. Sloan FOUNDATION

Advances in many-body theories: from first principle methods to quantum computing and machine learning Virtual ECT* workshop, Nov 2-6, 2020

Quantum simulation amounts to leveraging a quantum system that can be controlled to study another quantum systems that is more elusive, experimentally or computationally.

QUANTUM SIMULATION FOR NP: WHAT IT IMPLIES.

Quantum simulation amounts to leveraging a quantum system that can be controlled to study another quantum systems that is more elusive, experimentally or computationally.

QUANTUM SIMULATION FOR NP: WHAT IT IMPLIES.

Quantum simulation amounts to leveraging a quantum system that can be controlled to study another quantum systems that is more elusive, experimentally or computationally.

A RANGE OF QUANTUM SIMULATORS WITH VARING CAPACITY AND CAPABILITY IS AVAILABLE!

rigetti

DIONQ

IT IS NOT POSSIBLE TO CONVEY ALL THE EXCITEMENT AND PROGRESS IN THIS TOPIC IN 30'. I'D BE HAPPY TO DELIVER A FEW MESSAGES...

...THIS WILL BE A SOMEWHAT SCATTERED, BUT HOPEFULLY NOT RANDOM, REVEIW OF LITERATURE FROM MULTIPLE PERSPECTIVES.*
*Apologies to many whose work will not will be properly covered.

IT IS NOT POSSIBLE TO CONVEY ALL THE EXCITEMENT AND PROGRESS IN THIS TOPIC IN 30'. I'D BE HAPPY TO DELIVER A FEW MESSAGES...

NP is not short of hard computational problems. Quantum simulation may be the way forward in some. Much need to be done to change the game in comp. NP.

Appropriate DOF need to be identified (OCD DOF, nucleonic DOF, macroscopic and hydrodynamical DOF?), along with most efficient mappings to quantum hardware.

NP problems are different from CM and quantum chemistry problems. A lot can still be learned from progress in those areas, but new strategies and ideas need to be introduced for NP.

Theory-experiment co-development is a key to progress. Can NP impact quantum-simulation hardware developments?

One should leverage both analog and digital simulations. Hybrid analog-digital protocols may reduce time to solution in near term.

Leveraging our classical computing capabilities for hybrid classical-quantum simulations.
Quantum means to develop better classical algorithms?

Can we discover deeper connections in nuclear phenomenology by quantuminformation tools? Can prototypes provide insight?

Over the next decade, we will witness a new ecosystem, a quantum-skillful NP workforce, and unprecedented interdisciplinary collaborations.

IT IS NOT POSSIBLE TO CONVEY ALL THE EXCITEMENT AND PROGRESS IN THIS TOPIC IN 30'. I'D BE HAPPY TO DELIVER A FEW MESSAGES...

NP is not short of hard computational problems. Quantum simulation may be the way forward in some. Much need to be done to change the game in comp. NP.

Appropriate DOF need to be identified (QCD DOF, nucleonic DOF, macroscopic and hydrodynamical DOF?), along with most efficient mappings to quantum hardware.

NP problems are different from CM and quantum chemistry problems. A lot can still be learned from progress in those areas, but new strategies and ideas need to be introduced for NP.

Theory-experiment co-development is a key to progress. Can NP impact quantum-simulation hardware developments?

One should leverage both analog and digital simulations. Hybrid analog-digital protocols may reduce time to solution in near term.

Leveraging our classical computing capabilities for hybrid classical-quantum simulations.
Quantum means to develop better classical algorithms?

Can we discover deeper connections in nuclear phenomenology by quantuminformation tools? Can prototypes provide insight?

Over the next decade, we will witness a new ecosystem, a quantum-skillful NP workforce, and unprecedented interdisciplinary collaborations.
i) Studies of nuclear isotopes, dense matter, and phase diagram of QCD... both with lattice QCD and with ab initio nuclear many-body methods.

Path integral formulation:

$$
e^{-S[U, q, \bar{q}]}
$$

with a complex action:

$$
\mathcal{L}_{\mathrm{QCD}} \rightarrow \mathcal{L}_{\mathrm{QCD}}-i \mu \sum_{f} \bar{q}_{f} \gamma^{0} q_{f}
$$

ii) Real-time dynamics of matter in heavy-ion collisions or after Big Bang...

...and a wealth of dynamical response functions, transport properties, hadron distribution functions, and non-equilibrium physics of QCD.

