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Well known similarity between cold fermions

at unitarity and low-density neutron matter

T=0 EOS: Neutron Matter

a = − 18 fm, ∞

re = 2.5 fm,0

Superfluid Pairing Gap

Quasi-particle spectrum (NM) Momentum Distributions NM  
(related to contact)

Scattering length 
nn, cold atom

Effective range 
nn, cold atom 

Gezerlis, JC; PRC (2008, 2010); Gandolfi, Gezerlis, JC; ARNP (2015)
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Finite Systems: 

Can we make connections to nuclei and 


nuclear matter more generally?


Neutrons / HO potential

Gandolfi, JC, Pieper, 2011

UFG / HO potential

Cold atom experimental capabilities: 


interaction strength

spin balance


external potentials (flat, oscillating),

spin, density response functions


+many more


Free Fermions shell structure

JC, Gandolfi, PRA, 2014



What else could be addressed in structure?

for example pairing and coherence length


Coherence length of pairing in nuclei

typically assumed to extend over entire nucleus


(pairing on the Fermi Surface)

Pairing in the UFG / HO is essentially local

extends over a few inter particle distances


short in the center, larger at the surface


Can we probe this transition by changing the

coupling, changing the trapping potential


(also imbalance can impact this)?

What about dynamics? 
Linear Response 



DUNE T2K

Why are we interested?  Accelerator Electron 
and Neutrino Experiments 
wide range of neutrino energies  

importance of oscillations/cross sections for energies ~1-3 GeV
need inclusive cross section for different flavors to extract

neutrino parameters

CP violating phase
in neutrino sector

DUNE
T2K



quently discuss scaling and the related superscaling. For
light nuclei and nonrelativistic final states, exact calcula-
tions can be performed. For lower momentum transfers,
an alternative approach, the use of the Euclidean re-
sponse, is available and presented. We then study the
results obtained after a longitudinal/transverse !L /T"
separation of the cross section, and their impact on the
Coulomb sum rule. A bothersome correction, namely,
the effect of Coulomb distortion on the cross sections, is
addressed as well. We also show how data for an impor-
tant model system for nuclear theory, infinite nuclear
matter, can be obtained. Last, we address other fields of
quasielastic scattering and discuss their common aspects.

II. ELECTRON-NUCLEUS SCATTERING IN THE
IMPULSE APPROXIMATION

A. Electron-nucleus cross section

The differential cross section of the process

e + A → e! + X , !1"

in which an electron of initial four-momentum ke
#!Ee ,ke" scatters off a nuclear target to a state of four-
momentum ke!#!Ee! ,ke!", the target final state being un-
detected, can be written in the Born approximation as
!Itzykson and Zuber, 1980"

d2!

d"e!dEe!
=

#2

Q4

Ee!

Ee
L$%W$%, !2"

where #=1/137 is the fine-structure constant, d"e! is the
differential solid angle in the direction specified by ke!,
Q2=−q2, and q=ke−ke!#!& ,q" is the four-momentum
transfer.

The tensor L$%, which can be written neglecting the
lepton mass as

L$% = 2$ke
$ke!

% + ke
%ke!

$ − g$%!keke!"% , !3"

where g$%#diag!1,−1,−1,−1" and !keke!"=EeEe!
−ke ·ke! is fully specified by the measured electron kine-
matic variables. All information on target structure is
contained in the tensor W$%, whose definition involves
the initial and final nuclear states &0' and &X', carrying
four-momenta p0 and pX, as well as the nuclear current
operator J$,

W$% = (
X

)0&J$&X')X&J%&0''!4"!p0 + q − pX" , !4"

where the sum includes all hadronic final states.
The most general expression of the target tensor of

Eq. !4", fulfilling the requirements of Lorentz covari-
ance, conservation of parity, and gauge invariance, can
be written in terms of two structure functions W1 and W2
as

W$% = W1*− g$% +
q$q%

q2 +
+

W2

M2*p0
$ −

!p0q"
q2 q$+*p0

% −
!p0q"

q2 q%+ , !5"

where M is the target mass and the structure functions
depend on the two scalars Q2 and !p0q". In the target
rest frame, !p0q"=m& and W1 and W2 become functions
of the measured momentum and energy transfer &q& and
&.

Substitution of Eq. !5" into Eq. !2" leads to

d2!

d"e!dEe!
= * d!

d"e!
+

M

( ,W2!&q&,&" + 2W1!&q&,&"tan2)

2- , !6"

where ) and !d! /d"e!"M=#2 cos2!) /2" /4Ee sin4!) /2" de-
note the electron scattering angle and the Mott cross
section, respectively.

The right-hand side of Eq. !6" can be rewritten sin-
gling out the contributions of scattering processes in-
duced by longitudinally !L" and transversely !T" polar-
ized virtual photons. The resulting expression is

d2!

d"e!dEe!
= * d!

d"e!
+

M
, Q4

&q&4
RL!&q&,&"

+ *1
2

Q2

&q&2
+ tan2)

2
+RT!&q&,&"- , !7"

where the longitudinal and transverse structure func-
tions are trivially related to W1 and W2 through

RT!&q&,&" = 2W1!&q&,&" !8"

and

Q2

&q&2
RL!&q&,&" = W2!&q&,&" −

Q2

&q&2
W1!&q&,&" . !9"

In principle, calculations of W$% of Eq. !4" at moder-
ate momentum transfer !&q & *0.5 GeV/c" can be carried
out within nuclear many-body theory !NMBT", using
nonrelativistic wave functions to describe the initial and
final states and expanding the current operator in pow-
ers of &q & /m !Carlson and Schiavilla, 1998", where m is
the nucleon mass. The available results for medium-
heavy targets have been obtained mostly using the
mean-field approach, supplemented by inclusion of
model residual interactions to take into account long-
range correlations !Dellafiore et al., 1985".

FIG. 2. Schematic representation of the IA regime, in which
the nuclear cross section is replaced by the incoherent sum of
cross sections describing scattering off individual nucleons, the
recoiling !A−1"-nucleon system acting as a spectator.
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Quasi-elastic scattering: higher q, E
q ~ kF   E ~ EF

Electron Scattering: 2 response functions

Neutrino/Antineutrinos:  5 response functions

Why study electron scattering?
not to determine properties of electron or photon



Quasi-Elastic Scattering and 
Plane Wave Impulse Approximation

Incorporates incoherent scattering of single nucleons:
n(k) or spectral function S(k,w)
and single-nucleon form factors



Scaling with momentum transfer : y-scaling
incoherent sum over scattering from single nucleons 

- scaling of 1st kind-

Basic Observations from Electron Scattering

y-scaling in NP

Day, McCarthy, PRL 1987



Superscaling in inclusive e-nucleus scattering

Different nuclei at the same kinematics


 Same kinematics: same ratio of L/T response

Donnelly, Sick PRL (1999)


Superscaling: for the same kinematics, response looks
similar for different nuclei (q > kF )

Some basic Observations from Electron Scattering

n(k) 

n2(k,K=0) 

Lonardoni, Gandolfi, Wang, Carlson (2018)




Back to Back Nucleons (total Q~0)

E Piasetzky et al. 2006 Phys. Rev. Lett. 97 162504.  

M Sargsian et al. 2005 Phys. Rev. C 71 044615. 

R Schiavilla et al. 2007 Phys. Rev. Lett. 98 132501. 

R Subedi et al. 2008 Science 320 1475.

np pairs dominate over nn and pp
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FIG. 6 VMC proton momentum distributions in T = 0 light
nuclei.

tightly bound, and the fraction of nucleons at zero mo-
mentum decreases. As nucleons are added to the p-shell,
the distribution at low momenta becomes broader, and
develops a peak at finite k. The sharp change in slope
near k = 2 fm�1 to a broad shoulder is present in all these
nuclei and is attributable to the strong tensor correlation
induced by the pion-exchange part of the NN potential,
further increased by the two-pion-exchange part of the
3N potential. Above k = 4 fm�1, the bulk of the mo-
mentum density appears to come from short-range spin-
isospin correlations.

Two-nucleon momentum distributions, i.e., the proba-
bility of finding two nucleons in a nucleus with relative
momentum q = (k1�k2)/2 and total center-of-mass mo-
mentumQ = k1+k2, provide insight into the short-range
correlations induced by a given Hamiltonian. They can
be formulated analogously to Eqs. (66,68), and projected
with total pair spin-isospin ST , or as pp, np, and nn
pairs. Again, a large collection of VMC results has been
published (Wiringa et al., 2014) and figures and tables
are available on-line (Wiringa, 2014b).

