Bayesian Model Mixing: Nuclear Physics Applications
Witold Nazarewicz Michigan State University/FRIB
Advances in Many-Body Theories: fram First Principles Methods to Quantum
Computing and Mgghine Learning, ECT*, November 2-6, 2020
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August 2020: 6 Al NSF institutes ( $20 million over five years). In 2021, additional 6 will
be selected (in partnership with private sector: Accenture, Amazon, Google and Intel)

Artificial Intelligence (Al) Research Institutes

— Texas A&M University-
Corpus Christi

— University of Washington

— Del Mar College

— National Center for
Atmospheric Research/
University Corporation
for Atmospheric Research

® Partners/Collaborators

USDA-NIFA Al Institute for Next
Generation Food Systems
& Primary: University of California, Davis
M Principal Organizations:
— University of California-Davis
— Cornell University
— University of California, Berkeley
— University of lllinois at Urbana-Champaign
— University of California Agriculture and
Natural Resources
® Partners/Collaborators
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NSF Al Institute for Foundations
of Machine Learning
 Primary: University of Texas at Austin
M Principal Organizations:

— University of Texas at Austin

— University of Washington

— Wichita State University

— Microsoft Research
® Partners/Collaborators

W. Nazarewicz,

NSF Al Institute for Artificial
Intelligence and Fundamental
Interactions

K Primary: Massachusetts Institute
of Technology
M Principal Organizations:
— Massachusetts Institute of
Technology
— Northeastern University
— Harvard University
— Tufts University
® Partners/Collaborators

Molecule Maker Lab Institute
(MMLI): NSF Al Institute for Molecular
Discovery, Synthetic Strategy, and
Manufacturing
k Primary: University of Illinois at

Urbana-Champaign
M Principal Organizations:

— University of lllinois at

Urbana-Champaign

— Pennsylvania State University

— Rochester Institute of Technology
® Partners/Collaborators
NSF Al Institute for Student-Al Teaming
% Primary: University of Colorado Boulder
M Principal Organizations:

— University of Colorado Boulder

— Colorado State University

— University of California, Santa Cruz

— University of California, Berkeley

— Brandeis University

— Worcester Polytechnic Institute

— Georgia Tech

— University of lllinois at

Urbana-Champaign

— University of Wisconsin-Madison

@ Partners/Collaborators

USDA-NIFA Al Institute for Future
: ultural Resili M

gr and
Sustainability (AIFARMS)
J Primary: University of lllinois at
Urbana-Champaign
W Principal Organizations:
— University of lllinois at Urbana-Champaign
— University of Chicago
— Michigan State University
— Tuskegee University
— Danforth Plant Science Center
©® Partners/Collaborators
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March 4-6, 2020, Thomaé Jefferson National Accelerator Facility

« Explore the ways in which A.l./ML can be used to advance research in
nuclear physics and in the design and operation of large-scale accelerator

facilities.
» Explore applications and research needed on several time frames, ranging

from immediate benefit.
* The results of the workshop have been summarized in a report* which

contains a reasonable assessment of current efforts.

*arXiv:2006.0542 and EPJA, in press
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https://www.jlab.org/conference/AI2020

Machine learning & low-energy nuclear theory: Why?

ML tools can help us to speed up the scientific process cycle and hence

facilitate discoveries
« Enabling fast emulation for big simulations
* Revealing the information content of measured observables w.r.t. theory
« |ldentifying crucial experimental data for better constraining theory
* Providing meaningful input to applications and planned measurements

ML tools can help us to reveal the structure of our models

« Parameter estimation with heterogeneous/multi-scale datasets
* Model reduction

ML tools can help us to provide predictive capability
» Theoretical results often involve ultraviolet and infrared extrapolations due
to Hilbert-space truncations
« Uncertainty quantification essential
« Theoretical models are often applied to entirely new nuclear systems and
conditions that are not accessible to experiment

This talk: focus on Bayesian Machine Learning (BML)

MICHIGAN STATE £~ - *
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Explosion of papers on machine learning in theoretical
nuclear structure/reactions
1992 Early neural network applications

Machine learning for missing data interpolations
Emulators with neural networks

* Neural networks in ab-initio theory

* Model calibration and sensitivity analysis
 EFT applications

* Network motif studies

* Phase transitions

« Bayesian emulators

« Bayesian neural network extrapolations
Bayesian uncertainty quantification

Bayesian model averaging

Bayesian modeling of neutron stars and EOS
Experimental design

2016-2020

Many presentations at the 2020 DNP meeting

MICHIGAN STATE £~ - *
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ABC of Bayesian inference

Bayes’ Theorem™:
likelihood prior

P(AB) = - (B]‘f(‘g; 4

evidence

» Posterior: the degree of belief in A after incorporating news that B is true.
Posterior probability is obtained from a prior probability, given evidence.

