Quantum simulation of gauge theories: from non-Abelian to Abelian via the *encoding route*

Joint work with **E. Rico** (Bilbao), P. Zoller (Innsbruck), U.-J. Wiese, P. Stebler, **D. Banerjee** and M. Bögli (Bern) and **F. Surace**, P. Mazza, G. Giudici, A. Lerose, A. Gambassi (Trieste)

Based on: Annals of Phys. 393 (2018) 466 and PRX 10, 021041 (2020)

Brief outline

- A brief panoramic on analog quantum simulators for gauge theories
- How to deal with gauge invariance? encoding strategies

 "Nuclear" physics with SO(3) models in cold atoms

 (Large scale) quantum simulations of U(1) theories

Challenges in gauge field theories

Tackling gauge theories is of pivotal importance for quantum simulation of HEP - real time, sign problems

UniFrankfurt website

Montvay and Münster, Quantum fields on a Lattice

Clear challenges: • real time dynamics • 'finite-density'

Panorama of 'quantum simulations' for NP/HEP

Analog quantum simulators in a nutshel

$H = H_1 + H_2 + \dots$

- b) probing tools, protocols (e.g., state preparation)
- c) 'understanding' of errors

Analog simulation: challenges

Typical challenges for quantum simulators:

initial state preparation
 probing
 engineer the desired dynamics
 validate / control
 probing

same as SM quantum simulators
 novel HEP challenges!

Main challenge: engineer gauge invariance

—> shift of paradigm: from *interaction engineering*, to symmetry engineering

Full Hilbert space: state of the art

Theory proposals:

early 2000's: first quenched proposals

2012: first proposals including dynamical matter

2012/3: first (and almost last) non-Abelian

more following 2013:

Abelian: >100 theory proposals.

Non-Abelian: <5 works.</p>

lons - see Zohreh's talk later today!

Incomplete (!) list of contributors:

Banerjee, Rico, Wiese, Zoller, Marcos, Hafezi, Hauke, Stebler, Cirac, Zohar, Reznik, Meurice, Celi, Tagliacozzo, Lewenstein, Glaetzle, Moessner, Nath, Kapit, Müller, Davoudi, Pagano, Savage, Monroe, Barbiero, Kaplan, Syrker, Farace, Lukin, Pichler, Solano, ...

HEP Reviews: U. J. Wiese, Ann. Phys. 525, 777 (2013); Preskill, arXiv.1811.10085 (2018). "Pedagogical": MD and S. Montangero, Cont. Rev. Phys. 2016 / 1602.03776. More advanced ones: Rep. Prog. Phys. 79, 014401 (2016); 1910.00257; 1911.00003.

Brief outline

- A brief panoramic on analog quantum simulators for gauge theories
- How to deal with gauge invariance? encoding strategies

 "Nuclear" physics with SO(3) models in cold atoms

 (Large scale) quantum simulations of U(1) theories

Gauge theories with Heisenberg models?

Q: can we formulate a model, that

A) shows interesting features connected with nuclear physics and QCD (and possibly more)

Chiral condensation and symmetry breaking

B) can be encoded onto a simple dynamics, such as the one described by super-exchange in mixtures?

$$H_{\text{enc.}} \simeq \sum_{i,j;\alpha} J_{\alpha} S_j^{\alpha} S_i^{\alpha}$$

SO(3) gauge theory

$$H = -t \sum_{x} [(\psi_{x}^{a})^{\dagger} \sigma_{x,R}^{a} \sigma_{x+1,L}^{b} \psi_{x+1}^{b} + \text{h.c.}] + \sum_{x} [Vn_{x}n_{x+1}] + Gn_{x}^{2}] \qquad a = 1, 2, 3$$

$$+ \sum_{x} [Vn_{x}n_{x+1}] + Gn_{x}^{2}] \qquad \text{Color index}$$

Formalism: D-theories / quantum link models

Horn 1981, Orland & Rohrlich 1990, Chandrasekharand & Wiese, 1997

Gauge invariant Hilbert space

Chiral symmetry breaking

$$H = -t \sum_{x} [(\psi_{x}^{a})^{\dagger} \sigma_{x,R}^{a} \sigma_{x+1,L}^{b} \psi_{x+1}^{b} + \text{h.c.}] + \sum_{x} [V n_{x} n_{x+1} + G n_{x}^{2}]$$

Chiral Symmetry: translation by one lattice spacing

 ${}^{\chi}\psi^a_r = (-1)^x \psi^a_{r+1}$

$$x \sigma_{x,\beta}^{a} = (-1)^{x} \sigma_{x+1,\beta}^{a}$$

Results: ED (L up to 16), DMRG/PBC (L up to 72)

Conformal window

$$H = -t \sum_{x} [(\psi_{x}^{a})^{\dagger} \sigma_{x,R}^{a} \sigma_{x+1,L}^{b} \psi_{x+1}^{b} + \text{h.c.}] + \sum_{x} [V n_{x} n_{x+1} + G n_{x}^{2}]$$

Connected to beyond-Higgs physics - slowly walking technicolor?

