Rotations of odd-mass nuclei: magnetic monopoles and Berry phases

Nuclear Physics Meets Condensed Matter, virtual ECT* workshop, 21 July 2021

Thomas Papenbrock

The University of Tennessee & Oak Ridge National Laboratory

Work supported by the US Department of Energy

Collaborators

Toño Coello Pérez (Livermore) Hans Weidenmüller (Heidelberg)

Rotational excitations of atomic nuclei are well understood

• Odd-mass nuclei are usually described in the particle-rotor model, where a nucleon with spin \vec{K} is coupled to a rotor with spin \vec{R} to total spin $\vec{I} = \vec{R} + \vec{K}$

• Rotor Hamiltonian
$$H = \sum_{k=x', y', z'} \frac{R_k^2}{2C_k}$$

leads to particle-rotor Hamiltonian

$$H_{\rm rot} = \sum_{k=x', y', z'} \frac{(I_k - K_k)^2}{2C_k}$$

- Q: How can this be understood in a Lagrangian approach?
- Q: How can one systematically improve such a description?

Effective field theories for heavy nuclei

Vibrators: EFT based on linear (Wigner/Weyl) realization [Coello Pérez & TP 2015; 2016; Coello Pérez, Menéndez & Schwenk 2018]

Rotors: EFTs based on non-linear realization of SO(3)

Axially symmetric nuclei: [TP 2011; TP & Weidenmüller 2014; Coello Pérez & TP 2015; TP & Weidenmüller arXiv:2005.11865; Alnamlah, Coello Pérez, Phillips arXiv:2011.01083]

Triaxial deformation: [Chen, Kaiser, Meißner, Meng 2017; 2018; 2020]

Scales in heavy deformed nuclei

Effective Field Theory for Deformed Nuclei in a Nutshell 1

The EFT for deformed nuclei works at lowest resolution; expansion in small parameter $\frac{\xi}{\Lambda} \ll 1$

• In the EFT for deformed nuclei we deal with emergent symmetry breaking from $SO(3) \rightarrow SO(2)$, and the degrees of freedom (θ, ϕ) are combined in the radial unit vector

 $\vec{e}_r(\theta,\phi) = (\cos\phi\sin\theta, \sin\phi\sin\theta, \cos\theta)^T$

which parametrizes the coset $SO(3)/SO(2) \sim S^2$, i.e. the unit sphere.

Nambu-Goldstone bosons appear with derivatives only; simplest Lagrangian is that of a rotor L = C₀/2 (d/dt e_r(θ, φ))²
Hamiltonian H = J(J+1)/2C₀
EFT = expansion in powers of (d/dt e_r(θ, φ))²

[TP 2011; TP & Weidenmüller 2014, 2015; Coello Pérez & TP 2015, 2016; Chen, Kaiser, Meißner & Meng 2017, 2018, 2020; Alnamlah, Coello Pérez & Phillips 2020]

²³²Th as an example

A1: $\xi \approx 50$ keV

Q2: What is the breakdown scale Λ ? A2: (from Lepage plot) $\Lambda \approx 2400$ keV

→ Alnamlah, Coello Pérez, Phillips arXiv:2011.01083

Axially symmetric even-even nucleus

- Effective field theory: Nonlinear realization of SO(3)in case of spontaneous symmetry breaking down to axial SO(2) [Weinberg 1968, Callan, Coleman, Wess & Zumino 1969]: Degrees of freedom parameterize the unit sphere, i.e. the coset $SO(3)/SO(2) \sim S^2$
 - Traditional NP: We have an axially symmetric rotor, and its orientation is in direction of the angles (θ, ϕ) .
 - Berry: The body-fixed system is only defined up to rotations around the body-fixed symmetry (z') axis → gauge freedom

Effective Field Theory for Deformed Nuclei in a Nutshell 2

Nucleon (with spin \vec{K}) is a fast degrees of freedom; adiabatic motion generates gauge potentials

$$\vec{A}(\theta,\phi) = \left(\vec{e}_r(\theta,\phi) \cdot \vec{K}\right) \cot\theta \ \vec{e}_\phi(\theta,\phi)$$
$$\vec{A}(\theta,\phi) = g\vec{e}_r(\theta,\phi) \times \vec{K}$$

