

Un-nuclear Physics: conformal symmetry in nuclear reactions

H.-W. Hammer

Institut für Kernphysik, TU Darmstadt and Extreme Matter Institute EMMI

Bundesministerium für Bildung und Forschung Deutsche Forschungsgemeinschaft

DFG

ECT* Workshop, Nuclear Physics Meets Condensed Matter, July 19-21, 2021

Outline

- Universality, Schrödinger symmetry and the unitary limit
- Nuclear reactions with neutrons
- Summary and outlook

In collaboration with **Dam Thanh Son** (University of Chicago)

Reference: HWH, D.T. Son, arXiv:2103.12610

Universality

Universality: Physical systems with different short-distance behavior exhibit identical behavior at large distances

Universality

Universality: Physical systems with different short-distance behavior exhibit identical behavior at large distances

Condensed matter systems near critical point

 $\rho_{liq/gas}(T) - \rho_c \longrightarrow \pm A(T_c - T)^{\beta} \qquad M_0(T) \longrightarrow A'(T_c - T)^{\beta}$

liquid-gas system

Ferromagnet (one easy axis)

- Universality class determines critical exponents: $\beta = 0.325$
- Scale invariance (often conformal invariance)

- (Relativistic) Unparticle (Georgi, Phys. Rev. Lett. 98, 221601 (2007))
 - field in relativistic conformal field theory
 - hidden conformal symmetry sector beyond Standard model (weakly coupled)
 - no evidence at LHC so far
 (CMS Coll., EPJC 75, 235 (2015), PRD 93, 052011, JHEP 03, 061 (2017))
- (Non-relativistic) un-nucleus (HWH, Son, arXiv:2103.12610)
 - non-relativistic analog of Georgi's unparticle
 - field ψ in non-relativistic conformal field theory (cf. Nishida, Son, Phys. Rev. D **76**, 086004 (2007))
 - ${\scriptstyle \bullet \ } \psi$ characterized by mass M and scaling dimension Δ
 - ${\scriptstyle {\rm \bullet}} \,$ free field has $\Delta=3/2 \quad \Longleftrightarrow \quad$ mass dimension

 \Rightarrow lowest possible value (unitarity)

Schrödinger symmetry

- Non-relativistic conformal symmetry: Schrödinger symmetry
 - Galilei symmetry
 - space + time translations
 - rotations
 - Galilei boosts
 - Scale transformations

$$\boldsymbol{x} \to e^{\lambda} \boldsymbol{x}, \qquad t \to e^{2\lambda} t, \qquad \psi \to e^{-\lambda D} \psi$$

Special conformal transformations

$$x \to \frac{x}{1 + \lambda' t}, \qquad t \to \frac{t}{1 + \lambda' t}, \qquad \psi \to \psi' = \dots$$

- 12 Parameters
- Generators: H, P, L, K, D, C, satisfy Schrödinger algebra

Unitary limit

• Spin-1/2 Fermions with zero-range interactions ($|a| \gg r_e$)

Renormalization group equation:

$$\Lambda \frac{d}{d\Lambda} \tilde{g}_2 = \tilde{g}_2 (1 + \tilde{g}_2)$$

- Two fixed points:
 - $-\tilde{g}_2 = 0 \iff a = 0 \implies$ no interaction
 - $-\tilde{g}_2 = -1 \iff 1/a = 0 \implies$ unitary limit

→ conformal/Schrödinger symmetry

(Mehen, Stewart, Wise, PLB 474, 145 (2000); Nishida, Son, PRD 76, 086004 (2007); ...)

• Neutrons: $a \approx -18.6$ fm, $r_e \approx 2.8$ fm

 \Rightarrow neutrons are approximately conformal

• Two-point function of primary field operator \mathcal{U} ("un-nucleus")

$$G_{\mathcal{U}}(t, \mathbf{x}) = -i \langle T\mathcal{U}(t, \mathbf{x}) \mathcal{U}^{\dagger}(0, \mathbf{0}) \rangle = C \, \frac{\theta(t)}{(it)^{\Delta}} \exp\left(\frac{iMx^2}{2t}\right)$$

- Determined by symmetry up to overall constant C
- Two-point function in momentum space

$$G_{\mathcal{U}}(\omega, \boldsymbol{p}) = -C\left(\frac{2\pi}{M}\right)^{3/2} \Gamma\left(\frac{5}{2} - \Delta\right) \left(\frac{p^2}{2M} - \omega\right)^{\Delta - \frac{5}{2}}$$

- pole only for $\Delta=3/2$ (free field)
- cut for $\Delta>3/2$
- General un-nucleus (unparticle) does not behave like a particle

Imaginary part of propagator

$$\operatorname{Im} G_{\mathcal{U}}(\omega, \boldsymbol{p}) \sim \begin{cases} \delta\left(\omega - \frac{p^2}{2M}\right), & \Delta = \frac{3}{2}, \\ \left(\omega - \frac{p^2}{2M}\right)^{\Delta - \frac{5}{2}} \theta\left(\omega - \frac{p^2}{2M}\right), & \Delta > \frac{3}{2} \end{cases}$$

- Examples of un-nuclei
 - free field: $\mathcal{U}=\psi, \quad M=m_\psi, \quad \Delta=3/2$
 - N free fields: $\mathcal{U}=\psi_1\ldots\psi_N$, $M=Nm_\psi$, $\Delta=3N/2$
 - N interacting fields: $\mathcal{U} = \psi_1 \dots \psi_N$, $M = Nm_{\psi}$, $\Delta > 3/2$
- In our case: un-nucleus is strongly interacting multi-neutron state with