» Likelihood: measures the goodness of fit of a model to a sample of data for
given values of the parameters.

 Perior: initial degree of belief in A

» Evidence: probability of B; this factor is the same for all possible hypotheses
being considered.

*Thomas Bayes, An Essay towards solving a Problem in the Doctrine of Chances, 1763
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Emulation and parameter estimation

Probability distribution functions (PDFs)
Kejzlar et al., J. Phys. G (2000)

McDonnell et al. arXiv:2002.04151
Phys. Rev. Lett. 114, 122501 (2015) T | o ! oons
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Bivariate marginal estimates of the Posterior distributions of the model
posterior distribution for the 12-dimensional parameters for LDM variants = LDM is a
DFT UNEDF, parameterization. one-parameter model.
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Model calibration and model reduction
Kejzlar et al., J. Phys. G (2000) arXiv:2002.04151

SV-min: informed by masses, sizes, pairing gaps _ _ o
SV-E: informed by masses only Model reduction via principal
component analysis

correlation matrix
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Conclusion: effective number of degrees of
freedom is 4-6 for the 14-parameter Skyrme
functional. Long way to go!

Conclusion: correlations between parameters
and observables strongly depend on dataset
of fit-observables. Heterogenous datasets are
important!
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Optimization and machine learning training algorithms for fitting numerical physics
models, R. Bollapragada et al., arXiv:2010.05668 (2020)

The calibration of a computationally expensive nuclear physics model for which derivative
information is not available. The performance of optimization-based training algorithms when
dozens, rather than millions or more, of training data are available and when the expense of the
model places limitations on the number of concurrent model evaluations that can be performed.

Deterministic algorithms:

; T mengta i eany |+ Nelder-Mead, POUNDERS
500 KW-33, 27 (0) I . Y
Nelder-Mead-2~ (0) || Stochastic optimization:
POUNDERS-2* (0) _ _ _
+ Kiefer-Wolfowitz, Bandit,
% adaptive quasi-Newton
r—
S Ep
> Raiftr o8 AE,
VN
< 0.50
&
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Number of component function evaluations i s :
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BML and quantified extrapolations
Residual of an observable O:

60 (Z,N) = O%P(Z,N) — O™ (Z, N) small number!

00| < |O] Smooth part of the residual represents missing physics
(systematic effects)

Estimate of an observable O:
O=Y(Z,N) = O"™(Z,N) + 63*(Z, N)

Supervised learning: the nuclear modeling  emulator of the residual

and the choice of priors represent two 3,60 4028 52
aspects of the supervision S :
3,55 0—o0 Experiment A
g
Nuclear radii with BNN S0 P BB A
Utama, Chen, and Piekarewicz L
J. Phys. G 43 114002( 2016) aask?2t ]
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Residuals (based on data and theory) exhibit patterns

Mass extrapolations with BNN and GP
Neufcourt et al. Phys. Rev. C 98, 034318 (2018)

S, residuals for models of different fidelity
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*This information can be used to our advantage to

Improve model-based predictions!
|t can also be used to improve models themselves
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Bayesian approach

i + Kennedy and O'Hagan, J. Royal Stat.
residual Y; = d(il?i, 9) + 0¢€; Soc. B, 63425 (2001)
7N * Higdon et al., SIAM J. Sci. Comput.
(Z,N), 26448466 (2004)
discrepancy model (systematic error) statistical error

* " Prediction of unknown
p(y ‘y) = /p(y ‘yaeaa)p(eag‘y) dfdo observable y* given

l known data y

|
marginalization of the model parameters

Two statistical models used:

« (Gaussian process (3 parameters)

« Bayesian neural network with sigmoid function (30 neurons, 1 layer; 181
parameters)

100,000+ iterations of an ergodic Markov chain produced by the Metropolis-
Hastings algorithm

Some refinements added based on our knowledge of trends (e.g. magic
nuclei)

UM'NCP'VGEAD SSTA,TE &,@ W. Nazarewicz, ECT* Program, November 2020 12
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Mass extrapolations with Bayrsian machine learning

Neufcourt et al. Phys. Rev. C 98, 034318 (2018)

|  residual emulator -
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5 80 Training set <l outcome
-§ \ 3 . B e
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Naive nuclear theorist’'s approach to a
systematic (model) error estimate:

* Take a set of reasonable global models M,
hopefully based on different assumptions/formalism,
that satisfy basic theoretical requirements (here
comes the expert belief thing).

