Machine learning
for lattice field theory
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Matter from QCD

Hadron and nuclear physics
from the Standard Model

¥

Emergence
of complex

structure In
nature Backgrounds

and benchmarks
for searches for

new physics




The search for new physics

Precise experiments seek new physics
at the “Intensity Frontier”

© Sensitivity to probe the rarest Standard Model
interactions

© Search for beyond—sStandard-Model effects

Dark matter direct detection v k gl

Neutrino physics

Charged lepton flavour violation, BB-decay,
proton decay, neutron-antineutron oscillations. ..

CHALLENGE: understand the physics of nuclei used as targets



Lattice QCD

Numerical first-principles approach to
non-perturbative QCD

Discretise QCD onto 4D space-time lattice

QCD equations <= integrals over the values of quark and
gluon fields on each site/link (QCD path integral)

~ 012 variables (for state-of-the-art) - Evaluate by importance
sampling

o Paths near classical action

x‘*/\,_* dominate
X
o Calculate physics on a set

(ensemble) of samples of

the quark and gluon fields
tot| t2 t €



Lattice QCD

Numerical first-principles approach to
non-perturbative QCD

o kuclidean space-tme ¢ — o7

o Finite lattice spacing  a x128
© Volume L° x T =647 x 128

~ Boundary conditions %

Approximate the QCD path integral by Monte Carlo

(0) = 5 [ PADGDIOLA Gule ST e (0) =

with field configurations U" distributed according to e



Lattice QCD

Numerical first-principles approach to
non-perturbative QCD

INPUT

Lattice QCD action has same free
parameters as QCD: quark masses, ag

Fix quark masses by matching to

measured hadron masses, e.g.,
m, K, Dg, Bs for u,d, s,c,b

One experimental input to fix lattice
spacing in GeV (and also ag), e.g.,
25-18 splitting in Y, or f.or  mass

OUTPUT

Calculations of all other
guantities are QCD
predictions




Machine learning for LQCD

MACHINE LEARNING IS

A class of tools for optimising the parameters of complex models to

describe data '

In the context of LQCD, must rigorously account/correct for the effects
of modelling In provably exact/unbiased ways

MACHINE LEARNING IS NOT

A black box or model-independent solution to e.g., inverse problems

W

Applications without formal quantification and propagation of the

effects of modelling, correlations, and systematics, compromise the
rigour of LQCD



Lattice QCD

Workflow of a lattice QCD calculation

@ Generate field configurations
via Hybrid Monte Carlo

Leadership-class computing
~ 00K cores or |000GPUs, |0's of TF-years
O(100-1000) configurations, each ~10-100GB

@ Compute propagators Contract into

Large sparse matrix inversion correlation functions

~few 100s GPUs ~few GPUs

| Ox field config in size, many per config O(100k-1M) copies

Computational cost grows exponentially with size of nuclear system



Machine learning for LQCD

Existing efforts to apply ML tools to many aspects of
the lattice QCD workflow

Fleld configuration generation by e.g,,
® Multi-scale approaches

Shanahan et al,, Phys.Rev.D 97 (2018) Tanaka and Tomiya, 1712.03893 (2017)

S Accelerated HMC Albergo et al., Phys.Rev.D 100 (2019) Zhou et al,, Phys.Rev.D 100 (2019)

. . Rezende et al,, 2002.02428 (2020) Li et al,, PRX 10 (2020)
°® Direct Samphng methods Kanwar et al,, Phys.Rev.Lett. 125 (2020)  Pawlowski and Urban 1811.03533 (2020)
. Boyda et al,, 2008.05456 (2020) Nagai, Tanaka, Tomiya 2010.1 1900 (2020)

Efficient computations of correlation

functions/observables

Yoon, Bhattacharya, Gupta, Phys. Rev. D 100, 014504 (2019)
Zhang et al, Phys.Rev. D 101,034516 (2020)
Nicoli et al, 2007.07115 (2020)

Sign-problem avoidance via contour

deformation of path integrals

Alexandruet al., Phys.Rev. Lett. 121 (2020),
Detmold et al., 2003.059 14 (2020)

Analysis, order parameters, insights

Tanaka and Tomiya, Journal of the Physical Society
of Japan, 86 (2017)

Wetzel and Scherzer, Phys. Rev. B 96 (2017)
S.BlUcher et al., Phys. Rev. D 101 (2020)

Boyda et al., 2009.109/1 (2020)

*Early developmental stage — many of these
papers use toy theories instead of QCD
*Much more related work in e.g., condensed
matter context