 $\underbrace{1/(ma^2)}_{0.1\dots n} \ll E_n^{cms} \ll \underbrace{1/(mr_e^2)}_{0.1\dots n}$ $0.1 \, \text{MeV}$ 5 MeV

- How to calculate scaling dimension Δ ?
 - (1) Δ can be obtained from field theory calculation
 - (2) Δ can be obtained from operator state correspondence

 Δ of primary operator = (Energy of state in HO)/ $\hbar\omega$

(Nishida, Son, Phys. Rev. D 76, 086004 (2007))

Ν	S	L	\mathcal{O}	Δ
2	0	0	$\psi_1\psi_2$	2
3	1/2	1	$\psi_1\psi_2 abla_j\psi_2$	4.27272
3	1/2	0	$\psi_1 abla_j \psi_2 abla_j \psi_2$	4.66622
4	0	0	$\psi_1\psi_2 abla_j\psi_1 abla_j\psi_2$	5.07(1)
5	1/2	1	• • •	7.6(1)

Reactions with neutrons

Application: High-energy nuclear reaction with final state neutrons

$$E_{\text{kin}} = (M_{A_1} + M_{A_2} - M_B - M_{\mathcal{U}})c^2 + \frac{p_{A_1}^2}{2M_{A_1}} + \frac{p_{A_2}^2}{2M_{A_2}} = E_B + E_{\mathcal{U}}$$

- Assumption: energy scale of primary reaction $\gg E_U \frac{p^2}{2M_U} = E_n^{cms}$
- Factorization: $\frac{d\sigma}{dE} \sim |\mathcal{M}_{primary}|^2 \operatorname{Im} G_{\mathcal{U}}(E_{\mathcal{U}}, \boldsymbol{p})$
- Reproduces Watson-Migdal treatment of FSI for 2n (Watson, Phys. Rev. 88, 1163 (1952); Migdal, Sov. Phys. JETP 1, 2 (1955))

Two ways to do experiments
(a) detect recoil particle B

$$\frac{d\sigma}{dE} \sim (E_0 - E_B)^{\Delta - 5/2}, \qquad E_0 = (1 + M_B / M_U)^{-1} E_{\rm kin}$$

(b) detect all final state particles including neutrons

$$\frac{d\sigma}{dE} \sim (E_n^{cms})^{\Delta - 5/2}$$

- Consistent with previous experiments for ${}^{3}H(\pi^{-},\gamma)3n$ (Miller et al., Nucl. Phys. A **343**, 347 (1980))
- Two few events in recent tetraneutron experiment: ${}^{4}\text{He}({}^{8}\text{He}, {}^{8}\text{Be})4n$ (Kisamori et al., Phys. Rev. Lett. **116**, 052501 (2016))

• Two-neutron spectrum for ${}^{6}\mathrm{He}(p,p\alpha)2n$ (Göbel et al., arXiv:2103.03224)

• Can be understood from dimer propagator ($\Delta = 2$)

$$G_d(E_{nn}, \mathbf{0}) \sim \frac{1}{1/a + i\sqrt{mE_{nn}}} \quad \Rightarrow \quad \operatorname{Im} G_d(E_{nn}, \mathbf{0}) \sim \frac{\sqrt{E_{nn}}}{(ma^2)^{-1} + E_{nn}}$$

Radiative muon/pion capture on the triton (AV18 + UIX)

Golak et al., PRC 98, 054001 (2018)

Golak et al., PRC 94, 054001 (2016)

Un-nucleus behavior prediction

$$\frac{d\Gamma}{dE} \sim (E_{3n})^{4.27272 - 5/2} \sim (E_{3n})^{1.77272}, \qquad 0.1 \text{ MeV} \ll E_{3n} \ll 5 \text{ MeV}$$

- New experiments in complete kinematics at RIBF/RIKEN
- Measurement of a_{nn} in ${}^{6}\text{He}(p,p\alpha)2n$ (T. Aumann et al., NP2012-SAMURAI55R1 (2020))
 - un-nucleus behavior prediction

$$\frac{d\rho}{dE} \sim (E_{2n})^{2-5/2} \sim (E_{2n})^{-0.5}, \qquad 0.1 \text{ MeV} \ll E_{2n} \ll 5 \text{ MeV}$$

• Search for tetraneutron resonances in ${}^{8}\text{He}(p,p\alpha)4n$

(S. Paschalis et al., NP1406-SAMURAI19R1 (2014))

un-nucleus behavior prediction

$$\frac{d\rho}{dE} \sim (E_{4n})^{5.07-5/2} \sim (E_{4n})^{2.57}, \qquad 0.1 \text{ MeV} \ll E_{4n} \ll 5 \text{ MeV}$$

- Universality in the unitary limit
 - \Rightarrow (approximate) conformal symmetry
 - \Rightarrow power law behavior of observables determined by Δ
- Application to high-energy nuclear reactions with neutrons
- Model-independent constraints on nuclear reactions
- Connection between reactions & properties of trapped particles

- Universality in the unitary limit
 - ⇒ (approximate) conformal symmetry
 - \Rightarrow power law behavior of observables determined by Δ
- Application to high-energy nuclear reactions with neutrons
- Model-independent constraints on nuclear reactions
- Connection between reactions & properties of trapped particles
- Other applications & extensions
 - Two-component Fermions in ultracold atom physics
 - Neutral charm mesons (Braaten, HWH, arXiv:2107.02831)
 - Systems with the Efimov effect?
 - \Rightarrow bosonic atoms, nucleons, α particles
 - \Rightarrow complex scaling dimensions
 - \Rightarrow scale symmetry broken