Path integral formulation:

$$
e^{i S[U, q \bar{q}]}
$$

IT IS NOT POSSIBLE TO CONVEY ALL THE EXCITEMENT AND PROGRESS IN THIS TOPIC IN 30'. I'D BE HAPPY TO DELIVER A FEW MESSAGES...

NP is not short of hard computational problems. Quantum simulation may be the way forward in some. Much need to be done to change the game in comp. NP.

Appropriate DOF need to be identified (QCD DOF, nucleonic DOF, macroscopic and hydrodynamical DOF?), along with most efficient mappings to quantum hardware.

NP problems are different from CM and quantum chemistry problems. A lot can still be learned from progress in those areas, but new strategies and ideas need to be introduced for NP.

Theory-experiment co-development is a key to progress. Can NP impact quantum-simulation hardware developments?

One should leverage both analog and digital simulations. Hybrid analog-digital protocols may reduce time to solution in near term.

Leveraging our classical computing capabilities for hybrid classical-quantum simulations.
Quantum means to develop better classical algorithms?

Can we discover deeper connections in nuclear phenomenology by quantuminformation tools? Can prototypes provide insight?

Over the next decade, we will witness a new ecosystem, a quantum-skillful NP workforce, and unprecedented interdisciplinary collaborations.

A NUCLEAR PHYSICS ROADMAP FOR LEVERAGING QUANTUM TECHNOLOGIES

QUANTUM SIMULATION FOR NUCLEAR STRUCTURE AND REACTION: EXAMPLE I

Dynamical response functions needed for v-nucleus cross sections

A quantum computation of response function in Fermi-Hubbard model

Roggero, Carlson, Phys. Rev. C 100, 034610 (2019)

A toy model of thermal neutron-proton capture...

with quantum algorithms...

Success Probability Transition Probability

Roggero, Gu, Baroni, Papenbrock,
arXiv:2009. 13485 [quant-ph]

[^0]
QUANTUM SIMULATION FOR NUCLEAR ASTROPHYSICS: EXAMPLE II

Collective neutrino oscillations are relevant for core-collapse supernova and neutron-star merger studies...an extremely hard quantum many-body problem to solve.

Vacuum and forward $v v$ interaction Hamiltonian:

$$
H=\sum_{\mathbf{p}} \omega_{\mathbf{p}} \vec{B} \cdot \vec{J}_{\mathbf{p}}+\sum_{\mathbf{p}, \mathbf{q}} \frac{\sqrt{2} G_{F}}{V}\left(1-\cos \theta_{\mathbf{p q}}\right) \vec{J}_{\mathbf{p}} \cdot \vec{J}_{\mathbf{q}}
$$

J. Carlson and many others.

Hilbert space size is reduced from $2 \wedge N$ to 2 N in a mean-field approximation.
Quantum entanglement measures tell us this might not be a good approximation.

Cervia, Patwardhan, Balantekin, Coppersmith, Johnson, Phys. Rev. D 100, 083001 (2019)

Would need quantum simulation!

QUANTUM SIMULATION OF QUANTUM FIELD THEORIES: EXAMPLE III

QUANTUM SIMULATION OF QUANTUM FIELD THEORIES: EXAMPLE III

QUANTUM SIMULATION OF QUANTUM FIELD THEORIES: IMPLEMENTATION AND BENCHMARK DIGITAL EXAMPLES

Martinez, Muschik, Schindler, Nigg, Erhard, Heyl, Hauke, Dalmonte, Monz, Zoller, Blatt, Nature 534, 516-519 (2016)
1.0 Trapped ions, 4 qubits

Nguyen, Shaw, Zhu, Huerta Alderete, ZD, Linke (2020)

Klco, Dumitrescu, McCaskey, Morris, Pooser, Sanz, Solano, Lougovski, Savage, Phys. Rev. A 98, 032331 (2018)

Lu, Klco, Lukens, Morris, Bansal, Ekström, Hagen, Papenbrock, Weiner, Savage, Lougovski, Phys. Rev. A 100, 012320 (2019)

QUANTUM SIMULATION OF QUANTUM FIELD THEORIES: IMPLEMENTATION AND BENCHMARK ANALOG EXAMPLE

QUANTUM SIMULATION OF QUANTUM FIELD THEORIES: EXAMPLE III

QUANTUM SIMULATION OF GAUGE FIELD THEORIES: THEORY DEVELOPMENTS

Hamiltonian formalism maybe more natural than the path integral formalism for quantum simulation/computation:

Kogut and Susskind formulation:

$$
\begin{array}{ccc}
H_{\mathrm{QCD}}=-t \sum_{\langle x y\rangle} s_{x y}\left(\psi_{x}^{\dagger} U_{x y} \psi_{y}+\psi_{y}^{\dagger} U_{x y}^{\dagger} \psi_{x}\right)+m \sum_{x} s_{x} \psi_{x}^{\dagger} \psi_{x}+\frac{g^{2}}{2} \sum_{\langle x y\rangle}\left(L_{x y}^{2}+R_{x y}^{2}\right)-\frac{1}{4 g^{2}} \sum_{\square} \operatorname{Tr}\left(U_{\square}+U_{\square}^{\dagger}\right) . \\
\text { Fermion hopping term } & \text { Fermion } & \text { Energy of color }
\end{array} \text { Energy of color } \quad \text { electric field } \quad \text { mass } \quad \text { magnetic field } .
$$

$$
q_{x} \neq 0
$$

$\begin{aligned} & \begin{array}{l}\text { Generator of infinitesimal } \\ \text { gauge transformation }\end{array}\end{aligned} G_{x}^{a}=\psi_{x}^{i \dagger} \lambda_{i j}^{a} \psi_{x}^{j}+\sum_{k}\left(L_{x, x+k}^{a}+R_{x-k, x}^{a}\right) ~ \rightharpoondown G_{x}^{i}\left|\psi\left(\left\{q_{x}^{(i)}\right\}\right)\right\rangle=q_{x}^{(i)}\left|\psi\left(\left\{q_{x}^{(i)}\right\}\right)\right\rangle$

QUANTUM SIMULATION OF GAUGE FIELD THEORIES: THEORY DEVELOPMENTS

Hamiltonian formalism maybe more natural than the path integral formalism for quantum simulation/computation:

Kogut and Susskind formulation:

ZD, Raychowdhury, and Shaw, arXiv:2009.11802 [hep-lat]
$\left.\begin{array}{l}\begin{array}{l}\text { Generator of infinitesimal } \\ \text { gauge transformation }\end{array} G_{x}^{a}=\psi_{x}^{i} \lambda_{i j}^{a} \psi_{x}^{j}+\sum_{k}\left(L_{x, x+k}^{a}+R_{x-k, x}^{a}\right) \\ \end{array}\right) G_{x}^{i}\left|\psi\left(\left\{q_{x}^{(i)}\right\}\right)\right\rangle=q_{x}^{(i)}\left|\psi\left(\left\{q_{x}^{(i)}\right\}\right)\right\rangle$

QUANTUM SIMULATION OF GAUGE FIELD THEORIES: THEORY DEVELOPMENTS

Either start from locally gauge-invariant building blocks: Loop String Hadron framework for SU(2) LGT...
1)

$$
|0,0,0\rangle^{(0)} \otimes|0,1,1\rangle^{(1)}
$$

2)

$|0,0,1\rangle^{(0)} \otimes|0,1,0\rangle^{(1)}$
3)

$|0,0,1\rangle^{(0)} \otimes|1,0,1\rangle^{(1)}$
4)

$|0,1,1\rangle^{(0)} \otimes|0,0,0\rangle^{(1)}$
A point-splitting procedure allows generalization to all dimensions.

Raychowdhury, Stryker, Phys. Rev. D 101, 114502 (2020).
...or try to suppress gauge-symmetry violation in the implementation.

	Gauss's law operator
Add to the Hamiltonian:	$V H_{G}=V \sum c_{j} G_{j}$.

Halimeh, Lang, Mildenberger, Jiang, Hauke, arXiv:2007.00668 [quant-ph]

QUANTUM SIMULATION OF QUANTUM FIELD THEORIES: EXAMPLE III

QUANTUM SIMULATION OF GAUGE FIELD THEORIES: ALGORITHMIC DEVELOPMENTS

```
Klco, Savage, Phys. Rev. A 99, 052335 (2019).
```

Recourse analysis of scalar field theory digitization

QUANTUM SIMULATION OF GAUGE FIELD THEORIES: ALGORITHMIC DEVELOPMENTS

ZD, Raychowdhury, and Shaw, arXiv:2009.11802 [hep-lat]

Similar feature in $\operatorname{SU}(2)$ in $1+1 \mathrm{D}$ as a function of gauge cutoff

QUANTUM SIMULATION OF GAUGE FIELD THEORIES:

 ALGORITHMIC DEVELOPMENTS

Recourse analysis for lattice Schwinger model

Near term

	$\delta_{g}=10^{-3}$		$\delta_{g}=10^{-4}$		$\delta_{g}=10^{-5}$		$\delta_{g}=10^{-6}$		$\delta_{g}=10^{-7}$	
	$\tilde{\epsilon}^{2}$	CNOT								
$x=10^{-2}$	-	7.3 e 4	-	1.6 e 5	-	3.4 e 5	-	7.3 e 5	$5.6 \mathrm{e}-2$	1.6 e 6
$x=10^{-1}$	-	1.6 e 4	-	3.5 e 4	-	7.5 e 4	$5.9 \mathrm{e}-2$	1.6 e 5	$2.7 \mathrm{e}-3$	3.5 e 5
$x=1$	-	4.6 e 3	-	9.9 e 3	$1.0 \mathrm{e}-1$	2.1 e 4	$4.7 \mathrm{e}-3$	4.6 e 4	$2.2 \mathrm{e}-4$	9.9 e 4
$x=10^{2}$	-	2.8 e 3	$8.3 \mathrm{e}-1$	6.1 e 3	$3.8 \mathrm{e}-2$	1.3 e 4	$1.8 \mathrm{e}-3$	2.8 e 4	$8.2 \mathrm{e}-5$	6.0 e 4

| Upper Bounds on T-gate Cost of Specific Simulations $\left(\mu=1, \tilde{\epsilon}^{2}=0.1\right)$ | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | Short Time $(T=10 / x)$ | | Long Time $(T=1000 / x)$ | |
| | Sampling | Estimating | Sampling | Estimating |
| $N=4, \Lambda=2$ | | | | |
| Strong Coupling $(x=0.1)$ | $6.5 \cdot 10^{7}$ | $2.4 \cdot 10^{11}$ | $8.8 \cdot 10^{10}$ | $3.3 \cdot 10^{14}$ |
| Weak Coupling $(x=10)$ | $5.0 \cdot 10^{6}$ | $1.8 \cdot 10^{10}$ | $7.0 \cdot 10^{9}$ | $2.6 \cdot 10^{13}$ |
| $N=16, \Lambda=2$ | | | | |
| Strong Coupling $(x=0.1)$ | $7.2 \cdot 10^{8}$ | $2.5 \cdot 10^{12}$ | $9.4 \cdot 10^{11}$ | $3.3 \cdot 10^{15}$ |
| Weak Coupling $(x=10)$ | $5.6 \cdot 10^{7}$ | $1.9 \cdot 10^{11}$ | $7.6 \cdot 10^{10}$ | $2.7 \cdot 10^{14}$ |
| $N=16, \Lambda=4$ | | | | |
| Strong Coupling $(x=0.1)$ | $1.9 \cdot 10^{9}$ | $6.3 \cdot 10^{12}$ | $2.3 \cdot 10^{12}$ | $8.1 \cdot 10^{15}$ |
| Weak Coupling $(x=10)$ | $9.6 \cdot 10^{7}$ | $3.2 \cdot 10^{11}$ | $1.2 \cdot 10^{11}$ | $4.2 \cdot 10^{14}$ |

IT IS NOT POSSIBLE TO CONVEY ALL THE EXCITEMENT AND PROGRESS IN THIS TOPIC IN 30'. I'D BE HAPPY TO DELIVER A FEW MESSAGES...

NP is not short of hard computational problems. Quantum simulation may be the way forward in some. Much need to be done to change the game in comp. NP.

Appropriate DOF need to be identified (QCD DOF, nucleonic DOF, macroscopic and hydrodynamical DOF?), along with most efficient mappings to quantum hardware.

NP problems are different from CM and quantum chemistry problems. A lot can still be learned from progress in those areas, but new strategies and ideas need to be introduced for NP.

Theory-experiment co-development is a key to progress. Can NP impact quantum-simulation hardware developments?

One should leverage both analog and digital simulations. Hybrid analog-digital protocols may reduce time to solution in near term.

Leveraging our classical computing capabilities for hybrid classical-quantum simulations.
Quantum means to develop better classical algorithms?

Can we discover deeper connections in nuclear phenomenology by quantuminformation tools? Can prototypes provide insight?

Over the next decade, we will witness a new ecosystem, a quantum-skillful NP workforce, and unprecedented interdisciplinary collaborations.

