Musings on the Intersimulatability of Quantum Fields

ECT* Workshop Advances in Many-Body Theories

Trento, Italy. November 2nd 2020

l can predict motion of celestial bodies!

Idea: a physically-inspired method accounting for spacetime curvature

THE ONE TOURS TO STATE OF BLACK IN THE

l can predict motion of celestial bodies!

Idea: a physically-inspired method accounting for spacetime curvature

Superiority will be declared through computational race of an "IR" observable! Ready, go

Calculating Nature Naturally

The ideas underlying a computational framework affect the ease with which its many units of nature can be choreographed in performance

> Opportunity to deeply align our calculations with Nature

Calculating Nature Naturally

The ideas underlying a computational framework affect the ease with which its many units of nature can be choreographed in performance

> Opportunity to deeply align our calculations with Nature

Historically rare for a dramatic restructuring of a computational framework to be embraced before scientifically-relevant supremacy is proven.

Calculating Nature Naturally

The ideas underlying a computational framework affect the ease with which its many units of nature can be choreographed in performance

Opportunity to deeply align our calculations with Nature

Historically rare for a dramatic restructuring of a computational framework to be embraced before scientifically-relevant supremacy is proven.

Whim Inevitable Progression of Research:

- ~100 years: Clear theory understanding of interactions suffering prohibitive costs to calculate emergent collective phenomena
- ~100 years: Overwhelming experimental evidence for distinct physical phenomena (entanglement)
- ~25 years: Strong theoretical evidence of complexity separation
- ~40 years: Shared vision developed across disciplines. Ability to see further.

Our Quantum World is "Mutually Intersimulatable"

Processing of quantum information

Allow efficient exploration of the interactions of subatomic degrees of freedom with controllable atomic-scale quantum architectures.

Quantum Simulation 101

State Preparation---Time Evolution---Measurement

Quantum Simulation 101

State Preparation---Time Evolution---Measurement

Nothing is Sacred ...except for experimentally verified laws of physics

Simulation D.o.F.

Hardware D.o.F.

What will the Hilbert space mean?

"basis"

Simulation D.o.F.

Hardware D.o.F.

What will the Hilbert space mean?

"basis"

Analog

- robust, reliable, and available historically earlier than their digital counterparts
- quantum system tuned to emulate relevant dynamics with natural time evolution
- "Computing through Simile"

Digital

- Flexible language
- Digitized errors

Codesign Combinations

- Digital-Analog
- Quantum-Classical

Ranguage is a filter capable of both distorting and sharpening the development of ideas

1111111

Codesign Question:

Where is the Line? Is there a Line?

Intellectual Phase Transition ~1995-1998

(1995) DiVincenzo:

- Two-bit gates are universal for quantum computation
- e.g., No fundamental 3-body operators necessary

(1995) Solovay-Kitaev Theorem:

Efficient generating gate set for digital QC

(1995) Shor Quantum Error Correction Code:

- Shor, Steane, Calderbank, Bennett, DiVincenzo, Smolin, Wootters...
- Quantum states can be protected from continuous errors!

(1996) Threshold Theorem:

- Knill-Laflamme, Gottesman, Aharonov, Ben-Or, Kitaev
- Below threshold, arbitrarily long QC possible

(1998) Gottesman-Knill Theorem:

- Stabilizer circuits classically simulated in polynomial time.
- Entanglement is not a sufficient criteria for complexity.