Generate QCD gauge fields

Generate field configurations ¢(x) with probability
Plo(a)] ~ ¢~

© Gauge field configurations represented by
~1010 links U, (x) encoded as SU(3) matrices
(3x3 complex matrix M with det[M] =1 , M~ = M")
.e., ~ 102 double precision numbers

© Configurations sample probability distribution
corresponding to LQCD action S|¢]
(function that defines the quark and gluon dynamics)

Weighted averages over configurations determine

physical observables of interest

© Calculations use ~ 103 configurations



Generate QCD gauge fields

Generate field configurations ¢(x) with probability
Plé(x)] ~ e Slo(a)]

Hamiltonian/Hybrid Monte Carlo

correlated
A
( \
PNl AR AP NEHE - ==
N\ y
Y
burn-in (discard) sample every nt: ~p(¢)

Burn-in time and correlation length dictated by Markov chain
‘autocorrelation time’: shorter autocorrelation time implies less
computational cost



Generate QCD gauge fields

QCD gauge field configurations sampled via

Hamiltonian dynamics + Markov Chain Monte Carlo

Updates diffusive

Lattice spacing * 0

Number of
updates to change
fixed physical
length scale

- o

“Ciritical slowing-down”
of generation of uncorrelated samples



Scalar lattice field theory

Test case: scalar lattice field theory

One real number ¢(x) € (—o0,00) per lattice site x (2D lattice)

o

Action: kinetic terms and quartic coupling

S(¢) =) (Sj 6(@)0(x, y)é(y) + smH(x)? + Acb(x)“)

>
T

Generate field configurations ¢(x) with probability
Po(o)] ~ e 514



Sampling gauge field configs

Generate field configurations ¢(x) with probability
Plo(e)] ~ 510
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Sampling gauge field configs

Generate field configurations ¢(x) with probability
Plo(e)] ~ 510

Parallels with image generation problem
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Machine learning QCD

Ensemble of lattice QCD CIFAR benchmark image set
gauge fields for machine learning

643 x128 x 4 x Nc? x 2 © 32 x 32 pixels x 3 cols

=|0? numbers =~3000 numbers

~ 1000 samples - 60000 samples
Ensemble of gauge fields has | |
meaning ~ Each image has meaning
L ong-distance correlations © Local structures are

are Important important

Gauge andltransla}tloln— o Translation-invariance
invariant with periodic within frame

boundaries



Machine learning QCD

Ensemble of lattice QCD CIFAR benchmark image set
i B for machine learning

o 32 x 32 pixels x 3 cols
~3000 numbers

Long-distance correlatlC
are Important

Gauge and translation-
invariant with periodic
boundaries

< Translation-inve
within frame



Generative flow models

Flow-based models learn a change-of-variables that transforms

a known distribution to the desired distribution
[Rezende & Mohamed 1505.05770]

Invertible

o —1
& | aste)= | 2B gy
Tractable “ |
| Jacobian)
(@
L2 A
") A\ DD

Approximates

Easily sampled _ :
desired dist.



Generative flow models

Flow-based models learn a change-of-variables that transforms

a known distribution to the desired distribution
[Rezende & Mohamed 1505.05770]

Invertible

N of 1
& | aste)= | 2B gy
Tractable 4
Jacobian)
_1 —
S @
Z ¢
r(z) ﬁf(¢)
-~ g g S 2’ -
-
_ )

Many simple layers
composed to produce f

Approximates

Easily sampled _ :
desired dist.



Generative flow models

Choose real non-volume preserving flows:

[Dinh et al. 1605.08803] f Application of g

Affine transformation of half of the variables:

© scaling by exp(s)
© translation by t

© sandt arbitrary neural networks depending on
untransformed variables only

Simple inverse and Jacobian

\ f”\\\
LT ba l.\¢b/}
’ Z & N " ! - \\ )./‘/ V\'ﬁx;_,‘; /
L2 .
\\s ,', “‘ ,'l _1
r(z) M\
& gl_] > - -



Training the model

Target distribution 1s known up to normalisation

p(¢) =e>9)Z

Train to minimise shifted KL divergence: @znang, e, wang 1809.1018e]

shift removes unknown

L(py) := Dgr(psllp) normalisation Z

_ / [[d6;57(6) (08 ps(6) + 5(0))

\

allows self-training: sampling with respect to

model distribution p ¢(¢) to estimate loss




Exactness via Markov chain

Guarantee exactness of generated distribution by forming a
Markov chain: accept/reject with Metropolis-Hastings step

Acceptance
probability

ﬁ(¢(i_1)) p(d)')) True dist

A (B—1) 1IN s (1
(¢ ) =min Model dist

"p(oli=D) p(¢)

proposal independent
of previous sample

Markov
Chain

model
proposals




Fields via flow models

| »
i
»

_r - i ’ -1 ‘; B ’ 5‘._‘_‘ ’
Cd H B éb

generating samples is
"embarrassingly parallel”

Parameterize flow using Real
NVP coupling layers

Each layer contains

!