Corresponding "magnetic" fields (or Berry curvatures) are spherically symmetric monopoles

$$\vec{B}(\theta,\phi) = \vec{\nabla} \times \vec{A}(\theta,\phi) - i\vec{A}(\theta,\phi) \times \vec{A}(\theta,\phi)$$
$$= (g^2 - 1)(\vec{e}_r(\theta,\phi) \cdot \vec{K}) \vec{e}_r(\theta,\phi)$$

• The coupling to the rotor is via $\vec{A}(\theta,\phi) \cdot \frac{d}{dt} \vec{e}_r(\theta,\phi)$

• Lagrangian
$$L = \frac{C_0}{2} \left(\frac{d}{dt} \vec{e}_r(\theta, \phi) \right)^2 + \vec{A}(\theta, \phi) \cdot \frac{d}{dt} \vec{e}_r(\theta, \phi)$$

[TP & Weidenmüller Phys. Rev. C 102, 044324 (2020); arXiv:2005.11865]

Gauge freedom

In an axially-symmetric nucleus, the body-fixed coordinate system is arbitrary with respect to rotations around the symmetry axis. A gauge function $\gamma = \gamma(\theta, \phi)$ can be introduced that specifies the angle between different coordinate systems [Littlejohn & Reinsch, Rev. Mod. Phys. 1997]

Deformed nuclei

 $\vec{A}(\theta,\phi) = K_{z'} \cot \theta \ \vec{e}_{\phi}(\theta,\phi)$ Wigner $D^{I}_{MK_{z'}}(\phi,\theta,0)$ functions are solutions

Wu Yang monopole

$$\vec{A}(\theta,\phi) = K_{z'} \frac{\cos\theta \pm 1}{\sin\theta} \vec{e}_{\phi}(\theta,\phi)$$

Monopole harmonics are solutions

Gauge function:

 $\gamma(\theta,\phi)=\pm\phi$

→ T. Dray, "A unified treatment of Wigner D function, spin weighted spherical harmonics, and monopole harmonics," J. Math. Phys. 27, 781 (1986)] → Solutions are $D^{I}_{MK_{z}}(\phi, \theta, \gamma(\theta, \phi))$

Comments on rotational invariance

• The Abelian gauge potential is not invariant under rotations:

 $\vec{A}(\theta,\phi) = \left(\vec{e}_r(\theta,\phi)\cdot\vec{K}\right)\cot\theta \ \vec{e}_{\phi}(\theta,\phi)$

- After a rotation, a gauge transformation can be used to bring the potential back into its original form [Fierz 1944].
- (The non-Abelian gauge potential clearly is invariant: $\vec{A}(\theta, \phi) = g\vec{e}_r(\theta, \phi) \times \vec{K}$)

Impact on the gauge potentials on spectra

• The Abelian gauge potential is leading order; (yields unremarkable shift of rotational band)

$$E(I,K) = a [I(I + 1) - K^2]$$

- The non-Abelian gauge potential connects states that differ by one unit of *K*.
 - Visible impact in |K| = 1/2 bands (with substates $K = \pm 1/2$)

$$E(I,K) = a[I(I+1) - K^{2}] - 2ag\delta_{|K|}^{\frac{1}{2}}(-1)^{I+\frac{1}{2}}\left(I + \frac{1}{2}\right)$$

• Can also impact rotational bands that are close in energy and differ in their band-head spins by one unit of *K* [Kerman 1956]

²³⁹Pu as a neutron coupled to ²³⁸Pu:

finite K = 1/2 has Abelian and non-Abelian gauge potentials

Impact of non-Abelian gauge potential:

Coupling of rotational bands that differ by one unit in spin in ¹⁷⁸Os

Odd nucleon coupled to even-even rotor

 Effective field theory: Non-linear realization of broken SO(3): The dynamics of the odd nucleon is defined in the body-fixed system; it introduces a covariant derivative.