 Make predictions.

« Compute average and variation within this set

« Compute rms deviation from existing experimental
data.

Such a strategy can provide some clues...
= simple BMA

MICHIGAN STA - %
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Can we do better?

Bayesian model averaging (assumption: the
perfect model is included in the set)

p(y| My )m(Mp)

Moly) —
P S ey p(y|Me)m(My)

Prediction:
K

p(y*ly) =Y (" ly, Mi)p(Mi|y)

7 o

unknown data
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Used in many fields

Weather forecasti ng Using Bayesian Model Averaging to Calibrate Forecast Ensembles

POI Itl Cal SCI e n Ce Adrian E. Raftery; Tilmann Gneiting; Fadoua Balabdaoui; Michael Polakowski

T ra n S po rtatl O n Mon. Wea. Rev. (2005) 133 (5): 1155-1174.
. https://doi.org/10.1175/ ____
Nuclear physics

Bayesian Model Averaging: Theoretical
Developments and Practical Applications
Jacob M. Montgomery and Brendan Nyhan

Political Analysis
Vol. 18, No. 2 (Spring 2010), pp. 245-270 (26 pages)
Published By: Cambridge University Press

Bureau of Transportation Statistics

Topics and Geography Statistical Products and Data National Transportat]

Home » Archive PHYSICAL REVIEW LETTERS

Application of the Bayesian Model Averaging Highlights
in Predicting Motor Vehicle Crashes Staff

YAJIE ZOU
DOMINIQUE L
YUNLONG ZHA [Submitted on 3 Aug 2020 (v1), last revised 24 Aug 2020 (this version, v2)]

vicHUAN PEN{ Bayesian model averaging for analysis of lattice field theory results
William I. Jay, Ethan T. Neil

Recent Accepted Collections Authors REEGCES Sea

Statistics > Methodology

Neutron Drip Line in the Ca Region from
Bayesian Model Averaging

Léo Neufcourt, Yuchen Cao (E%""—E), Witold Nazarewicz, Erik Olsen, and Frederi
Viens

Phys. Rev. Lett. 122, 062502 — Published 14 February 2019

Statistical modeling is a key component in the extraction of physical results from lattice field theory calculations. Although
considered for the same lattice data. Model averaging, which amounts to a probability-weighted average over all model var
the perspective of Bayesian statistics, and give useful formulas and approximations for the particular case of least-squares
time separation for fitting a two-point correlation function) as a model selection problem, and study model averaging as a

More advanced: Bayesian model mixing
Assumption: exact model can be represented by an average over models:

y (z Zwk ) [ ().

MICHIGAN STATE é : *
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Bayesian model averaging: exploratory phase

Questions:

« How to choose models?

« How to chose the likelihood?

» How to select model weights?

« How to eliminate “redundant” models?

p(y| M) m (M)
S p(yIMe) (M)

p(Myily) =

MICHIGAN STATE é - %
IIIIIIIIII &0 W. Nazarewicz, ECT* Program, November 2020 17
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Quantified predictions with BMA

Probability of existence
peaﬁ(Za N) - = p( fn/Qn(Zv N) > O‘Sln/Qn)

Bayesian model averaging, see L. Neufcourt et al., Phys. Rev. Lett. 122, 062502 (2019)

537} | S47j | 55Tj | S6Tj | 57T | 58T | 5°Ti | €0Ti | 617i | 627j | 637 | 647} |65Tj | 667; | 677j | 687 WESEMM 70Ti

N
o

=
[o¢]

0.00 0.05 0.16 0.33 0.50 0.67 0.84 0.95 1.00
Calculated probability of existence

measured
= observed
Posterior average corrected model predicted dripline

30 32 34 36 38 40 42 44 46 48 50 52 54 56 58
Neutron number

Proton number
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Diagnostic tools: empirical coverage probability

So, (even Z)

reference
SLy4

SkP

SkM*
SV-min
UNEDFO0
UNEDF1
UNEDEF2
FRDM-2012
HFB-24

prior average
posterior average

0.0 0.2 0.4
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0.6 0.8 1.0

W. Nazarewicz,

The ECP is a simple metric for
assessing the quality of a
statistical model's UQ. The ECP
curve corresponds to the
proportion of the testing data
which actually falls inside the
predicted credibility intervals (Cls)
as a function of the credibility
level. For perfect uncertainty
quantification, one would obtain a
straight line. The matching of the
nominal value is overall
satisfactory, with an inflection
point at the middle of the curve:
the Cls are slightly too optimistic
at low credibility levels, and
slightly too conservative at (most
important) high credibility levels.

ECT* Program, November 2020 19



Quantified limits of the nuclear landscape
Neufcourt et al., Phys. Rev. C 101, 044307 (2020)
Predictions made with 11 global mass model and Bayesian model averaging

| -
g .........
. i
=
>
-
-
9S50
o
| -
o
gg —— measured  ------ B-stability
i : observed FRIB
885028 80 82 136 184 356

Neutron number

The FRIB production rates estimated with the LISE++ . We assumed the
experimental limit for the confirmation of existence of an isotope to be 1 event/2.5
days.
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Of particular importance for constraining theory are
the existence data for Z=28-30, Z=42-48, and Z=64-66

20 28 50 82
HEE EEN L[] []
55 ﬁ? Observed [ ] I....E:l.l::......=. HE B EEEEE B BN
~——— FRIB reach _:-::::'--'-- """HH'..:'

50 .l.II-I. HETEYN
O
g 45
S 40 0.67
c
c 35
8 drip
5 30 050
()] line
C 25 o
Q ] N
> HE B BN BE B
S 20 mm _caoe em
(—U :: I:Il.=l-l==
o 15 e

10:,1;1, i

5 H

“0” corresponds is the neutron number of the heaviest isotope for which an experimental separation energy value

is available
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Posterior distribution functions

HFB-24 FRDM-2012

| It et BMA(n) BMA(p) BMA(n+p)
b {
L BCPM SV-min
oy 1M SkP UNEDF2 . | UNEDFO
,5 J UNEDF1
=
QD ¢
7]
O
& g

7000 7500 ’ 8000 | 8500
Number of particle-bound nuclei

Typical situation: spread of model predictions
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Extrapolations and Model Interpretability

Disadvantage of deep learning methods is their “black box” nature: the
computationally-advanced methods by which these methods come up with the

convolved output is not readily understandable (arxiv.org/1904.08067)

THIS 15 YOUR MACHINE (EARNING SYSTERM?

YUP! YOU POUR THE DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN COLLECT

THE ANSLIERS ON THE OTHER SIDE.
WHAT IF THE ANSWERS ARE WRONG? )

JUST STIR THE PILE UNTIL
THEY START LOOKING RIGHT

Interpretability

Q Liner Regression

O

O Bayesian inference
O increases
O interpretability and

O Decision Trees O accu raCy!
O K-Nearest Neighbors O
O Random Forests O

Q Support Vector Machines O

O Recurrent Neural Network
O Convolutional Neural Networks

O Deep Neural Networks

https://xkcd.com/1838/

MICHIGAN STATE &% ,
UNIVERS I TY ‘oo W. Nazarewicz,

Accuracy

arxiv.org/1904.08067
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Ohio U.
Michigan State U.
Ohio State U.
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Bayesian Analysis of Nuclear Dynamics

Cybermfrastructure for Northwestern U.
Sustained Scientific Innovation https://bandframework.glthub.|o
Framework
~N Model Emulation
. > MOdd {M } > =) Emulation Samples
zhysms Problem List kik Computational Tool A
tatement _J
Observed
Physics Expert > Data Y D 1
~ " Prior R (Model Callbratuon W
Specification > »| Parameter & Discrepancy
—’ . .
Input Tool A = Priors T (9: Mk ) Computat/onal Tool B J Posterior Samples
A 4
@ Y Likelihood Function N
Likelihood ™ Model Mlxmg
=¥ Formulation > 7'[(Y I D; 0; Mk) . > Model & Predictive
" Input Tool B Computational Tool C Samples
] < 4 Potential
Expgrlmental Experiment List v
Design > _ 4 ]
Physics ExpertJ { Di}i Hypot.hetlcal . Experimental Choice &
Experimentation »| Potential Reduction in
| > Computational Tool D Uncertainty
[ - J
Case Study
l EE— Database
BANDITs
Case Study w
-~ Reference Tool 7

Input Tool CJ
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Experimental design
Beam time and compute cycles are expensive!

« Bayesian experimental design provides a framework in which experiments can be
designed using the best experimental and theoretical information available

» The utility function is designed to encode the goals of the experiment and the
constraints inherent in carrying it out.

* Once the utility function and the possible designs have been specified, the optimal
design is simply the scenario that maximizes the expected utility function over the
domain of possible designs.

All a1 + Bun ag1 — B {7} UxL

| 062 The expected utility of

> ' ‘,
@0 : 8 gl ' proton differential
= U | 1 cross section
= g A - g measurements. The
§ W . _ L circles show the

optimal design

_ @, | (E % _ kinematics for five

t measurement points at

(e[e)

, N s the same energy but
100 200 300 100 200 300 00 200 300 0 200 300 ° different angles.
Wiab [1\16\/} Wiab [MeV} Wiab [MQV} Wlab [Me\/]

Designing optimal experiments: An application to proton Compton scattering
J. A. Melendez et al., arXiv 2004.11307

UM'NCP'VGEAD SSTA,TE &,@ W. Nazarewicz, ECT* Program, November 2020 25
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MNIFESTO (in.g
Introduction andr Conclusion

Finding your posterior

2.1 Prior specification

2.2 Likelihood formulation

2.3 Together again: combining the prior and the likelihood and how to deal
with what youget . . . . . . . .. ..

Bayesian Inference for Multiple Models
3.1 Bayesian Inference in the Multi-Model Setting
3.2 Bayesian Model Averaging and the M—closed Assumption

. 3.3 Using Bayesian Model Mixing to Open the Model Space
Taps Maiti 3.4 A Motivating Example to Contrast BMA and BMM

A illustration of the proposed BAND framework
4.1 The toy model
4.2 Emulation
4.3 Calibration
4.4  Model mixing
4.4.1 Model Mixing via BMA
4.4.2  Model Mixing via Calibration
4.5 Experimental design questions
Filomena
Experimental Design
Case Study: The equation of state of strongly interacting matter
Case Study: Intelligent design of experiments for nuclear reactions

Case Study: Bayesian Model Averaging in nuclear mass models

Case Study: Bayesian Model Averaging for transport coefficients in
dynamical models of heavy-ion collisions

10 A glorious future
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Summary
« Need for Uncertainty Quantification in nuclear physics.

« Much progress in this direction in last few years but still difficult to assess
model uncertainty

« To solve many complex problems in the field and facilitate discoveries,
multidisciplinary efforts efforts are required involving scientists in nuclear
physics, statistics, computational science, and applied math.

« Bayesian Model Mixing provides uncertainty quantification for a nuclear-
physics prediction, based on best available nuclear physics knowledge
(both experimental and theoretical).

« The community needs to invest in relevant educational efforts.

o Virtual Nuclear TALENT course on Machine Learning and Data Analysis for NP,
ECT*, June 22-July 3, 2020.

o Information and Statistics in Nuclear Experiment and Theory (ISNET). Virtual,
Dec. 14-18, 2020, MSU, htips://indico.frib.msu.edu/event/21/

o The first Winter School on Applications of Al to Topics in NP. Virtual,11-15
January 2021 (CUA+UMD). The School will take place every 1-2 years and
that the location will rotate.

o TALENT 2021,...

UN TV RS T %ﬁ W. Nazarewicz, ECT* Program, November 2020 27



https://indico.frib.msu.edu/event/21/

Physics
Y. Cao
J. Dobaczewski
D. Furnstahl
S. Giuliani
M. Hjorth-Jensen
Y. Jaganathen
D. Lee
D. Phillips
P.-G. Reinhard

MICHIGAN STATE
UNIVERSITY

FRIB

Collaborators (current)

Statistics Applied math/CS

S. Bhattacharya J. O'Neal
V. Kejzlar S. Wild
T. Maiti

L. Neufcourt
M. Plumlee
M. Pratola
F. Viens

W. Nazarewicz, ECT* Program, November 2020 28