Training step

‘ Draw samples from model ‘
|

‘ Compute loss function ‘
|

‘ Gradient descent ‘

A\

arbitrary neural nets
sandt

Desired accuracy?

Markov chain using
samples from model

3

Save trained
model

_J

Summary chart: Tej Kanwar



Application: scalar field theory

First application: scalar lattice field theory

| OXx2
| o G(0)

0.5}

Albergo et al., Phys.Rev.D 100 (2019)

(a) HMC ensembles

5l X2
o G.(0)

0.57

6

12 14
(b) Local Metropolis ensembles

Up-front training of the model

Tint |

0.57

(c) Flow-based MCMC ensembles

Dynamical critical exponents
consistent with zero

Success: Critical slowing down is eliminated
Cost:

5 L

OF o G.0)
o xe A Acc

50% ML models
? g8 3

70% ML models

8 10 12 14




Next steps: ML for LQCD

Target application: Lattice QCD for nuclear physics

ﬁ

|. Scale number of

2. Scale number of

d

C

imensions = 4D

egrees of freedom — 483 x 96

3. Methods for gauge theories

[Phys.Rev.D 100 (2019), Phys.Rev.Lett. 125 (2020), 2002.02428, 2008.05456 ]

Aurora2| Early Science Project



Incorporating symmetries

Gauge field theories

© Feld configurations represented by
links U, (x) encoded as matrices

o e.g, for Quantum Chromodynamics,
SU(3) matrices (3x3 complex matrices M
with det[M] =1, M~1 = M)

© Group-valued fields live not on real line
but on compact manifolds

© Action Is Invariant under group transformations
on gauge fields

l.) Flows on compact, connected manifolds

2. Incorporate symmetries: gauge-equivariant flows



Incorporating symmetries

[MIT + Google DeepMind, arXiv:2002.02428]

Normalizing Flows on Tori and Spheres

Danilo Jimenez Rezende "' George Papamakarios “' Sébastien Racaniére "' Michael S. Albergo >

Gurtej Kanwar® Phiala E. Shanahan?® Kyle Cranmer >

Mobius

Arbrtrarily flexible
model architectures
designed for compact

and connected e

(spet) 6

manifolds

e.g., physics data on compact
domains OR robot arm
positions




Incorporating symmetries

Incorporating symmetries

© Not essential for correctness of ML-generated ensembles

o BUT: Likely important in training high-dimensional models
especially with high-dimensional symmetries

Flow defined from coupling layers will be invariant under symmetry it

|0 The prior distribution is symmetric

50 Each coupling layer is equivariant under the symmetry

.e., all transformations commute through application of the
coupling layer



Incorporating symmetries

Generative flow architecture

that I1s gauge-equivariant
Kanwar et al., Phys.Rev.Lett. 125 (2020)
Boyda et al.,, 2008.05456 (2020)




Application: U(1) field theory

First gauge theory application: U(I) field theory

Success: Critical slowing down s significantly reduced
Cost:  Up-front training of the model

Sampling of the topological charge Eﬁ}
Q = 5= arg(P(x)) o

=N O DN
| 1

| |
anfyan

< =

@

0 20000 40000 60000 30000 100000
Markov chain step

2Ds =1 6: B:6 [Kanwar et al., PRL 125 (2020)]



Application: U(1) field theory

First gauge theory application: U(I) field theory

Success: Critical slowing down s significantly reduced
Cost:  Up-front training of the model

Integrated autocorrelation time

10000 § --4-- HMC Lo
1000 4 Flow e '
. ] ® P
Tgt ; )
100 - '
; .
1 e .“
10 .. A
E o 4°
1 §eeessesedd ¥
1
a | | | | | | |
1 2 3 4 5 6 7

2D: L=16 b [Kanwar et al., PRL 125 (2020)]



Application: U(1) field theory

First gauge theory application: U(I) field theory

Su ﬁﬁﬁﬁﬁﬁ r\lﬁ:"':f"'\l f‘ll\ A 1V r<x AA A I\ 1~ N1 r<e;m 'p/"'\lt'\"'l 4 MAAI I/‘I\Id

C SUCCESS'

Proof-of-principle of efficient,
exact, ML algorithm for U(N) and
SU(N) LQFT

Significant work required to scale
to state-of-the-art

| | |
5 6 7

4
2D: L=16 b [Kanwar et al., PRL 125 (2020)]

| | |
1 2 3



Interdisciplinary applications

New bockfor Gl Ancient DNA illuminates

Molecular — EEfress

. z
genetics ana C
. f f;!
drug design I A
ot t
RESEARCH ARTICLE SUMMARY v f R
MACHINE LEARNING ‘ ‘ ’ ’

Boltzmann generators: Sampling > s bt
equilibrium states of many-body "
systems with deep learning M

Frank Noé*t, Simon Olsson*, Jonas Kéhler*, Hao Wu I |

3 Re -weight

H. Application: Multi-Link Robot Arm

As a concrete application of flows on tori, we consider
the problem of approximating the posterior density over
joint angles 6. ¢ of a 6-link 2D robot arm, given (soft)
constraints on the position of the tip of the arm. The possible
configurations of this arm are points in TS. The position 7,

ofajointk=1,..., 6 of the robot arm is given by
e =7E_1+ | lx cos ZGJ- , g sin Zﬁj ,
J<k i<k
wihava v — (0N Sa tha macitinm vwihara tha ases 0 afBovaAd

S —




Joint software effort

Our codes exploit and extend We run on
existing ML software frameworks e CPUs

e Tensorflow 1 e GPUs

e Pytorch TensorFlow e [PUs

o JAX V- :

-\ \ ‘
((A('(‘:"“g PYTSRCH Targeting exascale
hardware for

Active research projects into nuclear physics
training protocols: projects
e Pruning
® Hyperparameter searches AURORA | &=
e |nitialisation frameworks
®




Outlook

ML-accelerated algorithms have huge potential to enable
first-principles lattice QCD physics studies

Flow-based generation of QCD gauge fields at scale would

* Enable fast, embarrassingly parallel sampling
— high-statistics calculations

Emergence
* Allow parameter-space exploration (re-tune trained models) of complex
* Reduce storage challenges (store only model, not samples) structure In

nature

Implementations of flow models at scale (e.g, 4D, 643x128)
conceptually straightforward, but work needed

Backgrounds and
benchmarks for
searches for new
physics

% Training paradigms
% Model parallelism

¥ Exascale-ready implementations

¥




Outlook

ML-accelerated algorithms have huge potential to enable
first-principles lattice QCD physics studies

e fields at scale would

Implementations of flow MOE pp
conceptually straightforward, but wor¥

% Training paradigms
% Model parallelism

¥ Exascale-ready implementations

physics



Ab-initio Al Center

The NSF Al Institute for Artificial Intelligence
and Fundamental Interactions (IAIFI) <cepn

F Senior Investigators: 20 Physicists + 7 Al Experts
I Junior Investigators: ~20 PhD Students, =7 IAIFI Fellows in steady state

ﬁ rLe M EsAIL 2\ (s G ;:
Pulkit Agrawal Phiala Shanahan Demba Ba James Halverson
Lisa Barsotti Tracy Slatyer Edo Berger Brent Nelson
Isaac Chuang Marin Soljacic Cora Dvorkin

William Detmold Justin Solomon Daniel Eisenstein
Bill Freeman Washington Taylor Doug Finkbeiner
Philip Harris Max Tegmark Matthew Schwartz
Kerstin Perez Jesse Thaler Yaron Singer

Alexander Rakhlin Mike Williams Todd Zickler Taritree Wongjirad



Ab-initio Al Center

http://iaifi.org/

Machine learning that incorporates
first principles, best practices, and domain knowledge
from fundamental physics

Symmetries, conservation laws, scaling relations, limiting behaviors, locality, causality,
unitarity, gauge invariance, entropy, least action, factorization, unit tests,
exactness, systematic uncertainties, reproducibility, verifiability, ...


http://iaifi.org/
http://iaifi.org/

Ab-initio Al Center
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[ Al? for Theoretical Physics

Standard Model of Nuclear & Particle Physics
String Theory & Physical Mathematics
Astroparticle Physics

Automated Discovery of Physics Models

http://iaifi.org/

Physics
Theory

Physics
Experiment

Al2 for Experimental Physics

Particle Physics Experiments
Gravitational Wave Interferometry
(Multi-Messenger) Astrophysics

Al Foundations

Al? for Foundational Al

Symmetries & Invariance
Speeding up Control & Inference
Physics-Informed Architectures
Neural Networks Theory


http://iaifi.org/
http://iaifi.org/
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