Experiments to search for evidence of short-range cor-
relations have been a recent focus of activity at Je↵er-
son Laboratory. In an (e, e0pN) experiment on 12C at
JLab, a very large ratio ⇠ 20 of pn to pp pairs was
observed at momenta q=1.5–2.5 fm�1 for back-to-back
(Q = 0) pairs (Subedi et al., 2008). VMC calculations
for ⇢pN (q,Q = 0) are shown in Fig. 7 as blue diamonds
for pn pairs and red circles for pp pairs for T = 0 nuclei
from 4He to 12C (Schiavilla et al., 2007; Wiringa et al.,
2014). The pp back-to-back pairs are primarily in 1S0

states and have a node near 2 fm�1, while the pn pairs
are in deuteron-like 3S1 �

3 D1 states where the D-wave
fills in the S-wave node. Consequently, there is a large
ratio of pn to pp pairs in this region. This behavior is
predicted to be universal across a wide range of nuclei.
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FIG. 7 VMC pn (blue diamonds) and pp (red circles) back-
to-back (Q = 0) i pair momentum distributions for T = 0
nuclei.
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FIG. 8 VMC proton-proton momentum distributions in 4He
averaged over the directions of q and Q as a function of q for
several fixed values of Q from 0 to 1.25 fm�1.

As Q increases, the S-wave node in pp pairs will gradu-
ally fill in, as illustrated for 4He in Fig. 8, where ⇢pp(q,Q)
is shown as a function of q for several fixed values of Q,
averaged over all directions of q and Q. In contrast,
the deuteron-like distribution in pn pairs is maintained
as Q increases, as shown in Fig. 9, with only a gradual
decrease in magnitude because there are fewer pairs at
high total Q. Recently, these momentum distributions
for 4He have been tested in new JLab experiments and
found to predict the ratio of pp to pn pairs at higher
missing momentum very well (Korover et al., 2014).

2-nucleon momentum 
distributions

np vs. pp
Wiringa et al.; Carlson, et al, RMP 2015
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duce large effects in combination with ground-state
wave functions calculated including the short-range n-p
correlations. As most previous calculations were based
on independent-particle-type wave functions, the small-
ness of the resulting MEC contributions is thus under-
stood. To verify this point further, Carlson et al. have
repeated their calculation using the same operators, but
with a Fermi-gas wave function. Instead of an enhance-
ment factor of 1.47 coming from MEC at !q !
=600 MeV/c, they find a factor of 1.06 only, i.e., an eight
times smaller MEC effect.

The results of Carlson et al. also show, somewhat sur-
prisingly, that the MEC contribution is large at low mo-
mentum transfer. It decreases toward the larger Q2, in
agreement with the expectation that at very large Q2 it
falls "Sargsian, 2001# like Q−4 relative to quasielastic
scattering.

From the above discussion it becomes clear that the
Euclidean response, despite inherent drawbacks, is a
valuable quantity. Since the final continuum state does
not have to be treated explicitly, calculations of much
higher quality can be performed than for the response,
and the role of two-body currents can be treated quan-
titatively. Comparison between data and calculation has
shown in particular that for a successful prediction of
MEC, correlated wave functions for the ground state are
needed; such wave functions today are available up to
A$12 and for A=!. Unfortunately, the usage of the
Euclidean response for the time being is restricted to a
regime in which relativistic effects are not too large,
such that they can be included as corrections.

X. L ÕT SEPARATION AND COULOMB SUM RULE

In the impulse approximation, and when neglecting
the "small# contribution from nucleonic convection cur-
rents, the longitudinal and transverse response functions
RL and RT contain the same information and have the
same size. This has sometimes been called scaling of the
zeroth kind "see Sec. VII#. It was realized early on, how-
ever, that the transverse response receives significant
contributions from meson exchange currents and " ex-
citation "which are of a largely transverse nature#. It is
therefore clear that there is a high premium on separat-
ing the L and T responses, both because the L response
is easier to interpret and because of the additional infor-
mation contained in the T response.

The separation of the L and T responses is performed
using the Rosenbluth technique, which is justified only
in the single-photon exchange approximation. The cross
section, divided by a number of kinematical factors

d#

d$d%

&

#Mott

!q!4

Q4 = &RL"!q!,%# +
!q!2

2Q2RT"!q!,%# = ' ,

"65#

is a linear function of the virtual photon polarization

& = %1 +
2!q!2

Q2 tan2(

2
&−1

"66#

with q "Q# being the 3- "4-# momentum transfer and &
varying from 0 to 1 for scattering angles ( between 180°
and 0°. The slope of the linear function yields RL and
the intercept at &=0 yields RT. Figure 30 shows an early
example for an L /T separation, and demonstrates the
excess observed for the transverse strength.