SO(3) gauge theory: phase diagram

- 2) non-trivial **Baryons physics**
 - 3) stable conformal window

Gauge invariant Hilbert space

SO(3) gauge theory and spin chains: encoding

What happens to the operators?

$$n_x = (\psi_x^a)^{\dagger} \psi_x^a = S_x^z + 3/2$$
$$\psi_x^a \sigma_{x,R}^a = S_x^+$$

Requires a Jordan-Wigner-like transformation to be made rigorous:

$$\tilde{\psi}_x^{\alpha} = \psi_x^{\alpha} e^{i\pi \left[\sum_{\ell < x} M_{\ell} + \sum_{\beta < \alpha} n_{\beta, x}\right]}$$

Encoded Hamiltonian

$$H = -t \sum_{x} [(\psi_{x}^{a})^{\dagger} \sigma_{x,R}^{a} \sigma_{x+1,L}^{b} \psi_{x+1}^{b} + \text{h.c.}] + \sum_{x} [Vn_{x}n_{x+1} + Gn_{x}^{2}]$$

$$n_{x} = (\psi_{x}^{a})^{\dagger} \psi_{x}^{a} = S_{x}^{z} + 3/2$$

$$\psi_{x}^{a} \sigma_{x,R}^{a} = S_{x}^{+}$$

$$H_{\text{enc}} = -t \sum_{x} (S_{x}^{+} S_{x+1}^{-} + \text{h.c.}) +$$

$$+\sum_{x}^{x} [VS_{x}^{z}S_{x+1}^{z} + G(S_{x}^{z})^{2}]$$

x

Spin-S Heisenberg with cold atoms

Bose Mixtures in optical lattices

 $S_x^z = \frac{n_x^I - n_x^{II}}{2}$

Exp. double well: Munich, JQI

NB: three-body losses may limit timescales

(Fermionic) Magnetic atoms (Dy, Er)

Paris, Stuttgart, Stanford, Innsbruck,...

Other dipolar systems, e.g., polar molecules dressed with MWs

Micheli, Brennen, Zoller, Nat. Phys. 2006. For S=3/2, see also Gorshkov et al. 1301.5636.

Observables: an example

After encoding, this translates onto a **staggered magnetisation** (band mapping, microscope):

$$\chi = \sum_{jodd} n_j^I - \sum_{jeven} n_j^I$$

Brief outline

- A brief panoramic on analog quantum simulators for gauge theories
- How to deal with gauge invariance? encoding strategies

 "Nuclear" physics with SO(3) models in cold atoms

 (Large scale) quantum simulations of U(1) theories

Encoding strategies for Abelian theories

Why slow dynamics? Gauge theory interpretation

Spin model maps onto:

$$\hat{H}_{\rm B} = \int dx \, \left[\frac{1}{2} \hat{\Pi}^2 + \frac{1}{2} (\partial_x \hat{\phi})^2 + \frac{1}{2} \frac{e^2}{\pi} \hat{\phi}^2 \right] - cm\omega_0 \cos(2\sqrt{\pi}\hat{\phi} - \theta)$$

S. Coleman, Phys. Rev. D 11, 2088 (1975)

Integrable in the vanishing mass limit! Tricky aspect: continuum limit beyond RG

$$heta=\pi$$

$$V(\phi) \qquad V(\phi) \\ m > 0 \qquad m = 0$$

Why slow dynamics? Gauge theory interpretation

Recap

Quantum simulation for gauge theories: the 'encoding route'

- ID SO(3) gauge theories:
 - simple toy models with basic, interesting features
 - proposal: cold atom mixtures
- Schwinger model
 - mapping to constrained spin chains
 - already experimentally realized!
- open points:
 - scaling of errors in encoded versions non-trivial
 - 2D?
 - other non-Abelian groups?

ICTP and SISSA

Federica Surace

Paolo Mazza

Giuliano Giudici

Alessio Lerose

Andrea Gambassi

Bilbo

IQOQI / ITP Innsbruck

Einstein Institute / ITP Univ Bern

Enrique Rico

Uwe-Jens Wiese

Debasish Banerjee

Pascal Stebler

Peter Z Thank you

Based on: Annals of Phys. 393 (2018) 466 and PRX 10, 021041 (2020)