SOME SIMILARITIES BUT MAJOR DIFFERENCES

SOME SIMILARITIES BUT MAJOR DIFFERENCES

SOME SIMILARITIES BUT MAJOR DIFFERENCES

EXAMPLE I: QUANTUM CHEMISTRY VS. NP IN ANALOG SIMULATIONS

Long-range interactions between electrons mediated with Mott insulator spin excitations. Already challenging.

C

Effective potential $\quad V(r) \approx C+\frac{V_{0}}{r / a} e^{-r / L}$
$|0\rangle$
$V(r) \approx C+\frac{V_{0}}{r / a} e^{-r / L}$
Argüello-Luengo, González-Tudela, Shi, Zoller,
Cirac, Nature 574, 215-218 (2019)

How about analog schemes for nuclear Hamiltonian with more complex interactions?

Or in the language of effective field theories:

NNLO
$\left(Q / \Lambda_{\chi}\right)^{3}$

EXAMPLE II: QUANTUM CHEMISTRY/CM VS. NP IN DIGITAL SIMULATIONS

EXAMPLE II: QUANTUM CHEMISTRY/CM VS. NP IN DIGITAL SIMULATIONS

EXAMPLE II: QUANTUM CHEMISTRY/CM VS. NP IN DIGITAL SIMULATIONS

No such scaling studies performed for NP Hamiltonian. Limited studies started for quantum field theories.

EXAMPLE II: QUANTUM CHEMISTRY/CM VS. NP IN DIGITAL SIMULATIONS

EXAMPLE II: QUANTUM CHEMISTRY/CM VS. NP IN DIGITAL SIMULATIONS

$(3,0)$	$(3,1)$	$(3,2)$	$(3,3)$
$(2,0)$	$(2,1)$	$(2,2)$	$(2,3)$
$(1,0)$	$(1,1)$	$(1,2)$	$(1,3)$
$(0,0)$	$(0,1)$	$(0,2)$	$(0,3)$

Jordan-Wigner transformation is not efficient for encoding Fermionic statistics in qubits in $\mathrm{D}>1$.

Derby, Klassen, arXiv:2003.06939 [quant-ph]

Reference	$[$ BK02 $]$	[VC05; WHT16]	$[$ Jia+18]	$\left[\right.$ SW19 ${ }^{1}$	$[$ Set+19]
Qubit Number	$4 L(L-1)$	$4 L^{2}$	$4 L(L-1)$	$4 L^{2}-2 L$	$6 L^{2}$
Qubit to Mode Ratio	$2-\frac{2}{L}$	2	$2-\frac{2}{L}$	$2-\frac{1}{L}$	3
Max Weight Hopping	6	4	4	5	4
Max Weight Coulomb	8	2	6	6	6
Encoded Fermionic Space	Even	Full	Even	Full	Even
Graph Types	General	General	Square Lattice	Square Lattice	General
Corrects Single Qubit Errors?	No	No	Yes	No	Yes

Chen, Phys. Rev. Research 2, 033527 (2020).
Zohar, Cirac, Phys. Rev. B 98, 075119 (2018)

Local mappings using auxiliary gauge groups exist. Can leverage our gauge theory algorithms here?

EXAMPLE II: QUANTUM CHEMISTRY/CM VS. NP IN DIGITAL SIMULATIONS

Again a complete study of the most efficient fermionic mapping given the structure of nuclear

Hamiltonian is needed. First steps are taken.

IT IS NOT POSSIBLE TO CONVEY ALL THE EXCITEMENT AND PROGRESS IN THIS TOPIC IN 30'. I'D BE HAPPY TO DELIVER A FEW MESSAGES...

NP is not short of hard computational problems. Quantum simulation may be the way forward in some. Much need to be done to change the game in comp. NP.

Appropriate DOF need to be identified (QCD DOF, nucleonic DOF, macroscopic and hydrodynamical DOF?), along with most efficient mappings to quantum hardware.

NP problems are different from CM and quantum chemistry problems. A lot can still be learned from progress in those areas, but new strategies and ideas need to be introduced for NP.

Theory-experiment co-development is a key to progress. Can NP impact quantum-simulation hardware developments?

One should leverage both analog and digital simulations. Hybrid analog-digital protocols may reduce time to solution in near term.

Leveraging our classical computing capabilities for hybrid classical-quantum simulations.
Quantum means to develop better classical algorithms?

Can we discover deeper connections in nuclear phenomenology by quantuminformation tools? Can prototypes provide insight?

