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Rotational excitations of atomic nuclei are well understood  

• Odd-mass nuclei are usually described in the particle-rotor model, where a nucleon 
with spin 𝐾 is coupled to a rotor with spin 𝑅 to total spin 𝐼 = 𝑅 + 𝐾

• Rotor Hamiltonian

leads to particle-rotor Hamiltonian

• Q: How can this be understood in a Lagrangian approach?
• Q: How can one systematically improve such a description?
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Effective field theories for heavy nuclei

Fig.: Bertsch, Dean, Nazarewicz (2007)
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Rotors: E(4+)/E(2+) = 10/3
Vibrators: E(4+)/E(2+) = 2

Vibrators: EFT based on linear (Wigner/Weyl) realization [Coello Pérez & 
TP 2015; 2016; Coello Pérez, Menéndez & Schwenk 2018 ]

Rotors: EFTs based on non-linear realization of SO(3) 
Axially symmetric nuclei: [TP 2011; TP & Weidenmüller 2014; Coello Pérez & 
TP 2015; TP & Weidenmüller arXiv:2005.11865; Alnamlah, Coello Pérez, Phillips 
arXiv:2011.01083]

Triaxial deformation: [Chen, Kaiser, Meißner, Meng 2017; 2018; 2020] 4
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Scales in heavy deformed nuclei

𝜉 = the small energy scale of interest
Λ = breakdown scale
Ω = single-particle scale of fermion

EFT exploits the small ratio !"≪ 1



Effective Field Theory for Deformed Nuclei in a Nutshell 1
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The EFT for deformed nuclei works at lowest resolution; expansion in small parameter !
"
≪ 1

• In the EFT for deformed nuclei we deal with emergent symmetry breaking from 𝑆𝑂 3 → 𝑆𝑂 2 , 
and the degrees of freedom (𝜃, 𝜙) are combined in the radial unit vector 

𝑒# 𝜃, 𝜙 = cos𝜙 sin 𝜃 , sin𝜙 sin 𝜃 , cos 𝜃 $

which parametrizes the coset ⁄𝑆𝑂(3) 𝑆𝑂(2) ∼ 𝑆%, i.e. the unit sphere.

[TP 2011; TP & Weidenmüller 2014, 2015; Coello Pérez & TP 2015, 2016; 
Chen, Kaiser, Meißner & Meng 2017, 2018, 2020; Alnamlah, Coello Pérez & Phillips 2020]

• Nambu-Goldstone bosons appear with derivatives only; 

simplest Lagrangian is that of a rotor 𝐿 = &!
%

'
'(
𝑒# 𝜃, 𝜙

%

• Hamiltonian 𝐻 = )()+,)
%&!

• EFT = expansion in powers of  '
'(
𝑒# 𝜃, 𝜙

%
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LO:       𝐸!" = 𝑎𝐼 𝐼 + 1
NLO:    𝐸#!" = 𝑎𝐼 𝐼 + 1 + 𝑏 𝐼 𝐼 + 1 $

NNLO: 𝐸##!" = 𝑎𝐼 𝐼 + 1 + 𝑏 𝐼 𝐼 + 1 $ + 𝑐 𝐼 𝐼 + 1 %

232Th as an example
“Lepage plot,” à P. Lepage, arXiv:nucl-th/9706029

Two low-lying rotational 
bands in 232Th

Q1: What is the low-energy scale 𝜉?
A1: 𝜉 ≈ 50 keV
Q2: What is the breakdown scale Λ?
A2: (from Lepage plot) Λ ≈ 2400 keV à Alnamlah, Coello Pérez, Phillips arXiv:2011.010837
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Axially symmetric even-even nucleus

• Effective field theory: Nonlinear realization of 𝑆𝑂 3
in case of spontaneous symmetry breaking down to 
axial 𝑆𝑂(2) [Weinberg 1968, Callan, Coleman, Wess
& Zumino 1969]: Degrees of freedom parameterize 
the unit sphere, i.e. the coset ⁄𝑆𝑂(3) 𝑆𝑂(2) ∼ 𝑆#

• Traditional NP: We have an axially symmetric  rotor, 
and its orientation is in direction of the angles (𝜃, 𝜙). 

