

Probing the helium dimer and trimer with fast, intense lasers

Doerte Blume and Qingze Guan Center for Quantum Research and Technology (CQRT) Department of Physics and Astronomy The University of Oklahoma

Supported by the NSF.

In collaboration with Reinhard Doerner's group at Frankfurt U. (lead Maksim Kunitski) Two-body (real-time dynamics)

Three-body (three-body Efimov state; no real-time dynamics) In collaboration with Reinhard Doerner's group at Frankfurt University (lead Maksim Kunitski)

Size-selected nozzle beam expansion experiments and theory

Two Exciting Fields

One may hope: Two good things combined should be better than two good things separated...

But you may object: Aren't we just gonna blow everything up?

Yes, we will... and it's fun and useful...

Works in This Direction

Pump-Probe Spectroscopy of Two-Body Correlations in Ultracold Gases

Christiane P. Koch^{1,*} and Ronnie Kosloff²

Works in This Direction

PHYSICAL REVIEW LETTERS 124, 253201 (2020)

Ultrafast Creation of Overlapping Rydberg Electrons in an Atomic BEC and Mott-Insulator Lattice

ARTICLE

DOI: 10.1038/s41467-018-04556-3

Quantum simulation of ultrafast (trapped ultracold atoms

OPEN

M. Mizoguchi,^{1,2} Y. Zhang,^{1,3} M. Kunimi,¹ A. Tanaka,¹ S. Takeda,^{1,2,†} N. Takei^{(0,1,2,‡} V. Bharti^{(0,1} K. Koyasu,^{1,2} T. Kishimoto^{(0,4} D. Jaksch^{(0,5,6} A. Glaetzle,^{5,6} M. Kiffner^{(0,5,6} G. Masella^{(0,7} G. Pupillo,⁷ M. Weidemüller^{(0,8,9} and K. Ohmori^{1,2,*}

Ruwan Senaratne¹, Shankari V. Rajagopal¹, Toshihiko Shimasak¹¹, June e potti , Kurt M. Fujiwara', Ke Zachary A. Geiger¹ & David M. Weld¹

Found Phys (2014) 44:813-81 DOI 10.1007/s10701-014-977.

Optically Enginee and Ultracold Sys

Kenji Ohmori

(ultra)cold atoms: fast intense Hopefully, will be able to transfer ideas and insights to nuclear physics and condensed matter physics...!

Has been fruitful approach for Efimov physics --- can knowledge transfer be extended to dynamic sector???

ICATIONS

Some Background on the Helium System

• Dimer:

$$1 \text{ K} = 8.6 \times 10^{-5} \text{ eV}$$

- ⁴He-⁴He bound state energy $E_{dimer} = -1.7 \text{mK}$.
- No J > 0 bound states.
- Two-body s-wave scattering length $a_s = 171a_0$.
- Two-body effective range $r_{eff} = 15.2a_0$ (alternatively, twobody van der Waals length $r_{vdW} = 5.1a_0$).
- Trimer:
 - Two J = 0 bound states with $E_{trimer} = -131.8 \text{mK}$ and -2.65 mK.
 - No J > 0 bound states.

• Binding energy of liquid helium is E/N = -7K.

How to Prepare Helium Dimers and Trimers?

Grating serves as mass selector (N times atom mass m). For fixed order n, larger N yields smaller angle θ .

Observation of Helium Dimer: ⁴He₂

Fragile helium dimer forms in beam and can be isolated. Schoellkopf and Toennies, Science 266, 1345 (1994)

Nozzle temperature and pressure can be adjusted. Kornilov, Toennies, 10.1051/epn:2007003

Pump-Probe Spectroscopy of Isolated Helium Dimers

Pump pulse: pulse length of 311 fs and intensity of 1.3×10^{14} W/cm². Probe pulse rips off two electrons (Coulomb explosion). What do we expect to happen as a function of the delay time???

Alignment $(cos^2\theta)$ for N₂

 $\langle \cos^2\theta \rangle = \frac{1}{2}$ $\langle \cos^2\theta \rangle > \frac{1}{2}$ $\langle \cos^2\theta \rangle < \frac{1}{2}$

Figure from

Torres et al., PRA

72, 023420 (2005)

Alignment signal of 1/3 = spherically symmetric. "Rotational revivals" require particular phase relation: $E_I = B_0 J (J+1) - D_0 J^2 (J+1)^2.$

Pulse length 50 ps Intensity 2.5 $\times 10^{12} W/cm^2$ Adiabatic regime.

