QUANTUM FIELD THEORIES WITH TRAPPED-ION QUANTUM SIMULATORS?

ZOHREH DAVOUDI
UNIVERSITY OF MARYLAND, COLLEGE PARK

TO PUT THINGS IN THE CONTEXT...

QUANTUM SIMULATION FOR NUCLEAR PHYSICS: WHAT IT IMPLIES.

Quantum simulation amounts to leveraging a quantum system that can be controlled to study another quantum system that is more elusive, experimentally or computationally.

QUANTUM SIMULATION FOR NUCLEAR PHYSICS: WHAT IT IMPLIES.

Quantum simulation amounts to leveraging a quantum system that can be controlled to study another quantum system that is more elusive, experimentally or computationally.

QUANTUM SIMULATION FOR NUCLEAR PHYSICS: WHAT IT IMPLIES.

Quantum simulation amounts to leveraging a quantum system that can be controlled to study another quantum system that is more elusive, experimentally or computationally.

A controlled quantum system

CREDIT: ANDREW SHAW, UNIVERSITY OF MARYLAND

Strong-interaction physics

COPY RIGHT: UNIVERSITY OF ADELAIDE

A QUICK TOUR TO THE
 UNDERLYING PHYSICS OF TRAPPED-ION SIMULATORS

A RADIO-FREQUENCY PAUL TRAP:

$H_{\text {free }}=\frac{\omega_{\uparrow \downarrow}}{2} \sum_{i=1}^{N} \sigma_{i}^{z}+\sum_{\mathrm{m}=1}^{3 N} \omega_{\mathrm{m}}\left(a_{\mathrm{m}}^{\dagger} a_{\mathrm{m}}+\frac{1}{2}\right)$

. . •M-M-Mo. . .
ω_{m}

$$
H_{\text {free }}=\frac{\omega_{\uparrow \downarrow}}{2} \sum_{i=1}^{N} \sigma_{i}^{z}+\sum_{\mathrm{m}=1}^{3 N} \omega_{\mathrm{m}}\left(a_{\mathrm{m}}^{\dagger} a_{\mathrm{m}}+\frac{1}{2}\right)
$$

ω_{m}

$H_{I}=$

$$
\left.\left(\alpha_{0} \mathbb{I}+\alpha_{1} \sigma_{x}^{(i)}+\alpha_{2} \sigma_{y}^{(i)}+\alpha_{3} \sigma_{z}^{(i)}\right)\right]
$$

Acts on the internal states of each ion; the pseudo-spins
$H_{I}=$

$$
\left.\left(e^{i \sum_{m=1}^{3 N} \eta_{m}^{(i)}\left(a_{m} e^{-i \omega_{m} t}+a_{m}^{\dagger} e^{i \omega_{m} t}\right)}\right)\left(\alpha_{0} \mathbb{I}+\alpha_{1} \sigma_{x}^{(i)}+\alpha_{2} \sigma_{y}^{(i)}+\alpha_{3} \sigma_{z}^{(i)}\right)\right]
$$

$$
H_{I}=\sum_{i=1}^{N}\left[\left(\sum_{I=1}^{n_{L}} \frac{1}{2} \Omega_{I}^{(i)} e^{-i\left(\omega_{I}-\omega_{\uparrow \downarrow}\right) t+i \phi_{I}^{(i)}}\right)\left(e^{i \sum_{m=1}^{3 N} \eta_{m}^{(i)}\left(a_{m} e^{-i \omega_{m} t}+a_{m}^{\dagger} e^{i \omega_{m} t}\right)}\right)\left(\alpha_{0} \mathbb{I}+\alpha_{1} \sigma_{x}^{(i)}+\alpha_{2} \sigma_{y}^{(i)}+\alpha_{3} \sigma_{z}^{(i)}\right)\right]
$$

$$
H_{I}=\sum_{i=1}^{N}\left[\left(\sum_{I=1}^{n_{L}} \frac{1}{2} \Omega_{I}^{(i)} e^{-i\left(\omega_{I}-\omega_{\uparrow \downarrow}\right) t+i \phi_{I}^{(i)}}\right)\left(e^{i \sum_{m=1}^{3 N} \eta_{m}^{(i)}\left(a_{m} e^{-i \omega_{m} t}+a_{m}^{\dagger} e^{i \omega_{m} t}\right)}\right)\left(\alpha_{0} \mathbb{I}+\alpha_{1} \sigma_{x}^{(i)}+\alpha_{2} \sigma_{y}^{(i)}+\alpha_{3} \sigma_{z}^{(i)}\right)\right]
$$

$$
H_{I}=\sum_{i=1}^{N}\left[\left(\sum_{I=1}^{n_{L}} \frac{1}{2} \Omega_{I}^{(i)} e^{-i\left(\omega_{I}-\omega_{\uparrow \downarrow}\right) t+i \phi_{I}^{(i)}}\right)\left(e^{i \sum_{m=1}^{3 N} \eta_{m}^{(i)}\left(a_{m} e^{-i \omega_{m} t}+a_{m}^{\dagger} e^{i \omega_{m} t}\right)}\right)\left(\alpha_{0} \mathbb{I}+\alpha_{1} \sigma_{x}^{(i)}+\alpha_{2} \sigma_{y}^{(i)}+\alpha_{3} \sigma_{z}^{(i)}\right)\right]
$$

$$
\mathcal{O}\left(\eta^{0}\right): \underbrace{}_{\text {carr }}=-\frac{\Omega}{2}\left(\sigma^{+} e^{-i \phi}+\sigma^{-} e^{i \phi}\right)
$$

One-qubit operations

$$
H_{I}=\sum_{i=1}^{N}\left[\left(\sum_{I=1}^{n_{L}} \frac{1}{2} \Omega_{I}^{(i)} e^{-i\left(\omega_{I}-\omega_{\uparrow \downarrow}\right) t+i \phi_{I}^{(i)}}\right)\left(e^{i \sum_{m=1}^{3 N} \eta_{m}^{(i)}\left(a_{m} e^{-i \omega_{m} t}+a_{m}^{\dagger} e^{i \omega_{m} t}\right)}\right)\left(\alpha_{0} \mathbb{I}+\alpha_{1} \sigma_{x}^{(i)}+\alpha_{2} \sigma_{y}^{(i)}+\alpha_{3} \sigma_{z}^{(i)}\right)\right]
$$

$$
\mathcal{O}\left(\eta^{1}\right):
$$

$$
H_{r s b} \approx \frac{i}{2} \eta \Omega\left[a^{\dagger} \sigma^{-} e^{i \phi}-a \sigma^{+} e^{-i \phi}\right]
$$

Spin-phonon transitions

$$
H_{I}=\sum_{i=1}^{N}\left[\left(\sum_{I=1}^{n_{L}} \frac{1}{2} \Omega_{I}^{(i)} e^{-i\left(\omega_{I}-\omega_{\uparrow \downarrow}\right) t+i \phi_{I}^{(i)}}\right)\left(e^{i \sum_{m=1}^{3 N} \eta_{m}^{(i)}\left(a_{m} e^{-i \omega_{m} t}+a_{m}^{\dagger} e^{i \omega_{m} t}\right)}\right)\left(\alpha_{0} \mathbb{I}+\alpha_{1} \sigma_{x}^{(i)}+\alpha_{2} \sigma_{y}^{(i)}+\alpha_{3} \sigma_{z}^{(i)}\right)\right]
$$

$$
H_{b s b} \approx \frac{i}{2} \eta \Omega\left[a \sigma^{-} e^{i \phi}-a^{\dagger} \sigma^{+} e^{-i \phi}\right]
$$

Spin-phonon transitions

TWO-QUBIT ENTANGLING OPERATION

TWO-QUBIT ENTANGLING OPERATION

Adiabatic elimination technique and the use of sideband transitions effectively couples two spins

$|\downarrow \downarrow\rangle$

TWO-QUBIT ENTANGLING OPERATION

Adiabatic elimination technique and the use of sideband transitions effectively couples two spins

TWO-QUBIT ENTANGLING OPERATION

Adiabatic elimination technique and the use of sideband transitions effectively couples two spins

TWO-QUBIT ENTANGLING OPERATION

The physics is simple, and is derived from a Magnus expansion of the time-evolution operator:

$$
\begin{aligned}
U(t, 0) & =\mathcal{T} e^{-i \int_{0}^{t} H_{I}\left(t_{1}\right) d t_{1}} \\
& =e^{-i \int_{0}^{t} d t_{1} H_{I}\left(t_{1}\right)-\frac{1}{2} \int_{0}^{t} d t_{2} \int_{0}^{t_{2}} d t_{1}\left[H_{I}\left(t_{2}\right), H_{I}\left(t_{1}\right)\right]+\cdots} \\
& \approx e^{-i H_{\mathrm{eff}} t}
\end{aligned}
$$

Only an approximation (off-resonant terms, lower and higher order terms, etc. still present in dynamics but can be suppressed).

An effective Ising Hamiltonian $\quad H_{\mathrm{eff}} \propto \sigma_{x}^{(i)} \otimes \sigma_{x}^{(j)} \quad$ requires:

$$
\eta \Omega / \delta \ll 1
$$

DIGITAL, ANALOG, AND HYBRID MODES OF TRAPPED-ION SIMULATORS

Analog

Digital

Single-spin gates

Two-spin gate (MS)

ZD, Hafezi, Monroe, Pagano, Seif, Shaw, Phys. Rev.
Research, 2, 023015 (2020), arXiv: 1908.03210 [quant-ph].

Digital

Andrade, ZD, Grass, Hafezi, Pagano, Seif, arXiv: 2107.xxxx [quant-ph].
See also: Bermudez et al, Pays.Rev.A79, 060303 R (2009).

Analog

A LATTICE GAUGE THEORY EXAMPLE STUDIED WITHIN EACH MODE OF THE (ENHANCED) TRAPPED-ION SIMULATOR

$$
H=-i x \sum_{n=1}^{N-1}\left[\psi_{n}^{\dagger} U_{n} \psi_{n+1}-\text { h.c. }\right]+\sum_{n=1}^{N-1} E_{n}^{2}+\mu \sum_{n=1}^{N}(-1)^{n} \psi_{n}^{\dagger} \psi_{n}
$$

LATTICE SCHWINGER MODEL: A TESTBED FOR QUANTUM

 SIMULATION OF LATTICE GAUGE THEORIES$$
H=-i x \sum_{n=1}^{N-1}\left[\psi_{n}^{\dagger} U_{n} \psi_{n+1}-\text { h.c. }\right]+\sum_{n=1}^{N-1} E_{n}^{2}+\mu \sum_{n=1}^{N}(-1)^{n} \psi_{n}^{\dagger} \psi_{n}
$$

A gauge transformation plus Gauss's law with OBCs:

Martinez et al, Nature 534, 516 EP (2016).

$$
H=x \sum_{n=1}^{N-1}\left[\sigma_{+}^{(n)} \sigma_{-}^{(n+1)}+\sigma_{+}^{(n+1)} \sigma_{-}^{(n)}\right]+\sum_{n=1}^{N-1}\left[\epsilon_{0}+\frac{1}{2} \sum_{m=1}^{n}\left(\sigma_{z}^{(m)}+(-1)^{m}\right)\right]^{2}+\frac{\mu}{2} \sum_{n=1}^{N}(-1)^{n} \sigma_{Z}^{(n)}
$$

LATTICE SCHWINGER MODEL: A TESTBED FOR QUANTUM

 SIMULATION OF LATTICE GAUGE THEORIES$$
H=-i x \sum_{n=1}^{N-1}\left[\psi_{n}^{\dagger} U_{n} \psi_{n+1}-\text { h.c. }\right]+\sum_{n=1}^{N-1} E_{n}^{2}+\mu \sum_{n=1}^{N}(-1)^{n} \psi_{n}^{\dagger} \psi_{n}
$$

A gauge transformation plus Gauss's law with OBCs:

$$
H=x \sum_{n=1}^{N-1}\left[\sigma_{+}^{(n)} \sigma_{-}^{(n+1)}+\sigma_{+}^{(n+1)} \sigma_{-}^{(n)}\right]+\sum_{n=1}^{N-1}\left[\epsilon_{0}+\frac{1}{2} \sum_{m=1}^{n}\left(\sigma_{z}^{(m)}+(-1)^{m}\right)\right]^{2}+\frac{\mu}{2} \sum_{n=1}^{N}(-1)^{n} \sigma_{Z}^{(n)}
$$

Long range spin-spin
An effective interactions plus an effective magnetic field

$$
H=x \sum_{n=1}^{N-1}\left[\sigma_{+}^{(n)} \sigma_{-}^{(n+1)}+\sigma_{+}^{(n+1)} \sigma_{-}^{(n)}\right]+\sum_{n=1}^{N-1}\left[\epsilon_{0}+\frac{1}{2} \sum_{m=1}^{n}\left(\sigma_{z}^{(m)}+(-1)^{m}\right)\right]^{2}+\frac{\mu}{2} \sum_{n=1}^{N}(-1)^{n} \sigma_{Z}^{(n)}
$$

Ions in a linear Paul trap

See also Yang et al, Physical Review A 94, 052321 (2016) for a phonon-ion based analog proposal of lattice Schwinger Model.

$$
H=x \sum_{n=1}^{N-1}\left[\sigma_{+}^{(n)} \sigma_{-}^{(n+1)}+\sigma_{+}^{(n+1)} \sigma_{-}^{(n)}\right]+\sum_{n=1}^{N-1}\left[\epsilon_{0}+\frac{1}{2} \sum_{m=1}^{n}\left(\sigma_{z}^{(m)}+(-1)^{m}\right)^{2}+\frac{\mu}{2} \sum_{n=1}^{N}(-1)^{n} \sigma_{Z}^{(n)}\right.
$$

ZD, Hafezi, Monroe, Pagano, Seif and Shaw, Phys. Rev. R 2, 023015 (2020).

ZD, Hafezi, Monroe, Pagano, Seif and Shaw, Phys. Rev. R 2, 023015 (2020).

$$
H=-i x \sum_{n=1}^{N-1}\left[\psi_{n}^{\dagger} U_{n} \psi_{n+1}-\text { h.c. }\right]+\sum_{n=1}^{N-1} E_{n}^{2}+\mu \sum_{n=1}^{N}(-1)^{n} \psi_{n}^{\dagger} \psi_{n}
$$

Near term cost

	$\delta_{g}=10^{-3}$		$\delta_{g}=10^{-4}$		$\delta_{g}=10^{-5}$		$\delta_{g}=10^{-6}$		$\delta_{g}=10^{-7}$	
	$\tilde{\epsilon}^{2}$	CNOT								
$x=10^{-2}$	-	7.3 e 4	-	1.6 e 5	-	3.4 e 5	-	7.3 e 5	$5.6 \mathrm{e}-2$	1.6 e 6
$x=10^{-1}$	-	1.6 e 4	-	3.5 e 4	-	7.5 e 4	$5.9 \mathrm{e}-2$	1.6 e 5	$2.7 \mathrm{e}-3$	3.5 e 5
$x=1$	-	4.6 e 3	-	9.9 e 3	$1.0 \mathrm{e}-1$	2.1 e 4	$4.7 \mathrm{e}-3$	4.6 e 4	$2.2 \mathrm{e}-4$	9.9 e 4
$x=10^{2}$	-	2.8 e 3	$8.3 \mathrm{e}-1$	6.1 e 3	$3.8 \mathrm{e}-2$	1.3 e 4	$1.8 \mathrm{e}-3$	2.8 e 4	$8.2 \mathrm{e}-5$	6.0 e 4


```
See Yang et al, Phys. Rev. A 94, 052321 (2016) for the
```

highly-occupied bosonic model of the Schwinger model.

```
See also Casanova et al, Phys. Rev. Lett. 108, 190502 (2012), Lamata et al, EPJ Quant.
Technol. 1, 9 (2014), and Mezzacapo et al, Phys. Rev. lett. 109, 200501 (2012) for
analog-digital approaches to other interacting fermion-boson theories.
```

$$
H=-i x \sum_{n=1}^{N-1}\left[\psi_{n}^{\dagger} U_{n} \psi_{n+1}-\text { h.c. }\right]+\sum_{n=1}^{N-1} E_{n}^{2}+\mu \sum_{n=1}^{N}(-1)^{n} \psi_{n}^{\dagger} \psi_{n}
$$

$$
\left\{E_{j}, U_{j}\right\} \quad\left\{E_{j+1}, U_{j+1}\right\}
$$

Let us compare the circuit structure of digital and analog-digital cases when gauge DOF are present:

Schwinger model
Fermion-gauge interaction Fermion mass Electric-field term

Analog-digital	$\mathcal{O}(N)$	$\mathcal{O}(1)$	$\mathcal{O}(N)$
Digital	$\mathcal{O}\left(N^{2}(\log \Lambda)^{2}\right)$	$\mathcal{O}(1)$	$\mathcal{O}\left(N(\log \Lambda)^{2}\right)$

Let us compare the circuit structure of digital and analog-digital cases when gauge DOF are present:

Schwinger model

Fermion-gauge interaction Fermion mass Electric-field term

Analog-digital	$\mathcal{O}(N)$	$\mathcal{O}(1)$	$\mathcal{O}(N)$
Digital	$\mathcal{O}\left(N^{2}(\log \Lambda)^{2}\right)$	$\mathcal{O}(1)$	$\mathcal{O}\left(N(\log \Lambda)^{2}\right)$

Is phonon control experimentally feasible? Yes...at least for small systems so far!

University of Monroe-Linke Group
b) Ions $1 \begin{array}{lll}1 & 2\end{array}$

Debnath et al, Phys. Rev. Lett. 120, 073001 (2018).

GAUGE THEORIES IN HIGHER DIMENSIONS WITH THE ANALOG MODE OF THE SIMULATOR

THE ANALOG SCHEME CAN BE APPLIED $\quad \mathcal{L}_{\mathrm{CS}}=a^{\dagger}(x) i D_{0} a(x)-\sum_{j=1,2}\left[a^{\dagger}(x) e^{i A_{j}(x)} a\left(x+\hat{\boldsymbol{n}}_{j}\right)+\right.$
TO CHERN-SIMONS THEORY IN $2+1$ D:

$$
H_{\mathrm{CS}}=\sum_{\boldsymbol{n}} \sum_{j=1,2}\left[\sigma_{+}^{(\boldsymbol{n})} \sigma_{-}^{\left(\boldsymbol{n}+\hat{\boldsymbol{n}}_{j}\right)}+\text { h.c. }\right]
$$

Coupling matrix

$$
\theta=\frac{1}{2 \pi}
$$

$$
\begin{equation*}
\text { h.c. }]=\frac{\theta}{4} \epsilon^{\mu \nu \lambda} A_{\mu}(x) F_{\nu \lambda}(x) \tag{24}
\end{equation*}
$$

ion index i
$(0,0)(0,1)(0,2)(0,3)(1,0)(1,1)(1,2)(1,3)(2,0)(2,1)(2,2)(2,3)(3,0)(3,1)(3,2)(3,3)$
Ion chain

OR THAT OF Z(2) GAUGE THEORY IN 2+1 D

$$
H_{2+1 \mathrm{D} Z_{2}}=-\sum_{l} \sigma_{x}(l)-\lambda \sum_{p} \sigma_{z}\left(l_{1}\right) \sigma_{z}\left(l_{2}\right) \sigma_{z}\left(l_{3}\right) \sigma_{z}\left(l_{4}\right)
$$

$$
H_{2 \mathrm{D} \text { Ising }}=-\lambda \sum_{n} \sigma_{x}^{(n)}-\sum_{n} \sum_{j=1,2} \sigma_{z}^{(n)} \sigma_{z}^{\left(n+\hat{n}_{j}\right)}
$$

Original lattice

$(0,0)(0,1)(0,2)(0,3)(1,0)(1,1)(1,2)(1,3)(2,0)(2,1)(2,2)(2,3)(3,0)(3,1)(3,2)(3,3)$

Dual lattice

$(0,0) \quad(0,1) \quad(0,2) \quad(0,3)$

ZD, Hafezi, Monroe, Pagano, Seif, Shaw, Phys. Rev.
Research, 2, 023015 (2020), arXiv: 1908.03210 [quant-ph].

A SCALAR FIELD THEORY COUPLED TO
 FERMIONS (YUKAWA THEORY) WITH THE HYBRID MODE OF THE SIMULATOR

A Yukawa theory: scalar field coupled to fermions

Ions in a linear Paul trap

A Yukawa theory: scalar

 field coupled to fermions
Ions in a linear Paul trap

Collective normal modes are used to simulate the dynamic of scalar field and to perform

$$
\begin{array}{ll}
H_{\text {Yukawa }}^{(I I I)}=g b \sum_{j=1}^{N} \psi_{j}^{\dagger} \varphi_{j} \psi_{j}, & \text { Model } \\
H_{\text {Yukawa }}^{(I I)}=b \sum_{j=1}^{N}\left[\frac{\Pi_{j}^{2}}{2}+\frac{\left(\nabla \varphi_{j}\right)^{2}}{2}+\frac{m_{\varphi}^{2}}{2} \varphi_{j}^{2}\right] \\
H_{\text {Yukawa }}^{(I)}=\sum_{j=1}^{N}\left[\frac{i}{2 b}\left(\psi_{j}^{\dagger} \psi_{j+1}-\psi_{j+1}^{\dagger} \psi_{j}\right)+m_{\psi}(-1)^{j} \psi_{j}^{\dagger} \psi_{j}\right]
\end{array}
$$

$$
\begin{aligned}
& H_{\text {Yukawa }}^{(I)^{\prime}}=\frac{1}{4 b} \sum_{j=1}^{N} \sigma_{j}^{x} \sigma_{j+1}^{x}, \\
& H_{\text {Yukawa }}^{(I I)^{\prime}}=\frac{1}{4 b} \sum_{j=1}^{N} \sigma_{j}^{y} \sigma_{j+1}^{y}, \\
& H_{\text {Yukawa }}^{(I I I)^{\prime}}=\frac{m_{\psi}}{2} \sum_{j=1}^{N}(-1)^{j} \sigma_{j}^{z}+\text { const. } \\
& H_{\text {Yukawa }}^{(I V)^{\prime}}=\sqrt{\frac{g^{2} b}{8 N}} \sum_{j=1}^{N}\left(\mathbb{I}_{j}+\sigma_{j}^{z}\right) \sum_{\mathrm{m}=1}^{N} \frac{1}{\sqrt{\varepsilon_{\mathrm{m}}}} \times
\end{aligned}
$$

$$
\left(a_{\mathrm{m}}^{\dagger} e^{-i \frac{2 \pi j}{N}\left(\mathrm{~m}-\frac{N}{2}-1\right)}+a_{\mathrm{m}} e^{i \frac{2 \pi j}{N}\left(\mathrm{~m}-\frac{N}{2}-1\right)}\right)+\sum_{\mathrm{m}=1}^{N} \varepsilon_{\mathrm{m}}\left(a_{\mathrm{m}}^{\dagger} a_{\mathrm{m}}+\frac{1}{2}\right)
$$

Ions in a linear Paul trap

Yukawa theory

Yukawa theory				
	Fermion hopping	Fermion mass	Free scalar fields	Fermion scalar-field interaction
Analog-digital	$\mathcal{O}(N)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$
Digital	$\mathcal{O}(N)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}\left(N^{2}(\log \Lambda)^{2}\right)$

Trapped-ion simulators have become a successful platform for quantum simulation of many-body physics.

The first successful implementations of gauge-field theory dynamics on trappedion simulators/computers have emerged for small systems.

Phonons can be manipulated and measured in these systems, hence the possibility of using phonons as both virtual and dynamical degrees of freedom is realistic.

Simulating complex dynamics of quantum field theories may benefit from digital, analog, and hybrid implementations depending on the problem at hand.

OUTLOOK

As these systems scale and improve, we must come up with resource-efficient algorithms tailored to our problems, paying attention to hardware architecture.

Co-development will be crucial as specialpurpose hardware may reduce the time to solution in near-term. Theory-experiment collaborations will be highly beneficial.

Theoretical development need to complement the program. Efficient Hamiltonian formulations for (non-Abelian) gauge theories along with best approaches to state preparation and measurement will continue to develop.

Effective field theory simulations can benefit from developments in gauge-theory simulations and vice versa. Analog and hybrid approaches for nuclear EFTs should be explored.

TOWARDS SIMULATING QUANTUM FIELD THEORIES WITH TRAPPED-ION SIMULATORS @MARYLAND+COLLABORATING INSTITUTIONS (RICE, DUKE, U CHICAGO, ICFO/BARCELONA)

Engineering an Effective Three-spin Hamiltonian for Applications in Quantum Simulation

Andrade, ZD, Grass, Hafezi, Pagano, Seif, arxiv: 2107.xxxx [quant-ph]

THANK YOU