- Traditional NP: This is the "strong" coupling limit; Coriolis forces appear in the co-rotating bodyfixed system
- Berry: The nucleon is much faster than the rotor. The adiabatic approximation introduces gauge potentials

Gauge potentials, Berry phases, and Coriolis forces

Different interpretations of the velocity–dependent rotor–nucleon couplings

- **1. Coriolis forces** enter in rotating frames: Velocity-dependent forces are present in rotating nuclei [Bohr, Kerman, Mottelson, Nilsson 1950s].
- 2. Molecular Aharonov-Bohm effect: In rotating molecules, the nuclei are slow (and the electrons are fast), and the adiabatic decoupling (à la Born Oppenheimer) introduces Berry phases and gauge potentials [Mead & Truhlar 1979; Wilczek & Zee 1984; Kuratsuji & Iida 1985; Nazarewicz 1996].
- **3.** Covariant derivative: In presence of spontaneous symmetry breaking, the rotational symmetry is realized non-linearly for the rotor's degrees of freedom. This introduces a covariant derivative $iD \equiv i\partial_t + \mathbf{v} \cdot A$ [Weinberg 1968; Callan, Coleman, Wess & Zumino 1969].
- **4. Gauge invariance**: The ambiguities in defining a body-fixed frame, i.e. separating rotational and intrinsic degrees of freedom, imply a gauge invariance [Littlejohn & Reinsch 1997]. In our case: ambiguities regarding rotations around the z' axis.

[Leutwyler 1994; Roman & Soto 1999; Hofmann 1999; Chandrasekharan et al. 2008; Brauner 2010; ...]

Nuclear Physics meets Condensed Matter

1. The odd-mass deformed rotor is equivalent to a particle on a sphere subject to Abelian and non-Abelian gauge potentials that are of the monopole type. The same Lagrangian governs the Quantum Hall Effect, see [B. Estienne, S. M. Haaker, and K. Schoutens, Particles in non-Abelian gauge potentials: Landau problem and insertion of non-Abelian flux, New J. Phys. 13, 045012 (2011)]. Relation between angular momentum projection and

flux quanta $K_{z'} \leftrightarrow N_{\phi}$

2. The EFT for deformed nuclei [TP & Weidenmüller 2014] is an adaptation of a similar EFT for (anti)ferromagnets to the finite-system case [Leutwyler 1994; Roman & Soto 1999; Hofmann 1999; Chandrasekharan et al. 2008; Brauner 2010].

Falling Cat Problem

Q: How does a cat change its orientation, i.e. its angular momentum, without an external torque?

A: Changes in its shape (intrinsic degrees of freedom) induce a change in the external orientation.

Q: What does this has to do with odd-mass deformed nuclei?

A: In both cases, non-Abelian gauge potentials arise that describe the internal dynamics and couple it to the overall orientation. (In the nucleus, the odd nucleon causes the internal dynamics.)

\rightarrow Gauge theory of deformable bodies

Shapere & Wilzcek, Geometric Phases in Physics (1989); Littlejohn & Reinsch, Rev. Mod. Phys. (1997)

"Gauge theory of the falling cat," Montgomery (1993)

- 6. Some Specific Reorientations and Steering Strategies
- 6.1. A Cartoon. Probably the simplest path resulting in the cat flip is the one depicted below.

"Bend, twist, unbend" makes a closed loop in internal configuration space while leading to a rotation.

Summary

- Develop effective theory for emergent symmetry breaking guided by standard approach in spontaneous symmetry breaking
- Lowest-resolution EFT in nuclear physics
- Systematically improvable approach
 - Re-discovers venerable models
 - Gives uncertainty estimates
- Odd nuclei naturally introduce gauge potentials and Berry phases
 - Abelian and non-Abelian gauge potentials generate monopole fields for the rotor
 - The fast nucleon adiabatically follows the slow rotor; only its spin projection onto the rotor's symmetry axis matters
 - These relate odd-mass deformed nuclei to falling cats