While conceptually very straightforward, this L/T
separation is difficult in practice. It involves data taking
at the same !q!, but varying &, i.e., varying beam energy.
For an accurate separation of RL and RT, obviously the
largest possible range in &, hence beam energy, is re-
quired. As data are usually not taken at constant !q!, but
at a given beam energy and variable energy loss, obtain-
ing the responses at constant !q! involves interpolations
of the data. We show in Fig. 31 two examples for a
Rosenbluth separation, performed on the low- and
large-% side of the quasielastic peak, which also illus-
trate the importance of the forward angle "high-energy#
data for the determination of RL, i.e., the slope of the fit.

The Rosenbluth technique is applicable in the plane-
wave Born approximation, and fails once Coulomb dis-
tortion of the electron waves is present. Neglect of dis-
tortion is justified for the lightest nuclei alone, and only
if RT is not much bigger "or much smaller# than RL.
When one of the two contributions gets too small, even
minor corrections due to Coulomb distortion can have
large effects. At large !q!, for instance, even the determi-
nation of the proton charge form factor via the Rosen-
bluth technique is significantly affected by Coulomb cor-
rections "Arrington and Sick, 2004#. In order to extract
RL and RT in the presence of Coulomb distortion, the
data must first be corrected for these effects; this is dis-
cussed in Sec. XI.

Here we concentrate on the discussion of the longitu-

FIG. 30. Longitudinal "lower data set# and transverse re-
sponses of 12C "Finn et al., 1984#, plotted in terms of the scaling
function F"y#.
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Electron Scattering: Longitudinal vs. Transverse
Single Nucleon form factors (squared) divided out

Scaled longitudinal vs.  
transverse scattering from 12C

from Benhar, Day, Sick,  
RMP 2008

data Finn, et al 1984

q                   r ~ π/q
0.3 GeV/c       2.1   fm
0.5 GeV/c       1.2   fm
1    GeV/c       0.6  fm

Nearest neighbor nucleons at 
ρ = 0.16 fm-1 = 1 / (4/3 π r3)

r = 1.14 fm
d = 2.28 fm

Distances probed at various q



Electron Scattering:
Longitudinal and Transverse Response

RT (q,!) =
X

f

h0| j†(q) |fihf | j(q) |0i �(w � (Ef � E0))

Transverse (current) response:

RL(q,!) =
X

f

h0| ⇢†(q) |fihf | ⇢(q) |0i �(w � (Ef � E0))

Longitudinal (charge) response:

Two-nucleon currents required by current conservation
Response depends upon all the excited states of the nucleus

j =
X

i

ji +
X

i<j

jij + ... π



Euclidean Response

R̃(q, ⌧) = h0| j† exp[�(H�E0 � q
2/(2m))⌧ ] j |0i >

• Exact given a model of interactions, currents
• `Thermal’ statistical average
•  Full final-state interactions
•  All contributions included - elastic, low-lying states, quasi elastic, …

duce large effects in combination with ground-state
wave functions calculated including the short-range n-p
correlations. As most previous calculations were based
on independent-particle-type wave functions, the small-
ness of the resulting MEC contributions is thus under-
stood. To verify this point further, Carlson et al. have
repeated their calculation using the same operators, but
with a Fermi-gas wave function. Instead of an enhance-
ment factor of 1.47 coming from MEC at !q !
=600 MeV/c, they find a factor of 1.06 only, i.e., an eight
times smaller MEC effect.

The results of Carlson et al. also show, somewhat sur-
prisingly, that the MEC contribution is large at low mo-
mentum transfer. It decreases toward the larger Q2, in
agreement with the expectation that at very large Q2 it
falls "Sargsian, 2001# like Q−4 relative to quasielastic
scattering.

From the above discussion it becomes clear that the
Euclidean response, despite inherent drawbacks, is a
valuable quantity. Since the final continuum state does
not have to be treated explicitly, calculations of much
higher quality can be performed than for the response,
and the role of two-body currents can be treated quan-
titatively. Comparison between data and calculation has
shown in particular that for a successful prediction of
MEC, correlated wave functions for the ground state are
needed; such wave functions today are available up to
A$12 and for A=!. Unfortunately, the usage of the
Euclidean response for the time being is restricted to a
regime in which relativistic effects are not too large,
such that they can be included as corrections.