Over the next decade, we will witness a new ecosystem, a quantum-skillful NP workforce, and unprecedented interdisciplinary collaborations.

AN EXAMPLE FROM THE WORLD OF ANALOG SIMULATIONS

EXAMPLE: A TRAPPED-ION ANALOG SIMULATOR

Effective Hamiltonian

$$
H_{\mathrm{eff}}=\sum_{i, j} J_{i, j}^{(x x)} \sigma_{x}^{(i)} \otimes \sigma_{x}^{(j)}-\frac{B_{z}}{2} \sum_{i} \sigma_{z}^{(i)}
$$

with coupling:

$$
J_{i, j}^{(x x)} \sim \frac{1}{|i-j|^{\alpha}}, 0<\alpha<3
$$

EXAMPLE: A TRAPPED-ION DIGITAL SIMULATOR

EXAMPLE: A TRAPPED-ION ANALOG SIMULATOR

Engineering a Heisenberg model Hamiltonian

$$
\begin{aligned}
& H_{\mathrm{eff}}= \sum_{\substack{i, j \\
j<i}}\left[J_{i, j}^{(x x)} \sigma_{x}^{(i)} \otimes \sigma_{x}^{(j)}+J_{i, j}^{(y y)} \sigma_{y}^{(i)} \otimes \sigma_{y}^{(j)}+\right. \\
&\left.J_{i, j}^{(z z)} \sigma_{z}^{(i)} \otimes \sigma_{z}^{(j)}\right]-\frac{1}{2} \sum_{i=1}^{N} B_{z}^{(i)} \sigma_{z}^{(i)}
\end{aligned}
$$

For Schwinger model, Z_2 gauge theory in 2+1D, Chern-Simons theory in 2+1D.

IT IS NOT POSSIBLE TO CONVEY ALL THE EXCITEMENT AND PROGRESS IN THIS TOPIC IN 30'. I'D BE HAPPY TO DELIVER A FEW MESSAGES...

NP is not short of hard computational problems. Quantum simulation may be the way forward in some. Much need to be done to change the game in comp. NP.

Appropriate DOF need to be identified (QCD DOF, nucleonic DOF, macroscopic and hydrodynamical DOF?), along with most efficient mappings to quantum hardware.

NP problems are different from CM and quantum chemistry problems. A lot can still be learned from progress in those areas, but new strategies and ideas need to be introduced for NP.

Theory-experiment co-development is a key to progress. Can NP impact quantum-simulation hardware developments?

One should leverage both analog and digital simulations. Hybrid analog-digital protocols may reduce time to solution in near term.

Leveraging our classical computing capabilities for hybrid classical-quantum simulations.
Quantum means to develop better classical algorithms?

Can we discover deeper connections in nuclear phenomenology by quantuminformation tools? Can prototypes provide insight?

Over the next decade, we will witness a new ecosystem, a quantum-skillful NP workforce, and unprecedented interdisciplinary collaborations.

EXAMPLE: AN ANALOG-DIGITAL QPU FOR NP

Programmable gates with superconducting qudits

】

Wu, Tomarken, Petersson, Martinez, Rosen, DuBois arXiv:2005.13165

Two-neutron spin dynamics with LLNL superconducting-cavity QPU
 Wu, Wendt, Kravvaris, Ormand, DuBois, Rosen,
Pederiva, and Quaglioni (2020).

IT IS NOT POSSIBLE TO CONVEY ALL THE EXCITEMENT AND PROGRESS IN THIS TOPIC IN 30'. I'D BE HAPPY TO DELIVER A FEW MESSAGES...

NP is not short of hard computational problems. Quantum simulation may be the way forward in some. Much need to be done to change the game in comp. NP.

Appropriate DOF need to be identified (QCD DOF, nucleonic DOF, macroscopic and hydrodynamical DOF?), along with most efficient mappings to quantum hardware.

NP problems are different from CM and quantum chemistry problems. A lot can still be learned from progress in those areas, but new strategies and ideas need to be introduced for NP.

Theory-experiment co-development is a key to progress. Can NP impact quantum-simulation hardware developments?

One should leverage both analog and digital simulations. Hybrid analog-digital protocols may reduce time to solution in near term.

Leveraging our classical computing capabilities for hybrid classical-quantum simulations.
Quantum means to develop better classical algorithms?

Can we discover deeper connections in nuclear phenomenology by quantuminformation tools? Can prototypes provide insight?

Over the next decade, we will witness a new ecosystem, a quantum-skillful NP workforce, and unprecedented interdisciplinary collaborations.