"Kicking" the ⁴He Dimer

For the first time: Intense laser used to probe dynamics at single-atom level using universal, scattering length dominated initial state.

"Rotationless" ⁴He dimer can be aligned! It's the continuum portion of the wave packet...

Pattern due to interference between J=0 and J=2 channels: Measurement of spatially and time dependent relative phase between these two partial wave channels. State tomography!

Many outstanding challenges:

Resonances as in ultracold atoms? Need longer pulses...

Time-dependent modulation of interaction strength? Dynamics of (Efimov) trimers and larger excited states? Need to populate them first...

Pioneering theory predictions for ⁴He₂: Friedrich et al., Collect. Czech. Chem. Commun. 63, 1089 (1998); Nielsen et al., PRL 82, 2844 (1999); Bruch, JCP 112, 9773 (2000).

Some Background on the Helium System

• Dimer:

$$1 \text{ K} = 8.6 \times 10^{-5} \text{ eV}$$

- ⁴He-⁴He bound state energy $E_{dimer} = -1.7 \text{mK}$.
- No J > 0 bound states.
- Two-body s-wave scattering length $a_s = 171a_0$.
- Two-body effective range $r_{eff} = 15.2a_0$ (alternatively, twobody van der Waals length $r_{vdW} = 5.1a_0$).
- Trimer:
 - Two J = 0 bound states with $E_{trimer} = -131.8 \text{mK}$ and -2.65 mK.
 - No J > 0 bound states.

• Binding energy of liquid helium is E/N = -7K.

Finite s-wave Scattering Length: Universally Linked States

Helium Trimer Excited State is an Efimov State

Kinetic Energy Release Measurement: Observing (⁴He₃)^{*}

kinetic energy release (KER) in eV (log scale)

The ionization is instantaneous and the He-ions are distributed according to the quantum mechanical eigen states of the ground and excited helium trimers. Large r_{12} , r_{23} and r_{31} correspond to small KER=1/ r_{12} +1/ r_{23} +1/ r_{31} .

Reconstructing Real Space Properties

The excited state is eight times larger than the ground state. Assuming an "atom-dimer geometry", the tail can be fit to extract the binding energy of the excited helium trimer. Fit to experimental data yields 2.6(2)mK. Theory 2.65mK.

Normalized Structural Properties of ⁴**He**₃

Divide all three interparticle distances by largest r_{ij} and plot k^{th} atom (positive y): Corresponds to placing atoms i and j at (-1/2,0) and (1/2,0).

Ground state and excited states have distinct characteristics!!! Message: Reconstruction of quantum mechanical trimer density.

Summary and Next Steps

Experimental technique: Coulomb explosion induced by instantaneous ionization via femtosecond laser.

⁴He₂ ("test case"): "Kicking" extremely weakly-bound non-rigid rotor molecule.

⁴He₃: Obtained quantum mechanical (stationary) density of excited helium Efimov trimer.

Next natural step: N=4 ground and excited states... Long-term goal: Watch (and eventually control) real time dynamics of weakly-bound complexes with single-atom resolution. PHYSICAL REVIEW LETTERS 122, 200402 (2019) Coherent Superposition of Feshbach Dimers and Efimov Trimers Yaakov Yudkin,¹ Roy Elbaz,¹ P. Giannakeas,² Chris H. Greene,³ and Lev Khaykovich¹ Department of Physics, QUEST Center and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel

²Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany ³Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, USA

Thank you!

Many thanks to collaborators Qingze Guan, Maksim Kunitski, Reinhard Doerner, and the entire Doerner group.

Ultrafast manipulation of the weakly bound helium dimer

Maksim Kunitski¹¹¹²⁰, Qingze Guan^{2,3}, Holger Maschkiwitz¹, Jörg Hahnenbruch¹, Sebastian Eckart¹, Stefan Zeller^{1,4}, Anton Kalinin¹^{3,4}, Markus Schöffler¹, Lothar Ph. H. Schmidt¹, Till Jahnke¹, Dörte Blume^{2,3} and Reinhard Dörner¹¹²⁰

Observation of the Efimov state of the helium trimer

Maksim Kunitski^{1,*}, Stefan Zeller¹, Jörg Voigtsberger¹, Anton Kalinin¹, Lothar Ph. H. Schmidt¹, Markus Schöffler¹, Achim Czasch¹, Wieland Schöllkopf², Robert E. Grisenti^{1,3}, Till Jahnke¹, Dörte Blume⁴, Reinhard Dörner^{1,*}

¹Institut für Kernphysik, Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany