

Quantum Hall fluids of atoms and of light

Iacopo Carusotto

INO-CNR BEC Center and Università di Trento, Italy

<u>Fractional Quantum Hall effect</u>

Thin and extremely clean 2D electron gas

Measure longitudinal and transverse resisitivity:

- Textbook Hall effect: $R_T \sim B$
- Expt \rightarrow Intriguing features @ rational $1/v = B/B_0$
 - $R_{\rm L}$ drops to zero
 - \mathbf{R}_{H} shows plateaux

Effect benefits (!!!) of (moderate) disorder, which sets extension of plateaux

- Integer $v \rightarrow single$ electron physics, signature of band topology
- Fractional $v \rightarrow$ strongly correlated fluid topological phase of matter (non-)Abelian anyonic excitations topological quantum computing

This talk: Is this physics specific to electrons? What about FQH in quantum fluids of light?

Nobel prizes: Von Klitzing (1985); Laughlin, Stoermer, Tsui (1998)

In a nutshell:

- <u>How to make neutral particles such as photons</u> <u>to feel a Lorentz force?</u>
- <u>Can this be used to study topological effects ?</u>
- What about integer/fractional quantum Hall states ?
- <u>What about nonlinear optics and laser operation</u> <u>in topological models?</u>
- <u>Technological applications</u>
- <u>Can one generate quantum many-body states ?</u>
- What physics to be probed with them? E.g. anyons?

Linear Topological Optics Part 1

Nonlinear Topological Optics Part 2

Quantum nonlinear Topological Optics Part 3

Topological photonics

Tomoki Ozawa

Interdisciplinary Theoretical and Mathematical Sciences Program (iTHEMS), RIKEN, Wako, Saitama 351-0198, Japan, Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles, CP 231, Campus Plaine, B-1050 Brussels, Belgium, and INO-CNR BEC Center and Dipartimento di Fisica, Università di Trento, I-38123 Povo, Italy

Hannah M. Price

School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom and INO-CNR BEC Center and Dipartimento di Fisica, Università di Trento, I-38123 Povo, Italy

Alberto Amo

Université de Lille, CNRS, UMR 8523—PhLAM—Laboratoire de Physique des Lasers Atomes et Molécules, F-59000 Lille, France

Nathan Goldman

Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles, CP 231, Campus Plaine, B-1050 Brussels, Belgium

Mohammad Hafezi

Joint Quantum Institute, Institute for Research in Electronics and Applied Physics, Department of Electrical and Computer Engineering, Department of Physics, University of Maryland, College Park, Maryland 20742, USA

Ling Lu

Institute of Physics, Chinese Academy of Sciences/Beijing National Laboratory for Condensed Matter Physics, Beijing 100190, China and Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China

Mikael C. Rechtsman

Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA

David Schuster

The James Franck Institute and Department of Physics, University of Chicago, Chicago, Illinois 60637, USA

Jonathan Simon

The James Franck Institute and Department of Physics, University of Chicago, Chicago, Illinois 60637, USA

Oded Zilberberg

Institute for Theoretical Physics, ETH Zurich, 8093 Zurich, Switzerland

lacopo Carusotto INO-CNR BEC Center and Dipartimento di Fisica, Università di Trento, I-38123 Povo, Italy

(published 25 March 2019)

<u>Part 1:</u> <u>a brief journey through</u> <u>the early days of</u>

topological photonics

Prehistory: Synthetic gauge fields for atoms

<u>2008-9 – The birth of topological photonics (th)</u>

PRL 100, 013904 (2008) PHYSICAL REVIEW LETTERS

week ending 11 JANUARY 2008

Possible Realization of Directional Optical Waveguides in Photonic Crystals with Broken Time-Reversal Symmetry

F. D. M. Haldane and S. Raghu*

Department of Physics, Princeton University, Princeton, New Jersey 08544-0708, USA (Received 23 March 2005; revised manuscript received 30 May 2007; published 10 January 2008)

We show how, in principle, to construct analogs of quantum Hall edge states in "photonic crystals" made with nonreciprocal (Faraday-effect) media. These form "one-way waveguides" that allow electromagnetic energy to flow in one direction only.