EXAMPLES OF ENHANCING SIMULATIONS IN THE NEAR TERM WITH CLASSICAL AND QUANTUM SIMULATING METHODS COMBINED...

EXAMPLE I: VARIATIONAL QUANTUM SIMULATION OF LATTICE SCHWINGER MODEL

Hamiltonian under which the system evolves respects some symmetries of the original theory and is implemented in an analog fashion.

[^1]See alo the VQE applied to calculation of neutron binding in Dumitrescu, McCaskey, Hagen, Jansen, Morris,
Papenbrock, Pooser, Dean, Lougovski Phys. Rev. Lett. 120, 210501 (2018)

EXAMPLE II: STATE PREPARATION ROUTINE FOR LATTICE GAUGE THEORIES

State preparation can be done using Monte Carlo methods if no sign or signal-to-noise problems occur, and time evolution can be ported to quantum hardware.

The use of VQE to generate optimized operators to in Monte Carlo simulation of lattice Schwinger model.

Avkhadiev, Shanahan, Young, Phys. Rev. Lett. 124, 080501 (2020)

Harmalkar, Lamm, Lawrence1, arXiv:2001. 11490 [hep-lat]

EXAMPLE III: TENSOR NETWORKS FORM CLASSICAL TO QUANTUM COMPUTING

SU(2) gauge theory coupled to matter in 1+1D with a
$\left.\left.\mid j_{3} l_{3}^{\prime}\right\}_{3}^{\prime}\right\rangle\left|n_{4}^{1}, n_{4}^{2}\right\rangle\left|j_{4} \ell_{4}\right\rangle$

Bañuls, Cichy, Cirac, Jansen, Kühn, Phys.
Rev. X 7, 041046 (2017)

Z(3) gauge theory in 2+1D with a PEPS ansatz

Emonts, Bañuls, Cirac, Zohar, Phys. Rev. D 102, 074501 (2020)

IT IS NOT POSSIBLE TO CONVEY ALL THE EXCITEMENT AND PROGRESS IN THIS TOPIC IN 30'. I'D BE HAPPY TO DELIVER A FEW MESSAGES...

NP is not short of hard computational problems. Quantum simulation may be the way forward in some. Much need to be done to change the game in comp. NP.

Appropriate DOF need to be identified (QCD DOF, nucleonic DOF, macroscopic and hydrodynamical DOF?), along with most efficient mappings to quantum hardware.

NP problems are different from CM and quantum chemistry problems. A lot can still be learned from progress in those areas, but new strategies and ideas need to be introduced for NP.

Theory-experiment co-development is a key to progress. Can NP impact quantum-simulation hardware developments?

One should leverage both analog and digital simulations. Hybrid analog-digital protocols may reduce time to solution in near term.

Leveraging our classical computing capabilities for hybrid classical-quantum simulations.
Quantum means to develop better classical algorithms?

Can we discover deeper connections in nuclear phenomenology by quantuminformation tools? Can prototypes provide insight?

Over the next decade, we will witness a new ecosystem, a quantum-skillful NP workforce, and unprecedented interdisciplinary collaborations.

TWO EXAMPLES TO DEMONSTRATE THIS POINT...

EXAMPLE I: QUANTUM ENTANGLEMENT IN LOW-ENERGY NUCLEAR PHYSICS

$N N$ interactions at low energies are consistent with vanishing entanglement...

...as are low-energy BB interactions as obtained

Wagman, Winter, Chang, ZD, Detmold, Orginos, Savage, Shanahan (NPLQCD), Phys.
Rev. D 96, 114510 (2017)

EXAMPLE II: SPIN MODELS AS PROTOTYPES OF QCD? CAN THEY REVEAL ENTANGLEMENT ASPECTS OF CONFINEMENT AND COLLISIONS?

Transverse-field Ising model with long-range interactions in 1+1D exhibits an effective confining potential among domain walls: the "mesons"!

$$
H=-\sum_{i<j}^{L} J_{i, j} \sigma_{i}^{x} \sigma_{j}^{x}-B \sum_{i}^{L} \sigma_{i}^{z}
$$

Native Hamiltonian in a trapped-ion simulator!

Tan, Becker, Liu, Pagano, Collins, De, Feng, Kaplan, Kyprianidis, Lundgren, Morong, Whitsitt, Gorshkov, Monroe, arXiv:1912.11117 [quant-ph]

IT IS NOT POSSIBLE TO CONVEY ALL THE EXCITEMENT AND PROGRESS IN THIS TOPIC IN 30'. I'D BE HAPPY TO DELIVER A FEW MESSAGES...