• Berry: The body-fixed system is only defined up to 
rotations around the body-fixed symmetry (z’) axis à
gauge freedom
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Nucleon (with spin 𝐾) is a fast degrees of freedom; adiabatic motion generates gauge potentials 

𝐴 𝜃, 𝜙 = 𝑒# 𝜃, 𝜙 ⋅ 𝐾 cot 𝜃 𝑒. 𝜃, 𝜙

𝐴 𝜃, 𝜙 = 𝑔𝑒# 𝜃, 𝜙 × 𝐾

Corresponding “magnetic” fields (or Berry curvatures) are spherically symmetric monopoles

𝐵 𝜃, 𝜙 = ∇×𝐴 𝜃, 𝜙 − 𝑖𝐴 𝜃, 𝜙 ×𝐴 𝜃, 𝜙
= (𝑔% − 1) 𝑒# 𝜃, 𝜙 ⋅ 𝐾 𝑒# 𝜃, 𝜙

[TP & Weidenmüller Phys. Rev. C 102, 044324 (2020); arXiv:2005.11865]

• The coupling to the rotor is via 𝐴 𝜃, 𝜙 ⋅ '
'(
𝑒# 𝜃, 𝜙

• Lagrangian 𝐿 = &!
%

'
'(
𝑒# 𝜃, 𝜙

%
+ 𝐴 𝜃, 𝜙 ⋅ '

'(
𝑒# 𝜃, 𝜙

𝐾
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Gauge freedom
In an axially-symmetric nucleus, the body-fixed coordinate system is arbitrary with respect to rotations around 
the symmetry axis. A gauge function 𝛾 = 𝛾(𝜃, 𝜙) can be introduced that specifies the angle between different 
coordinate systems [Littlejohn & Reinsch, Rev. Mod. Phys. 1997]
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Deformed nuclei
𝐴 𝜃, 𝜙 = 𝐾&' cot 𝜃 𝑒( 𝜃, 𝜙

Wigner 𝐷)*!"
+ 𝜙, 𝜃, 0 functions are solutions

Wu Yang monopole

𝐴 𝜃, 𝜙 = 𝐾&'
cos 𝜃 ± 1
sin 𝜃 𝑒( 𝜃, 𝜙

Monopole harmonics are solutions

Gauge function:
𝛾 𝜃, 𝜙 = ±𝜙

à T. Dray, “A unified treatment of Wigner D function, spin weighted spherical 
harmonics, and monopole harmonics,” J. Math. Phys. 27, 781 (1986)]
à Solutions are 𝐷)*!"

+ 𝜙, 𝜃, 𝛾(𝜃, 𝜙) 10



Comments on rotational invariance

• The Abelian gauge potential is not invariant under rotations:

𝐴 𝜃, 𝜙 = 𝑒# 𝜃, 𝜙 ⋅ 𝐾 cot 𝜃 𝑒. 𝜃, 𝜙

• After a rotation, a gauge transformation can be used to bring the potential back into its original 
form [Fierz 1944].

• (The non-Abelian gauge potential clearly is invariant: 𝐴 𝜃, 𝜙 = 𝑔𝑒# 𝜃, 𝜙 × 𝐾 )

11



Impact on the gauge potentials on spectra 

• The Abelian gauge potential is leading order; (yields unremarkable shift of rotational band)

𝐸(𝐼, 𝐾) = 𝑎 [𝐼 𝐼 + 1 − 𝐾%]

• The non-Abelian gauge potential connects states that differ by one unit of 𝐾.

• Visible impact in |𝐾| = 1/2 bands (with substates 𝐾 = ±1/2) 

𝐸 𝐼, 𝐾 = 𝑎 𝐼 𝐼 + 1 − 𝐾% − 2𝑎𝑔𝛿 /
"
# −1 0+"# 𝐼 + ,

%

• Can also impact rotational bands that are close in energy and differ in their band-head spins 
by one unit of 𝐾 [Kerman 1956]
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239Pu as a neutron coupled to 238Pu: 
finite 𝐾 = 1/2 has Abelian and non-Abelian gauge potentials 

Uncertainty estimates 
based on power counting

Leading order: Take 
moment of inertia (MOI) 
from 238Pu and adjust  
decoupling coefficient

Next-to-leading order: re-
adjust MOI for 239Pu 



Impact of non-Abelian gauge potential: 
Coupling of rotational bands that differ by one unit in spin in 178Os

(Uncertainty estimates 
for the EFT are about 7%) 

Malmskog et al 1971; 
Morgen et al 1973; 

Sodan et al 1975
14
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Odd nucleon coupled to even-even rotor
• Effective field theory: Non-linear realization of 

broken 𝑆𝑂(3): The dynamics of the odd nucleon 
is defined in the body-fixed system; it introduces a 
covariant derivative.          