DOI: 10.1103/PhysRevLett.100.013904

PACS numbers: 42.70.Qs, 03.65.Vf

- IQH depends on geometrical properties of Bloch band states
 - > Berry connection $\mathcal{A}_{n}^{a} = \frac{\langle u_{n} | \boldsymbol{B}_{0}(\omega_{n}) | \nabla_{k}^{a} u_{n} \rangle \langle \nabla_{k}^{a} u_{n} | \boldsymbol{B}_{0}(\omega_{n}) | u_{n} \rangle}{2i \langle u_{n} | \boldsymbol{B}_{0}(\omega_{n}) | u_{n} \rangle}$
 - > Berry curvature $\mathcal{F}_{n}^{ab}(\mathbf{k}) = \nabla_{k}^{a} \mathcal{A}_{n}^{b} \nabla_{k}^{b} \mathcal{A}_{n}^{a}$
 - > Integer-valued Chern number $C_n^{(1)}(\Sigma) = \frac{1}{2\pi} \iint_{\Sigma} dk_a \wedge dk_b \mathcal{F}_n^{ab}.$
 - > C_n fixes transverse conductivity σ_H and number of edge states (bulk-boundary correspondence)
- Haldane-Raghu \rightarrow IQH not specific to fermionic electrons
 - Complex band structures can be realized for photons in periodic structures, aka photonic crystals
 - ✓ Need to break T-reversal to have $C_n \neq 0$ → include magnetic elements
 - $\sim \sigma_{\rm H}$ not directly defined, but chiral edge states give one-way waveguide on the edge

<u>2008-9 – The birth of topological photonics (expt)</u>

Magneto-optical photonic crystals for μ -waves

- T-reversal broken by magnetic elements
- Band wih non-trivial Chern number: \rightarrow chiral edge states within gaps

Experiment:

- measure transmission from antenna to receiver
- only in one direction \rightarrow unidirectional propagation
- immune to back-scattering by defects \rightarrow topologically protected

4.0

Z Wang, Y Chong, JD Joannopoulos, M Soljačić, *Observation of unidirectional backscattering-immune topological* electromagnetic states, Nature 461, 772 (2009)

2013 - Harper-Hofstadter & Haldane models for visible photons

Goal:

- avoid the need of magnetic materials
- scale up to visible light where optical nonlinearities and quantum emitters easily accessible

Many proposals: geometrical phases (Umucalilar), opto-mechanics (Rabl), ...

2D lattice of coupled cavities with tunneling phase

$$H = \sum_{i} \hbar \omega_{\circ} \hat{a}_{i}^{\dagger} \hat{a}_{i} - \hbar J \sum_{\langle i,j \rangle} \hat{a}_{i}^{\dagger} \hat{a}_{j} e^{i\phi_{ij}} + \sum_{i} \left[\hbar F_{i}(t) \, \hat{a}_{i}^{\dagger} + \text{h.c.} \right]$$

Experiments along these lines:

- Floquet bands in helically deformed honeycomb waveguide lattices → Rechtsman/Szameit/Segev
- silicon ring cavities \rightarrow Hafezi/Taylor (JQI)
- electronic circuits with lumped elements \rightarrow J. Simon (Chicago)
- strained honeycomb lattice for polaritons \rightarrow A. Amo/J.Bloch (C2N)

Rechtsman, Plotnik, et al., Nature 496, 196 (2013)

Hafezi et al., Nat. Phot. 7, 1001 (2013)

2013 - Imaging chiral edge states

2D square lattice of coupled resonators at large magnetic flux

Eigenstates organize in bulk Hofstadter bands

- Berry connection in k-space: $A_{n,k} = i \langle u_{n,k} | \nabla_k u_{n,k} \rangle$
- Berry curvature

Chern number

$$\mathbf{\mathfrak{P}} \qquad \mathbf{\Omega}_{n}(\mathbf{k}) = i(\langle \partial_{k_{x}} u_{n,\mathbf{k}} | \partial_{k_{y}} u_{n,\mathbf{k}} \rangle - \langle \partial_{k_{y}} u_{n,\mathbf{k}} \rangle$$
$$C_{n} = \frac{1}{2\pi} \int_{\mathrm{BZ}} d^{2}k \mathbf{\Omega}_{n}(k_{x},k_{y}),$$

Bulk-edge correspondance:

- $A_{n,k}$ has non-trivial Chern number $C_n \neq 0$ \rightarrow chiral edge states within gaps
 - > unidirectional propagation
 - > (almost) immune to scattering by defects

Hafezi et al.,Nat. Phot. 7, 1001 (2013) Similar images for Haifa expt

How to observe geometrical & topological properties of bulk ?