NP is not short of hard computational problems. Quantum simulation may be the way forward in some. Much need to be done to change the game in comp. NP.

Appropriate DOF need to be identified (QCD DOF, nucleonic DOF, macroscopic and hydrodynamical DOF?), along with most efficient mappings to quantum hardware.

NP problems are different from CM and quantum chemistry problems. A lot can still be learned from progress in those areas, but new strategies and ideas need to be introduced for NP.

Theory-experiment co-development is a key to progress. Can NP impact quantum-simulation hardware developments?

One should leverage both analog and digital simulations. Hybrid analog-digital protocols may reduce time to solution in near term.

Leveraging our classical computing capabilities for hybrid classical-quantum simulations.
Quantum means to develop better classical algorithms?

Can we discover deeper connections in nuclear phenomenology by quantuminformation tools? Can prototypes provide insight?

Over the next decade, we will witness a new ecosystem, a quantum-skillful NP workforce, and unprecedented interdisciplinary collaborations.

WITH THE INVOLVEMENT OF NP GROUPS AT UNIVERSITIES AND NATIONAL LABORATORIES, NUCLEAR PHYSICS IS ON THE PATH TO DEVELOPING A QIS-EXEPRT WORKFORCE.

Office of Science
 Department of Energy Announces \$17.7 Million for Quantum Information Science Research for Nuclear Physics

University of Colorado	Argonne National Laboratory	Lawrence Livermore National Laborator
University of Maryland	Argonne National Laboratory	Purdue University

Department of Energy Announces \$625 Million for New Quantum Centers

Q-NEXT • Next Generation Quantum Science and Engineering \longleftarrow

Director: David Awschalom
Lead Institution: Argonne National Laboratory
C^{2} QA \cdot Co-design Center for Quantum Advantage

Director: Steve Girvin
Lead Institution: Brookhaven National Laboratory

QSA • Quantum Systems Accelerator ©
Director: Irfan Siddiqi
Lead Institution: Lawrence Berkeley National Laboratory

SQMS • Superconducting Quantum Materials and Systems Center ©

Director: Anna Grassellino
Lead Institution: Fermi National Accelerator Laboratory

QSC • The Quantum Science Center $\mathbb{} 1$

Director: David Dean
Lead Institution: Oak Ridge National Laboratory

EXAMPLE: MARYLAND'S INTERDICIPLINARY TEAM

I. RAYCHOWDHURY (P) N. MUELLER (P) J.STRYKER (P) A. SHAW I (S) Y. YAMUACHI (S)

And many more starting to get involved!

Condensed Matter Physics

Atomic, optical, and
Molecular Physics

OIS/CS

A. GORSHKOV

C. MONROE
G. PAGANO

IT IS NOT POSSIBLE TO CONVEY ALL THE EXCITEMENT AND PROGRESS IN THIS TOPIC IN 30'. I'D BE HAPPY TO DELIVER A FEW MESSAGES...

NP is not short of hard computational problems. Quantum simulation may be the way forward in some. Much need to be done to change the game in comp. NP.

Appropriate DOF need to be identified (QCD DOF, nucleonic DOF, macroscopic and hydrodynamical DOF?), along with most efficient mappings to quantum hardware.

NP problems are different from CM and quantum chemistry problems. A lot can still be learned from progress in those areas, but new strategies and ideas need to be introduced for NP.

Theory-experiment co-development is a key to progress. Can NP impact quantum-simulation hardware developments?

One should leverage both analog and digital simulations. Hybrid analog-digital protocols may reduce time to solution in near term.

Leveraging our classical computing capabilities for hybrid classical-quantum simulations.
Quantum means to develop better classical algorithms?

Can we discover deeper connections in nuclear phenomenology by quantuminformation tools? Can prototypes provide insight?

Over the next decade, we will witness a new ecosystem, a quantum-skillful NP workforce, and unprecedented interdisciplinary collaborations.

THANK YOU

[^0]: See also: Lamm, Lawrence, Yamauchi, Phys. Rev. R 2, 013272 (2020), and Mueller, Tarasov, Venugopalan, Phys. Rev. D 102, 016007 (2020) for computing structure functions in field theories with quantum algorithms.

[^1]: Kokail et al, Nature 569, 355 (2019).