• Traditional NP: This is the “strong” coupling limit; 
Coriolis forces appear in the co-rotating body-
fixed system

• Berry: The nucleon is much faster than the rotor. 
The adiabatic approximation introduces gauge 
potentials
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Gauge potentials, Berry phases, and Coriolis forces
Different interpretations of the velocity–dependent rotor–nucleon couplings

1. Coriolis forces enter in rotating frames: Velocity-dependent forces are present in rotating nuclei [Bohr, 
Kerman, Mottelson, Nilsson 1950s].

2. Molecular Aharonov-Bohm effect: In rotating molecules, the nuclei are slow (and the electrons are fast), 
and the adiabatic decoupling (à la Born Oppenheimer) introduces Berry phases and gauge potentials 
[Mead & Truhlar 1979; Wilczek & Zee 1984; Kuratsuji & Iida 1985; Nazarewicz 1996].

3. Covariant derivative: In presence of spontaneous symmetry breaking, the rotational symmetry is 
realized non-linearly for the rotor’s degrees of freedom. This introduces a covariant derivative 𝑖𝐷 ≡
𝑖𝜕, + 𝐯 ⋅ 𝐴 [Weinberg 1968; Callan, Coleman, Wess & Zumino 1969].

4. Gauge invariance: The ambiguities in defining a body-fixed frame, i.e. separating rotational and intrinsic 
degrees of freedom, imply a gauge invariance [Littlejohn & Reinsch 1997]. In our case: ambiguities 
regarding rotations around the z’ axis. 

[Leutwyler 1994; Roman & Soto 1999; Hofmann 1999; Chandrasekharan et al. 2008; Brauner 2010; … ] 16



Nuclear Physics meets Condensed Matter

1. The odd-mass deformed rotor is equivalent to a particle on a sphere subject 
to Abelian and non-Abelian gauge potentials that are of the monopole type.  
The same Lagrangian governs the Quantum Hall Effect, see [B. Estienne, S. M. Haaker, 
and K. Schoutens, Particles in non-Abelian gauge potentials: Landau problem and insertion of non-Abelian flux, 
New J. Phys. 13, 045012 (2011)]. Relation between angular momentum projection and 

flux quanta 𝐾FG↔𝑁H

2. The EFT for deformed nuclei [TP & Weidenmüller 2014] is an adaptation of a similar 
EFT for (anti)ferromagnets to the finite-system case [Leutwyler 1994; Roman & Soto 1999; 

Hofmann 1999; Chandrasekharan et al. 2008; Brauner 2010]. 
17



Falling Cat Problem

Q: How does a cat change its orientation, i.e. its angular momentum, without 
an external torque?

A: Changes in its shape (intrinsic degrees of freedom) induce a change in the 
external orientation. 

Q: What does this has to do with odd-mass deformed nuclei?

A: In both cases, non-Abelian gauge potentials arise that describe the internal 
dynamics and couple it to the overall orientation. (In the nucleus, the odd 
nucleon causes the internal dynamics.)  

à Gauge theory of deformable bodies

Shapere & Wilzcek, Geometric Phases in Physics (1989); Littlejohn & Reinsch, Rev. Mod. Phys.  (1997) 
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“Gauge theory of the falling cat,” Montgomery (1993) 

“Bend, twist, unbend” makes a closed loop in internal configuration space while leading to a rotation. 
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Summary

• Develop effective theory for emergent symmetry breaking guided by standard approach in 
spontaneous symmetry breaking

• Lowest-resolution EFT in nuclear physics

• Systematically improvable approach
– Re-discovers venerable models

– Gives uncertainty estimates

• Odd nuclei naturally introduce gauge potentials and Berry phases
– Abelian and non-Abelian gauge potentials generate monopole fields for the rotor

– The fast nucleon adiabatically follows the slow rotor; only its spin projection onto the rotor’s symmetry 
axis matters

– These relate odd-mass deformed nuclei to falling cats
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