Semiclass. EoM: $\hbar \dot{\mathbf{k}}_c(t) = e\mathbf{E}$, $\hbar \dot{\mathbf{r}}_c(t) = \nabla_{\mathbf{k}} \mathcal{E}_{n,\mathbf{k}} - e\mathbf{E} \times \mathbf{\Omega}_n(\mathbf{k})$

Berry curvature \rightarrow sort of k-space magnetic field Lateral displacement analogous to Lorentz force

Depending on band filling: Anomalous vs. Integer Quantum Hall effect

Several experiments with atoms

An old concept, see e.g. review in Xiao-Chang-Niu, RMP 82, 1959 (2010). First proposals for atoms: Dudarev, IC et al. PRL 92, 153005 (2004) Price-Cooper, PRA 83, 033620 (2012)

2016 - Experimental mapping of Berry curvature

Optical mesh lattice:

- Pair of optical fibers coupled at beam splitter
- Pulse arrival time \rightarrow space-time position
- Periodic temporal modulation of Φ(m)=±φ 1D Floquet band structure θ(Q,φ), φ considered as 2nd dim Berry curvature

$$\Omega_{j}^{arphi,Q}=rac{\partial}{\partialarphi}\langle\psi_{j}|irac{\partial}{\partial Q}|\psi_{j}
angle-rac{\partial}{\partial Q}\langle\psi_{j}|irac{\partial}{\partialarphi}|\psi_{j}
angle$$

- Geometrical charge pumping if φ adiabatically varied
- Look at lateral displacement along *n* at all times *m* \rightarrow reconstruct Berry curvature $\Omega_i^{(\varphi,Q)}$ in whole FBZ

Cold atoms \rightarrow state tomography (Fläschner et al., Science '16) Polaritons \rightarrow anomalous Hall effect via spin-orbit (Gianfrate et al. Nature '20)

θ/π 0

0 -1

φ/π

Wimmer, Price, IC, Peschel, Nat. Phys. 2017

Part 2:

Topological lasing

<u>a.k.a. non-equilibrium BEC in</u> <u>chiral edge state</u>

<u>2017 – Topological lasing</u>

Gap

20

What happens if one adds gain to a topological model?

St. Jean, et al., Nat. Phot. '17 <u>System:</u> 1D SSH array of micropillar cavities for exciton-polaritons under incoherent pump

Bahari et al., Science 2017 System: 2D photonic crystal slab, amplification by QWs, magnetic field to break T

Bandres et al., Science 2018 System: array of Si-based ring resonators with optically pumped III-V amplifier layer. Tai-Ji shape to break inversion symmetry

Early theoretical work by Conti & Pilozzi, Solnyshkov, Nalitov & Malpuech. Other expts: Khajavikhan's group, PRL 2018...

Topological lasing in 2D models: basic features

Topologically trivial system:

- pumping many cavities gives complicate many-mode emission
- hard to preserve coherence and fully exploit gain when gain distributed on many sites to increase emission power
- serious technological problem for high-power semiconductor laser applications

Topological system:

- 2D Topolaser operation into edge mode when edge only is pumped (WEG)
 - Chiral propagation immune to disorder
 - Efficient single mode lasing with high slope efficiency

Seems to work, but even more exciting physics...

Figures from M. Secli's Msc thesis @ UniTN, 2017 and Secli *et al.*, Phys. Rev. Research 2019 Same results in Harari et al., Science 2018; See also work by Pilozzi-Conti and by Kovanis-Longhi

Coherence of topolaser emission (I)

Important fundamental & applied questions:

- What are ultimate limitations of coherence?
- How robust is coherence to disorder?
- What advantage over standard lasers?

Laser operation in spatially extended system:

- Linearized theory not enough, crucial role of nonlinearities
- Kardar-Parisi-Zhang model of non-equilibrium stat mech (Altman/Diehl, Gladilin/Wouters, Canet/Minguzzi)
- spatio-temporal scaling properties of phase-coherence

Topological laser:

- One-dimensional edge state gives effective 1D dynamics
- KPZ spatio-temporal scaling of g⁽¹⁾(x,t)
- Periodic boundary conditions around device

I. Amelio and IC, PRX 10, 041060 (2020)

Teaser: experimental evidence of KPZ using polariton quasi-condensates @ C2N Fontaine *et al.*, to appear soon!

Coherence of topolaser emission (II)

Coherence of laser emission:

- Physical system necessarily finite
 → crossover from stretched-exp to exp decay
 at long times for given size N_x
- crossover from Schawlow-Townes τ_c to KPZ at long times for increasing size N_x
- imposes fundamental limitation to τ_c
- physics similar to 1D chains, but...

I. Amelio and IC, *Theory of the coherence of topological lasers*, PRX 10, 041060 (2020)

<u>Coherence of topolaser emission (III)</u>

In the presence of static disorder:

- Non-Topological: weak disorder suppresses temporal coherence (mode fragmentation, multimode emission, localization, etc.)
- Topological: robust spatio-temporal coherence, chiral propagation travels through/around defects without backscattering.

Technologically important in (semiconductor) laser technology:

Allows to phase lock many individual lasers \rightarrow strong intensity and high coherence <u>Next steps:</u> extend theory to Class-B lasers. Control instabilities and maintain single-mode emission <u>Fundamental question</u> \rightarrow effect of convective/absolute instability on coherence properties

I. Amelio and IC, Theory of the coherence of topological lasers, PRX 10, 041060 (2020)

Part 3:

Strongly interacting photon fluids

from photon blockade to Mott insulator states and quantum Hall fluids

<u>Photon blockade</u>

Driven-dissipative Bose-Hubbard model:

$$H_0 = \sum_i \hbar \omega_\circ \hat{b}_i^\dagger \hat{b}_i - \hbar J \sum_{\langle i,j \rangle} \hat{b}_i^\dagger \hat{b}_j + \hbar rac{U}{2} \sum_i \hat{n}_i (\hat{n}_i - 1) + \sum_i F_i(t) \hat{b}_i + h.c.$$

- Array of single-mode cavities at ω_0 , tunnel coupling J, losses γ
- Polariton interactions: on-site interaction U due to optical nonlinearity
- If $U >> \gamma \& J$, coherent pump resonant with $0 \rightarrow 1$, but not with $1 \rightarrow 2$.

Photon blockade \rightarrow <u>Effectively impenetrable photons</u> Opposite regime than non-interacting photons of Maxwell's eqs.

Single-cavity blockade observed in many platforms since the 2000s, present challenge \rightarrow scale up to many-cavity geometry

 $J = |2\rangle$ $\omega_{L} \approx \omega_{o}$ $|1\rangle$ $\omega_{L} \approx \omega_{o}$ $|0\rangle$

Fluid of spin excitations in lattice of Rydberg atoms. (Broways, Lukin,...)

<u> Photon blockade + synthetic gauge field = FQHE for light</u>

Bose-Hubbard model:

$$H_0 = \sum_i \hbar \omega_\circ \hat{b}_i^\dagger \hat{b}_i - \hbar J \sum_{\langle i,j \rangle} \hat{b}_i^\dagger \hat{b}_j \underbrace{e^{i\varphi_{ij}}}_{\bullet} + \hbar \frac{U}{2} \sum_i \hat{n}_i (\hat{n}_i - 1)$$

gauge field gives phase in hopping terms

with usual coherent drive and dissipation \rightarrow look for non-equil. steady state

Transmission spectra:

- peaks correspond to many-body states
- comparison with eigenstates of H_0
- good overlap with Laughlin wf (with PBC)

$$egin{aligned} \psi_l(z_1,...,z_N) &= \mathcal{N}_L F_{ ext{CM}}^{(l)}(Z) e^{-\pi lpha \sum_i y_i^2} \ & imes \ \prod_{i < j}^N \left(artheta \left[rac{1}{2} \ rac{1}{2}
ight] \left(rac{z_i - z_j}{L} \Big| i
ight)
ight)^2 \end{aligned}$$

• no need for adiabatic following, etc....

Continuous space FQH physics

Single cylindrical cavity. No need for cavity array

same form
Coriolis
$$F_c = -2m\Omega \times v$$

Lorentz $F_L = e \vee x B$

Photon gas injected by Laguerre-Gauss pump with finite orbital angular momentum Strong repuls. interact., e.g. layer of Rydberg atoms Resonant peak in transmission due to Laughlin state: $\psi(z_1,...,z_N) = e^{-\sum_i |z_i|^2/2} \prod_{i \le i} (z_i - z_j)^2$

Experiment @ Chicago

A far smarter design

Non-planar ring cavity:

- Parallel transport \rightarrow synthetic B
- Landau levels for photons observed

Crucial advantages:

- Narrow frequency range relevant
- Integrated with Rydberg-EIT reinforced nonlinearities

Polariton blockade on lowest (0,0) mode

• Equivalent to $\Delta_{\text{Laughlin}} > \gamma$

Easiest strategy for Laughlin

- Coherent pumping \rightarrow multi-photon peaks to few-body states
- Laughlin state \rightarrow quantum correlations between orbital modes (Umucalilar-Wouters-IC, PRA 2014)

Breaking news: 2-photon Laughlin state realized (Clark et al., Nature 2020)

> Figures from J. Simon's group @ U. Chicago Schine et al., Nature 2016; Jia et al. 1705.07475

Experiment @ Chicago (II)

PHYSICAL REVIEW A 89, 023803 (2014)

Probing few-particle Laughlin states of photons via correlation measurements

R. O. Umucalılar^{*} and M. Wouters TQC, Universiteit Antwerpen, Universiteitsplein 1, B-2610 Antwerpen, Belgium

I. Carusotto INO-CNR BEC Center and Dipartimento di Fisica, Università di Trento, I-38123 Povo, Italy (Received 29 November 2013; published 5 February 2014)

We propose methods to create and observe Laughlin-like states of photons in a strongly nonlinear optical cavity. Such states of strongly interacting photons can be prepared by pumping the cavity with a Laguerre-Gauss beam, which has a well-defined orbital angular momentum per photon. The Laughlin-like states appear as sharp resonances in the particle-number-resolved transmission spectrum. Power spectrum and second-order correlation function measurements yield unambiguous signatures of these few-particle strongly correlated states.

Quantum optical tricks to highlight generation of two-photon Laughlin state

<u>Challenge:</u> scale up to larger number of particles

Coherent pump scheme scales very bad with N for topological states

L. W. Clark, N. Schine, C. Baum, N. Jia, J. Simon, Observation of Laughlin states made of light, Nature 2020

What about large FQH fluids?

Coherent pump:

- Able to selectively generate few-body states
- Limited by (exponentially) decreasing matrix element for larger systems

Frequency-dependent incoherent pump:

- Interactions \rightarrow many-body gap Δ
- Edge excitations not gapped. Hard-wall confinement gives small δ
- Non-Markovianity blocks excitation to higher states

Calculations only possible for small systems:

- Large overlap with Laughlin states
- Excitations localized mostly on edge

Open question: what are ultimate limitations of this pumping method?

- R. O. Umucalilar and IC, Generation and spectroscopic signatures of a fractional quantum Hall liquid of photons in an incoherently pumped optical cavity, PRA 2017
- R. O. Umucalilar, J. Simon, IC, Autonomous stabilization of photonic Laughlin states through angular momentum potentials, arXiv:2105.06751

Part 3.2:

How to probe the dynamics of FQH states?

How to observe anyonic statistics of quasi-hole excitations?

<u>Conservative dynamics in circuit-OED experiments</u> interplay of strong interactions & synthetic magnetic field

<u>Ring-shaped array of qubits in a superconductor-based circuit-QED platform</u>

- Transmon qubit: two-level system \rightarrow Impenetrable microwave photons
- Time-modulation of couplings \rightarrow synthetic gauge field
- > Independently initialize sites
- Follow unitary evolution until bosons lost (microwave photons \rightarrow long lifetime)
- Monitor site occupation in time

Roushan et al., Nat. Phys. 2016

"Many"-body effect:

two-photon state \rightarrow opposite rotation compared to one-photon state (similar to cold-atom experiment in Greiner's lab: Tai et al., Nature 2017)

Observing anyonic statistics via time-of-flight measurements

Braiding phase \rightarrow Berry phase when two quasi-holes are moved around each other $\varphi_{\rm B}(R) = i \oint_R \langle \Psi(\theta) | \partial_\theta | \Psi(\theta) \rangle d\theta$

Braiding operation can be generated by rotations, so braiding phase related to L_z

$$\varphi_{\rm B}(R) = \frac{1}{\hbar} \oint_R \langle \Psi(\theta) | L_z | \Psi(\theta) \rangle d\theta = \frac{2\pi}{\hbar} \langle L_z \rangle$$

Self-similar expansion of lowest-Landau-levels $\rightarrow L_z$ can be measured in time-of-flight via size of the expanding cloud

$$\langle r^2 \rangle_{\rm tof} = \frac{1}{N} \left(\frac{\hbar t}{\sqrt{2}M l_B} \right)^2 \left(\frac{\langle L_z \rangle}{\hbar} + N \right) = \left(\frac{\hbar t}{2M l_B^2} \right)^2 \langle r^2 \rangle$$

Can be applied to both cold atoms or to fluids of light looking at far-field emission pattern Difficulty \rightarrow small angular momentum difference of QH compared to total L_z

Umucalilar, Macaluso et al., Observing anyonic statistics via time-of-flight measurements, PRL (2018)

Quasi-Hole structure vs. anyon statistics (I)

• Compare (two) single quasi-holes and overlapping pair of quasi-holes:

$$\frac{\varphi_{\rm br}}{2\pi} = \frac{1}{\hbar} \left[\langle \hat{L}_z \rangle_{|\eta_1| = |\eta_2|} - \langle \hat{L}_z \rangle_{\eta_1 = \eta_2} \right].$$

• Relates to difference of density profiles:

$$\frac{\varphi_{\rm br}}{2\pi} = \frac{N}{2l_B^2} \left[\langle r^2 \rangle_{|\eta_1| = |\eta_2|} - \langle r^2 \rangle_{\eta_1 = \eta_2} \right],$$

- Incompressibility \rightarrow external region unaffected
- Statistics inferred from local density difference around QH core, i.e. variance of density depletion
- Insensitive to spurious excitation of (ungapped) edge states
- Numerical calculation using Moore-Read wavefunction allows to distinguish fusion channels of even/odd total particle number

E. Macaluso, T. Comparin, L. Mazza, IC, Fusion channels of non-Abelian anyons from angular-momentum and density-profile measurements, PRL 2019

Quasi-Hole structure vs. anyon statistics (II)

Discrete lattice model \rightarrow Harper-Hofstadter-Bose-Hubbard

Ground state using Tree-Tensor-Network ansatz

- experimentally realistic "large" system
- open boundary conditions with harmonic trap
- repulsive potentials to pin quasi-holes

Apply discretized version of braiding phase formula

$$\frac{\varphi_{\rm br}}{2\pi} = \frac{N}{2l_B^2} \left[\langle r^2 \rangle_{|\eta_1| = |\eta_2|} - \langle r^2 \rangle_{\eta_1 = \eta_2} \right],$$

to physical ground state wavefunction

 \rightarrow Accurate reconstruction of anyonic statistics

→ Experiment accessible in state-of-the-art circuit-QED systems

E. Macaluso et al., Charge and statistics of lattice quasiholes from density measurements: a Tree Tensor Network study, Phys. Rev. Research (2020)

Optical signatures of the anyonic braiding phase

- LG pump to create and maintain quantum Hall liquid
- Localized repulsive potentials in trap:

 → create quasi-hole excitation in quantum Hall liquid
 → position of holes adiabatically braided in space
- Anyonic statistics of quasi-hole: many-body Berry phase ϕ_{Br} when positions swapped during braiding
- Berry phase extracted from shift of transmission resonance while repulsive potential moved with period T_{rot} along circle

 $\phi_{\rm Br} \equiv (\Delta \omega_{\rm oo} - \Delta \omega_{\rm o}) T_{\rm rot} [2 \pi]$

R. O. Umucalilar and IC, Anyonic braiding phases in a rotating strongly correlated photon gas, arXiv:1210.3070

<u>Quantum mechanics of anyons (I) – single particle</u>

Laughlin wavefunction of Fractional Quantum Hall:

- quasi-holes \rightarrow no E_{kin} , no independent life
- dressed by heavy impurity \rightarrow anyonic molecule
- full-fledged mechanical degree of freedom

Born-Oppenheimer approx:

- Heavy impurity→ slow Degree of Freedom
- Light FQH particles \rightarrow fast DoF

$$H_{\text{eff}} = \frac{\left[-i\nabla_{\mathbf{R}} - (Q - \nu q) \mathbf{A}(\mathbf{R})\right]^2}{2\mathcal{M}}$$

- Mass $M \rightarrow M$ (impurity) + QH dragging effect
- Impurity & FQH particles feel (Synth-)B, so synth-Charge $\rightarrow Q$ (impurity) – v q (QH)

Cyclotron orbit \rightarrow fractional charge and BO mass correction

<u>Quantum mechanics of anyons (II) – two particles</u>

Each particle \rightarrow attached flux \mathcal{A}

 $\mathcal{A}_{j}(\mathbf{R}) = \mathcal{A}_{q}(\mathbf{R}_{j}) + \mathcal{A}_{\text{stat},j}(\mathbf{R})$ $= \frac{\mathcal{B}_{q}}{2}\mathbf{u}_{z} \times \mathbf{R}_{j} + (-1)^{j} \frac{\nu}{R_{\text{rel}}^{2}} \mathbf{u}_{z} \times \mathbf{R}_{\text{rel}}$

Relative motion:

- inter-particle potential
- statistical A_{rel} due to attached flux

$$H_{\rm rel} = \frac{\left[\mathbf{P}_{\rm rel} + \mathbf{A}_{\rm rel}(\mathbf{R}_{\rm rel})\right]^2}{2\mathcal{M}_{\rm rel}} + V_{\rm ii}(R_{\rm rel})$$

2-body scattering: interference of direct & exchange

- fringes in differential cross section
- fringe position depends on attached flux, i.e. fractional statistics

Measures fractional statistics

Scheme works best with polar molecules (heavy + long-range interactions) in atoms (light FQH gas) Work in progress: extend to fluids of light, e.g. Rydberg polaritons

A. Muñoz de las Heras, E. Macaluso, IC, Phys. Rev. X 10, 041058 (2020)

Conclusions and perspectives

<u>1-body magnetic and topological effects for photons in synthetic gauge field:</u>

- Unidirectional and topologically protected edge states (2009-)
- Geometrical properties of bulk & anomalous current (2016-)

<u>Topological lasing (archetypal example of nonlinear topo-optics phenomenon):</u>

- Experimental observation of laser operation into topological edge mode (2017-)
- Theoretical studies of semiclassical field profile and dynamical stability (2018-)
- Coherence properties of topolaser: KPZ physics and robustness against disorder (2020-)
 - \rightarrow a unique platform to study quantum effects in non-equilibrium statistical mechanics

First steps in strongly correlated many-body physics:

- Photon blockade in many platforms: CQED with atoms and solids, circuit-QED, Rydberg atoms,...
- Mott-insulator \rightarrow recent experimental observation @ Chicago
- Chain of strongly interacting bosons in synthetic gauge field → recent experimental observation @ GoogleLabs!
- Few-body Laughlin states \rightarrow first annoucement by J. Simon, Apr. '19

 \rightarrow challenge: scale up to macroscopic fluids: exotic properties of fractional quantum Hall fluids !

If you wish to know more...

REVIEWS OF MODERN PHYSICS, VOLUME 85, JANUARY-MARCH 2013

Quantum fluids of light

lacopo Carusotto*

INO-CNR BEC Center and Dipartimento di Fisica, Università di Trento, I-38123 Povo, Italy

Cristiano Ciuti[†]

nature

physics

Laboratoire Matériaux et Phénomènes Qui Bâtiment Condorcet, 10 rue Alice Domon (IC, C. Ciuti, RMP **85**, 299 (2013)

Come and visit us in Trento, we are open! (of course following COVID rules)

https://doi.org/10.1038/s41567-020-0815-y

FOCUS | REVIEW ARTICLE

Photonic materials in circuit quantum electrodynamics

lacopo Carusotto¹, Andrew A. Houck $^{\odot 2}$, Alicia J. Kollár^{3,4}, Pedram Roushan⁵, David I. Schuster^{6,7} and Jonathan Simon $^{\odot 6,7}$

Review article on Nature Physics (2020)

REVIEWS OF MODERN PHYSICS, VOLUME 91

Topological photonics

Review article arXiv:1802.04173 by Ozawa, Price, Amo, Goldman, Hafezi, Lu, Rechtsman, Schuster, Simon, Zilberberg, <u>IC</u>, RMP **91**, 015006 (2019)

SOCIETÀ ITALIANA DI FISICA

INTERNATIONAL SCHOOL OF PHYSICS "ENRICO FERMI"

UNDER THE SPONSORSHIP OF ISTITUTO NAZIONALE DI FISICA NUCLEARE - ISTITUTO NAZIONALE DI GEOFISICA E VULCANOLOGIA MUSEO STORICO DELLA FISICA E CENTRO STUDI E RICERCHE "ENRICO FERMI" ISTITUTO NAZIONALE DI RICERCA METROLOGICA - EPL - GRAN SASSO SCIENCE INSTITUTE UNIVERSITÀ DEGLI STUDI DI ROMA "TOR VERGATA" UNIVERLECCO - CAMERA DI COMMERCIO DI LECCO

SUMMER COURSES 2020 2021 2022

VILLA MONASTERO - VARENNA, LAKE COMO

Course 208Course 209Course 209Course 209PUNDATIONS OF COSMIC RAY ASTROPHYSICS 2 5-0 June2-8 JulyInterdemainDirect3-8 July1-16 JulyPilleInterdemainInterdemain***********************************			
Topics: Topics: • • Lighenergy Cosmic Rays and gamma-radiation • Haricle acceleration is blasms and PWNe • Ourating Raying Light extensions of Cosmic Rays respective in trubulent fields and Cosmic Ray transport • Disaids of Quantum Market Gight • Ourating Raying Correlated open quantum gates • Disaids of Quantum Rays estimation • Phenomenological models of galactic Source Rays Transport • Disaids of Cosmic Rays with matter and radiation • Phenomenological models of galactic Source Rays responses • Disterior Cosmic Rays with matter and radiation • Disaids of Cosmic Rays with matter and radiation • Disters of Cosmic Rays resultation • Disters of Cosmic Rays resolution • Disters of Cosmic Rays resolution • Disters of Cosmic Rays resolution • Disters of Cosmic Rays resolution • Disters of Cosmic Rays resolution • Disters of Cosmic Rays resolution • Disters of Cosmic Rays resolution • Disters of Cosmic Rays resolution • Disters of Cosmic Rays resolution • Disters of Cosmic Rays resolution • Disters of Cosmic Rays resolution • Disters of Cosmic Rays resolution • Disters of Cosmic Rays resolution • Disters of Cosmic Rays resolution • Disters of Cosmic Rays resolution • Disters of Cosmic Rays resolution • Disters of Cosmic Rays resolution • Disters of Cosmic Rays resolution • Disters of Cosmic Rays resolution • Disters of Cosmic Rays resolution </th <th>Course 208 FOUNDATIONS OF COSMIC RAY ASTROPHYSICS 25 - 30 June</th> <th>Course 209 QUANTUM FLUIDS OF LIGHT AND MATTER - QFLM2020 3 – 8 July</th> <th>Course 210 MULTIMODAL AND NANOSCALE OPTICAL MICROSCOPY 11 – 16 July</th>	Course 208 FOUNDATIONS OF COSMIC RAY ASTROPHYSICS 25 - 30 June	Course 209 QUANTUM FLUIDS OF LIGHT AND MATTER - QFLM2020 3 – 8 July	Course 210 MULTIMODAL AND NANOSCALE OPTICAL MICROSCOPY 11 – 16 July
	Topics: • High-energy Cosmic Rays and gamma-radiation • Particle acceleration in Pulsars and PWNe • Charged particles in turbulent fields and Cosmic Ray transport • Cosmic Ray propagation in extragalactic space and secondary messengers • Particle acceleration at shocks and in turbulence • Phenomenological models of galactic Cosmic Ray transport • Star Formation Regions and Cosmic Rays • The microphysics of Cosmic Ray instabilities • Interactions of Cosmic Rays with matter and radiation • Magnetic reconnection • Future facilities in high-energy astrophysics • Basics of Cosmic Ray Feedback Lecturers: FEIX AHARONIAN – DIAS, Dublin (Ireland) ELENA AMATO – INAF, Arcetri Osservatorio, Firenze (Italy) PASQUALE BLASI – GSSI and INFN, L'Aquila (Italy) DENES BONCIOLI – Università and INFN, L'Aquila (Italy) DENES BONCIOLI – Université Montpellier and CNRS/IN2P3, Montpellier (France) ALEXANDRE MARCONTH – Université Montpellier and CNRS/IN2P3, Montpellier (France) DAREXANDRE DARIO SERPICO – LAPTh, Université Grenoble Alpes, Annecy (France) LORENZO SIRON – Columbia University, New York (USA) EMAM DE ONA WILHELMI – ICE, Barcelona (Spain) and DESY, Hamburg (Germany) ELLEN ZWEIBEL – University of Wisconsin-Madison (USA)	Topics: • Basics of quantum gases • Quantum fluids of light • Topological matter • Topological photonics • Strongly correlated open quantum systems • Quantum trajectories and quantum jumps in quantum optics • Quantum optics with Rydberg atoms • Circuit QED • Optics of strongly correlated electron gases • History of nonlinear optics Lecturers: HANNES BERNEN – University of Chicago (USA) JAcqueLINE BLOCH – Centre de Nanosciences et de Nanotechnologies, Palaiseau (France) HOWARD CARMICHAEL – University of Auckland (New Zealand) STEVEN GREVN – Yale University, New Haven (USA) + Shruti Puri Atac IMAMOGUU – ETH Zurich (Switzerland) LING LUGIATO – Universita' dell'Insubria, Como (Italy) TOMOKI OZAWA – RIKEN, Saitama (Japan) NICOLAS REGNAULT – Laboratoire de Physique, Ecole Normale Superieure Paris, CNRS (France) and Princeton University (USA) LETICIA TARRUELL – ICFO, The Institute of Photonic Sciences, Castelldefels, Barcelona (Spain) Directors: ALBERTO BRAMATI – Laboratoire Kastler Brossel, Paris (France) IACOPO CARUSOTTO – INO-CNR BEC Center, Povo TN (Italy) CRISTIANO CUTT – Laboratoire Matériaux et Phénomènes Quantiques, Université de Paris (France)	Topics: • Multimodal optical microscopy • Fluorescence microscopy • Non linear optical microscopy • Label free • Mueller matrix optical microscopy • Polarization microscopy (FRAP FLIM FRET FCS) • Lifetime fluorescence • Super resolution • Phototoxicity and photodamage • Optical and magnetic trapping • Image formation • Inverse problems • Bioimage analysis Lecturers: SARA ABRAHAMSSON – Jack Baskin School of Engineering UC Santa Cruz (USA) FRANCISCO BALZAROTTI – Max Planck Institute for Biophysical Chemistry, Göttingen (Germany) SOFHE BRASSELET – Institut Fresnel Domaine Universitaire St Jerome, Marseille (France) JULIEN COLOMBELLI – Institute for Research in Biomedicine - IRB Barcelona, Barcelona, Barcelona Institute of Science and Technology, Barcelona (Spain) ELISA FERANDO-MAY – University of Konstanz (Germany) LURA FINZI – Emory College of Arts and Sciences, Atlanta (USA) LUCA LANZANO – Nanoscopy ITT, Erzelli Labs, Genova (Italy) DAVDE MAZA – Experime