X. L ÕT SEPARATION AND COULOMB SUM RULE

In the impulse approximation, and when neglecting
the "small# contribution from nucleonic convection cur-
rents, the longitudinal and transverse response functions
RL and RT contain the same information and have the
same size. This has sometimes been called scaling of the
zeroth kind "see Sec. VII#. It was realized early on, how-
ever, that the transverse response receives significant
contributions from meson exchange currents and " ex-
citation "which are of a largely transverse nature#. It is
therefore clear that there is a high premium on separat-
ing the L and T responses, both because the L response
is easier to interpret and because of the additional infor-
mation contained in the T response.

The separation of the L and T responses is performed
using the Rosenbluth technique, which is justified only
in the single-photon exchange approximation. The cross
section, divided by a number of kinematical factors

d#

d$d%

&

#Mott

!q!4

Q4 = &RL"!q!,%# +
!q!2

2Q2RT"!q!,%# = ' ,

"65#

is a linear function of the virtual photon polarization

& = %1 +
2!q!2

Q2 tan2(

2
&−1

"66#

with q "Q# being the 3- "4-# momentum transfer and &
varying from 0 to 1 for scattering angles ( between 180°
and 0°. The slope of the linear function yields RL and
the intercept at &=0 yields RT. Figure 30 shows an early
example for an L /T separation, and demonstrates the
excess observed for the transverse strength.

While conceptually very straightforward, this L/T
separation is difficult in practice. It involves data taking
at the same !q!, but varying &, i.e., varying beam energy.
For an accurate separation of RL and RT, obviously the
largest possible range in &, hence beam energy, is re-
quired. As data are usually not taken at constant !q!, but
at a given beam energy and variable energy loss, obtain-
ing the responses at constant !q! involves interpolations
of the data. We show in Fig. 31 two examples for a
Rosenbluth separation, performed on the low- and
large-% side of the quasielastic peak, which also illus-
trate the importance of the forward angle "high-energy#
data for the determination of RL, i.e., the slope of the fit.

The Rosenbluth technique is applicable in the plane-
wave Born approximation, and fails once Coulomb dis-
tortion of the electron waves is present. Neglect of dis-
tortion is justified for the lightest nuclei alone, and only
if RT is not much bigger "or much smaller# than RL.
When one of the two contributions gets too small, even
minor corrections due to Coulomb distortion can have
large effects. At large !q!, for instance, even the determi-
nation of the proton charge form factor via the Rosen-
bluth technique is significantly affected by Coulomb cor-
rections "Arrington and Sick, 2004#. In order to extract
RL and RT in the presence of Coulomb distortion, the
data must first be corrected for these effects; this is dis-
cussed in Sec. XI.

Here we concentrate on the discussion of the longitu-

FIG. 30. Longitudinal "lower data set# and transverse re-
sponses of 12C "Finn et al., 1984#, plotted in terms of the scaling
function F"y#.
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τ 

Sum rule → elastic FF2 w/ increasing 

Excellent agreement 
w/ EM  (L & T) 

response in A=4,12
Lovato, 2015, PRL 2016

R(q,!) =

Z
dt h0| j† exp[i(H � !)t] j |0i
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Want to calculate

Can calculate

Note: for q > kF
Basically a nearly local operator

Eτ ≈
q2

2m
τ = 1

All nuclei have same density
approximately same ratio of n/p

 
    Superscaling
Does not necessarily

imply incoherent scattering



• Good agreement with data without in-medium modifications of the nucleon form factors

2

to self-consistently account for nucleon and nuclear struc-
ture [24, 25], leads to a reduction of the proton elec-
tric form factor, and, as a consequence, to a significant
quenching of the longitudinal response function of nu-
clear matter and associated Coulomb sum rule [18]. Such
a model does not explain the large enhancement of the
transverse response or the momentum-transfer depen-
dence in the quenching of the longitudinal one. It should
also be noted that medium modifications are not an in-
evitable consequence of the quark substructure of the nu-
cleon. For example, a study of the two-nucleon problem
in a flux-tube model of six quarks interacting via single
gluon and pion exchanges [26] indicates that the nucle-
ons retain their individual identities down to very short
separations, with little distortion of their substructures.

Figures 1–2, showing a comparison between the exper-
imental and theoretical RL(q,!) and RT (q,!) for mo-
mentum transfer values in the range 300–570 MeV/c,
immediately lead to the main conclusions of the present
work: (i) the dynamical approach outlined above (with
free nucleon electromagnetic form factors) is in excellent
agreement with experiment in both the longitudinal and
transverse channels; (ii) as illustrated by the di↵erence
between the plane-wave-impulse-approximation (PWIA)
and GFMC one-body-current predictions (curves labeled
PWIA and GFMC-O1b), correlations and interaction ef-
fects in the final states redistribute strength from the
quasi-elastic peak to the threshold and high-energy trans-
fer regions; and (iii) while the contributions from two-
body charge operators tend to slightly reduce RL(q,!)
in the threshold region, those from two-body currents
generate a large excess of strength in RT (q,!) over
the whole !-spectrum (curves labeled GFMC-O1b and
GFMC-O1b+2b), thus o↵setting the quenching noted in
(ii) in the quasi-elastic peak.

As a result of the present study, a consistent picture
of the electromagnetic response of nuclei emerges, which
is at variance with the conventional one of quasi-elastic
scattering as being dominated by single-nucleon knock-
out. This fact also has implications for the nuclear weak
response probed in inclusive neutrino scattering induced
by charge-changing and neutral current processes. In
particular, the energy dependence of the cross section
is quite important in extracting neutrino oscillation pa-
rameters. An earlier study of the sum rules associated
with the weak transverse and vector-axial interference re-
sponse functions in 12C found [27] a large enhancement
due to two-body currents in both the vector and axial
components of the neutral current. Only neutral weak
processes have been considered so far, but one would
expect these conclusions to remain valid in the case of
charge-changing ones. In this connection, it is important
to realize that neutrino and anti-neutrino cross sections
only di↵er in the sign of this vector-axial interference re-
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FIG. 1. (Color online) Electromagnetic longitudinal response
functions of 12C for q in the range (300–570) MeV. Exper-
imental data are from Refs. [9, 10]. See text for further
explanations.

sponse, and that this di↵erence is crucial for inferring the
charge-conjugation and parity violating phase, one of the
fundamental parameters of neutrino physics, to be mea-
sured at DUNE. The rest of this paper deals succinctly
with the most salient aspects of the present calculations.

The longitudinal and transverse response functions are
defined as

R↵(q,!) =
X

f

hf |j↵(q,!)|0ihf |j↵(q,!)|0i⇤

⇥ �(Ef � ! � E0) , ↵ = L, T (1)

where |0i and |fi represent the nuclear initial and final
states of energies E0 and Ef , and jL(q,!) and jT (q,!)
are the electromagnetic charge and current operators, re-
spectively. A direct calculation of R↵(q,!) is impractical,
since it would require evaluating each individual transi-
tion amplitude |0i �! |fi induced by the charge and cur-
rent operators. To circumvent this di�culty, the use of
integral transform techniques has proven to be quite help-
ful. One such approach is based on the Laplace transform
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to self-consistently account for nucleon and nuclear struc-
ture [24, 25], leads to a reduction of the proton elec-
tric form factor, and, as a consequence, to a significant
quenching of the longitudinal response function of nu-
clear matter and associated Coulomb sum rule [18]. Such
a model does not explain the large enhancement of the
transverse response or the momentum-transfer depen-
dence in the quenching of the longitudinal one. It should
also be noted that medium modifications are not an in-
evitable consequence of the quark substructure of the nu-
cleon. For example, a study of the two-nucleon problem
in a flux-tube model of six quarks interacting via single
gluon and pion exchanges [26] indicates that the nucle-
ons retain their individual identities down to very short
separations, with little distortion of their substructures.

Figures 1–2, showing a comparison between the exper-
imental and theoretical RL(q,!) and RT (q,!) for mo-
mentum transfer values in the range 300–570 MeV/c,
immediately lead to the main conclusions of the present
work: (i) the dynamical approach outlined above (with
free nucleon electromagnetic form factors) is in excellent
agreement with experiment in both the longitudinal and
transverse channels; (ii) as illustrated by the di↵erence
between the plane-wave-impulse-approximation (PWIA)
and GFMC one-body-current predictions (curves labeled
PWIA and GFMC-O1b), correlations and interaction ef-
fects in the final states redistribute strength from the
quasi-elastic peak to the threshold and high-energy trans-
fer regions; and (iii) while the contributions from two-
body charge operators tend to slightly reduce RL(q,!)
in the threshold region, those from two-body currents
generate a large excess of strength in RT (q,!) over
the whole !-spectrum (curves labeled GFMC-O1b and
GFMC-O1b+2b), thus o↵setting the quenching noted in
(ii) in the quasi-elastic peak.