Entanglement (huh)What is it good for? Absolutely Something

Stabilizer

 $P|\psi_S\rangle = |\psi_S\rangle$

$$|S(|\psi\rangle)| = 2^n$$

Stabilizers succinctly described by *n* generators

 $\pm \sigma_1 \otimes \sigma_2 \otimes \cdots \otimes \sigma_n$ (1+2n)n bits

Stabilizer

 $P|\psi_S\rangle = |\psi_S\rangle$

 $|S(|\psi\rangle)| = 2^n$

Stabilizers succinctly described by *n* generators

 $\pm \sigma_1 \otimes \sigma_2 \otimes \cdots \otimes \sigma_n$ (1+2n)n bits

$UPU^{\dagger} = P'$ $U = \{H, S, CNOT, X, Y, Z\}$

Stabilizer

 $P|\psi_S\rangle = |\psi_S\rangle$

 $|S(|\psi\rangle)| = 2^n$

Stabilizers succinctly described by *n* generators

 $\pm \sigma_1 \otimes \sigma_2 \otimes \cdots \otimes \sigma_n$ (1+2n)n bits

$UPU^{\dagger} = P'$ $U = \{H, S, CNOT, X, Y, Z\}$

Not Universal: missing T gate

T-gate count meaningful expression of quantum simulation complexity

30

25

20

$$|\Psi\rangle = \sum_{i_1=0}^{1} \cdots \sum_{i_n=0}^{1} c_{i_1\cdots i_n} |i_1\rangle \otimes \cdots \otimes |i_n\rangle.$$

Schmidt Decomposition

 \mathcal{C}

$$|\Psi
angle = \sum_{lpha=1}^{\chi_A} \lambda_lpha |\Phi^{[A]}_lpha
angle \otimes |\Phi^{[B]}_lpha
angle$$

$$_{i_{1}i_{2}\cdots i_{n}} = \sum_{\alpha_{1},\cdots,\alpha_{n-1}} \Gamma^{[1]i_{1}}_{\alpha_{1}} \lambda^{[1]}_{\alpha_{1}} \Gamma^{[2]i_{2}}_{\alpha_{1}\alpha_{2}} \lambda^{[2]}_{\alpha_{2}} \Gamma^{[3]i_{3}}_{\alpha_{2}\alpha_{3}} \cdots \Gamma^{[n]i_{n}}_{\alpha_{n-1}}$$

$$\begin{array}{c}n \text{ qubit}\\\text{state}\end{array} \leftrightarrow \begin{array}{c}n \exp(E\chi)\\\text{parameters.}\end{array}$$

week ending 3 OCTOBER 2003 VOLUME 91. NUMBER 14 Efficient Classical Simulation of Slightly Entangled Quantum Computations Guifré Vidal

PHYSICAL REVIEW LETTERS

VOLUME 69, NUMBER 19 PHYSICAL REVIEW LETTERS

> Density Matrix Formulation for Quantum Renormalization Groups Steven R. White

9 NOVEMBER 1992

 $\langle E(x) \rangle$

Real-Time Dynamics in U(1) Lattice Gauge Theories with Tensor Networks. Pichler et. al. (2016)

Role of Quantum Fields

nature ~ quantum field

Aaronson (Sci. Am.)

Role of Quantum Fields

computation ~ quantum field quantum field

Vac-vac $\lambda \phi^4$ + classical sources (Jordan, Krovi, Lee, Preskill) 2018

Forrelation oracle separation (Raz, Tal)

Efficiently solved by classical computer

- Q Sim. efficient for local Hamiltonians (Feynman, Lloyd)
- Scattering efficient--massive $\lambda \phi^4$, Gross Neveu--precision, energy, particle #, coupling strength (Jordan, Lee, Preskill)
- BQP Hard: Vacuum-to-Vacuum in massive $\lambda \phi^4$ with classical sources. Map all of BQP. (Jordan, Krovi, Lee, Preskill)
- BQP Complete: universal for QC (Jordan, Krovi, Lee, Preskill) (2002, 2006)

Aaronson (Sci. Am.)

Forrelation oracle separation (Raz, Tal)

Efficiently solved by classical computer

- Q Sim. efficient for local Hamiltonians (Feynman, Lloyd)
- Scattering efficient--massive $\lambda \phi^4$, Gross Neveu--precision, energy, particle #, coupling strength (Jordan, Lee, Preskill)
- BQP Hard: Vacuum-to-Vacuum in massive $\lambda \phi^4$ with classical sources. Map all of BQP. (Jordan, Krovi, Lee, Preskill)
- BQP Complete: universal for QC (Jordan, Krovi, Lee, Preskill)

Role of Quantum Fields

computation ~ quantum field quantum field

Vac-vac $\lambda \phi^4$ + classical sources (Jordan, Krovi, Lee, Preskill) 2018

Holographic Codes Pastawski, Yoshida, Harlow, Preskill (2015)

Kitaev (1997) Analog Simulators

10.1126/sciadv.1701

Vacuum Field Entanglement

Systematically Localizable Circuits

classical calculations (e.g., snapshots of QCD vacuum) to inform <u>non-dynamical</u> state preparation on beyond-classical quantum devices

NK, Savage 10.1103/PhysRevA.102.012619

Distillable Entanglement = 0 UV In the Field $\neq 0$ IR

Hardware implementations are sensitive to UV and IR entanglement structures

Distillable Entanglement = 0 UV In the Field $\neq 0$ IR

Codesign Question:

Hardware-advantageous UV/IR entanglement structure?

Big Hilbert Spaces are Useful

- Commensurate with Physical System
- Quantum Error Correction
- Conserved Quantities (e.g., Chemistry)
- Symmetries, both local and global (e.g., Gauge Theory)

...but needs to be protected

- Software: surface codes with local symmetry
 - Logical qubit embedded into $\sim 10^4$ physical
- Hardware: braiding topological phases of matter
- Software: Holographic codes
- Codesign: Map gauss' law to hardware-conserved quantity
- Codesign: classical error mitigation, post selection, randomization, decoherence-free subspaces...

Atomic Quantum Simulation of U(N) and SU(N) Non-Abelian Lattice Gauge Theories

D. Banerjee¹, M. Bögli¹, M. Dalmonte², E. Rico^{2,3}, P. Stebler¹, U.-J. Wiese¹, and P. Zoller^{2,3} Quantum Simulations of Lattice Gauge Theories using Ultracold Atoms in Optical Lattices Erez Zohar J. Ignacio Cirac Benni Reznik

Real-time dynamics of lattice gauge theories with a few-qubit quantum computer

Esteban A. Martinez,^{1,*} Christine Muschik,^{2,3,*} Philipp Schindler,¹ Daniel Nigg,¹ Alexander Erhard,¹ Markus Heyl,^{2,4} Philipp Hauke,^{2,3} Marcello Dalmonte,^{2,3} Thomas Monz,¹ Peter Zoller,^{2,3} and Rainer Blatt^{1,2}

Quantum-classical computation of Schwinger model dynamics using quantum computers N. Klco,^{1,*} E. F. Dumitrescu,² A. J. McCaskey,³ T. D. Morris,⁴ R. C. Pooser,² M. Sanz,⁵ E. Solano,^{5,6} P. Lougovski,^{2,†} and M. J. Savage^{1,‡}

Towards analog quantum simulations of lattice gauge theories with trapped ions

Zohreh Davoudi,^{1,2} Mohammad Hafezi,^{3,4} Christopher Monroe,^{3,5} Guido Pagano,^{3,5,6} Alireza Seif,³ and Andrew Shaw¹

SU(2) non-Abelian gauge field theory in one dimension on digital quantum computers Natalie Klco, Jesse R. Stryker and Martin J. Savage¹

A scalable realization of local U(1) gauge invariance in cold atomic mixtures

I Alexander Mil^{1,*}, Torsten V. Zache², Apoorva Hegde¹, Andy Xia¹, Rohit P. Bhatt¹, Markus K. Oberthaler¹, Philipp Hauke^{1,2,3}, Jürgen Berges², Fred Jendrzejewski¹

Science 06 Mar 2020: Vol. 367, Issue 6482, pp. 1128-1130 DOI: 10.1126/science.aaz5312 Real-time chiral dynamics from a digital quantum simulation Dmitri E. Kharzeev^{1,2,3,*} and Yuta Kikuchi^{3,†}

Quantum simulation of the qubit-regularized O(3) sigma model

Alexander J. Buser

A resource efficient approach for quantum and classical simulations of gauge theories in particle physics

Optimal control for the quantum simulation of nuclear dynamics

Jan F. Haase^{1,2}, Luca Dellantonio^{1,2}, Alessio Celi^{3,4}, Danny Paulson^{1,2}, Angus Kan^{1,2}, Karl Jans and Christine A. Muschik^{1,2,6} Phys. Rev. A **101**, 062307 – Published 3 June 2020

Quantum computing for neutrino-nucleus scattering

Alessandro Roggero, Andy C. Y. Li, Joseph Carlson, Rajan Gupta, and Gabriel N. Perce Phys. Rev. D **101**, 074038 – Published 27 April 2020

Hardware-advantageous UV/IR entanglement structure?

> Gauge Theories for Protection?

> > The Line?

Simulations Inform Performance for NP Application?