As a result of the present study, a consistent picture
of the electromagnetic response of nuclei emerges, which
is at variance with the conventional one of quasi-elastic
scattering as being dominated by single-nucleon knock-
out. This fact also has implications for the nuclear weak
response probed in inclusive neutrino scattering induced
by charge-changing and neutral current processes. In
particular, the energy dependence of the cross section
is quite important in extracting neutrino oscillation pa-
rameters. An earlier study of the sum rules associated
with the weak transverse and vector-axial interference re-
sponse functions in 12C found [27] a large enhancement
due to two-body currents in both the vector and axial
components of the neutral current. Only neutral weak
processes have been considered so far, but one would
expect these conclusions to remain valid in the case of
charge-changing ones. In this connection, it is important
to realize that neutrino and anti-neutrino cross sections
only di↵er in the sign of this vector-axial interference re-
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FIG. 1. (Color online) Electromagnetic longitudinal response
functions of 12C for q in the range (300–570) MeV. Exper-
imental data are from Refs. [9, 10]. See text for further
explanations.

sponse, and that this di↵erence is crucial for inferring the
charge-conjugation and parity violating phase, one of the
fundamental parameters of neutrino physics, to be mea-
sured at DUNE. The rest of this paper deals succinctly
with the most salient aspects of the present calculations.

The longitudinal and transverse response functions are
defined as

R↵(q,!) =
X

f

hf |j↵(q,!)|0ihf |j↵(q,!)|0i⇤

⇥ �(Ef � ! � E0) , ↵ = L, T (1)

where |0i and |fi represent the nuclear initial and final
states of energies E0 and Ef , and jL(q,!) and jT (q,!)
are the electromagnetic charge and current operators, re-
spectively. A direct calculation of R↵(q,!) is impractical,
since it would require evaluating each individual transi-
tion amplitude |0i �! |fi induced by the charge and cur-
rent operators. To circumvent this di�culty, the use of
integral transform techniques has proven to be quite help-
ful. One such approach is based on the Laplace transform

2

to self-consistently account for nucleon and nuclear struc-
ture [24, 25], leads to a reduction of the proton elec-
tric form factor, and, as a consequence, to a significant
quenching of the longitudinal response function of nu-
clear matter and associated Coulomb sum rule [18]. Such
a model does not explain the large enhancement of the
transverse response or the momentum-transfer depen-
dence in the quenching of the longitudinal one. It should
also be noted that medium modifications are not an in-
evitable consequence of the quark substructure of the nu-
cleon. For example, a study of the two-nucleon problem
in a flux-tube model of six quarks interacting via single
gluon and pion exchanges [26] indicates that the nucle-
ons retain their individual identities down to very short
separations, with little distortion of their substructures.

Figures 1–2, showing a comparison between the exper-
imental and theoretical RL(q,!) and RT (q,!) for mo-
mentum transfer values in the range 300–570 MeV/c,
immediately lead to the main conclusions of the present
work: (i) the dynamical approach outlined above (with
free nucleon electromagnetic form factors) is in excellent
agreement with experiment in both the longitudinal and
transverse channels; (ii) as illustrated by the di↵erence
between the plane-wave-impulse-approximation (PWIA)
and GFMC one-body-current predictions (curves labeled
PWIA and GFMC-O1b), correlations and interaction ef-
fects in the final states redistribute strength from the
quasi-elastic peak to the threshold and high-energy trans-
fer regions; and (iii) while the contributions from two-
body charge operators tend to slightly reduce RL(q,!)
in the threshold region, those from two-body currents
generate a large excess of strength in RT (q,!) over
the whole !-spectrum (curves labeled GFMC-O1b and
GFMC-O1b+2b), thus o↵setting the quenching noted in
(ii) in the quasi-elastic peak.

As a result of the present study, a consistent picture
of the electromagnetic response of nuclei emerges, which
is at variance with the conventional one of quasi-elastic
scattering as being dominated by single-nucleon knock-
out. This fact also has implications for the nuclear weak
response probed in inclusive neutrino scattering induced
by charge-changing and neutral current processes. In
particular, the energy dependence of the cross section
is quite important in extracting neutrino oscillation pa-
rameters. An earlier study of the sum rules associated
with the weak transverse and vector-axial interference re-
sponse functions in 12C found [27] a large enhancement
due to two-body currents in both the vector and axial
components of the neutral current. Only neutral weak
processes have been considered so far, but one would
expect these conclusions to remain valid in the case of
charge-changing ones. In this connection, it is important
to realize that neutrino and anti-neutrino cross sections
only di↵er in the sign of this vector-axial interference re-
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FIG. 1. (Color online) Electromagnetic longitudinal response
functions of 12C for q in the range (300–570) MeV. Exper-
imental data are from Refs. [9, 10]. See text for further
explanations.

sponse, and that this di↵erence is crucial for inferring the
charge-conjugation and parity violating phase, one of the
fundamental parameters of neutrino physics, to be mea-
sured at DUNE. The rest of this paper deals succinctly
with the most salient aspects of the present calculations.

The longitudinal and transverse response functions are
defined as

R↵(q,!) =
X

f

hf |j↵(q,!)|0ihf |j↵(q,!)|0i⇤

⇥ �(Ef � ! � E0) , ↵ = L, T (1)

where |0i and |fi represent the nuclear initial and final
states of energies E0 and Ef , and jL(q,!) and jT (q,!)
are the electromagnetic charge and current operators, re-
spectively. A direct calculation of R↵(q,!) is impractical,
since it would require evaluating each individual transi-
tion amplitude |0i �! |fi induced by the charge and cur-
rent operators. To circumvent this di�culty, the use of
integral transform techniques has proven to be quite help-
ful. One such approach is based on the Laplace transform

• We inverted the electromagnetic Euclidean response of 12C

AL et al. PRL 117 082501 (2016)

• Small contribution from two-body currents.

12C, q=570 MeV

Electron Scattering from 12C:  Longitudinal (Charge) Response

see also recent work in CC theory: 40Ar 



• We inverted the electromagnetic Euclidean response of 12C

• Good agreement with the experimental data once two-body currents are accounted for
2

to self-consistently account for nucleon and nuclear struc-
ture [24, 25], leads to a reduction of the proton elec-
tric form factor, and, as a consequence, to a significant
quenching of the longitudinal response function of nu-
clear matter and associated Coulomb sum rule [18]. Such
a model does not explain the large enhancement of the
transverse response or the momentum-transfer depen-
dence in the quenching of the longitudinal one. It should
also be noted that medium modifications are not an in-
evitable consequence of the quark substructure of the nu-
cleon. For example, a study of the two-nucleon problem
in a flux-tube model of six quarks interacting via single
gluon and pion exchanges [26] indicates that the nucle-
ons retain their individual identities down to very short
separations, with little distortion of their substructures.

Figures 1–2, showing a comparison between the exper-
imental and theoretical RL(q,!) and RT (q,!) for mo-
mentum transfer values in the range 300–570 MeV/c,
immediately lead to the main conclusions of the present
work: (i) the dynamical approach outlined above (with
free nucleon electromagnetic form factors) is in excellent
agreement with experiment in both the longitudinal and
transverse channels; (ii) as illustrated by the di↵erence
between the plane-wave-impulse-approximation (PWIA)
and GFMC one-body-current predictions (curves labeled
PWIA and GFMC-O1b), correlations and interaction ef-
fects in the final states redistribute strength from the
quasi-elastic peak to the threshold and high-energy trans-
fer regions; and (iii) while the contributions from two-
body charge operators tend to slightly reduce RL(q,!)
in the threshold region, those from two-body currents
generate a large excess of strength in RT (q,!) over
the whole !-spectrum (curves labeled GFMC-O1b and
GFMC-O1b+2b), thus o↵setting the quenching noted in
(ii) in the quasi-elastic peak.

As a result of the present study, a consistent picture
of the electromagnetic response of nuclei emerges, which
is at variance with the conventional one of quasi-elastic
scattering as being dominated by single-nucleon knock-
out. This fact also has implications for the nuclear weak
response probed in inclusive neutrino scattering induced
by charge-changing and neutral current processes. In
particular, the energy dependence of the cross section
is quite important in extracting neutrino oscillation pa-
rameters. An earlier study of the sum rules associated
with the weak transverse and vector-axial interference re-
sponse functions in 12C found [27] a large enhancement
due to two-body currents in both the vector and axial
components of the neutral current. Only neutral weak
processes have been considered so far, but one would
expect these conclusions to remain valid in the case of
charge-changing ones. In this connection, it is important
to realize that neutrino and anti-neutrino cross sections
only di↵er in the sign of this vector-axial interference re-
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FIG. 1. (Color online) Electromagnetic longitudinal response
functions of 12C for q in the range (300–570) MeV. Exper-
imental data are from Refs. [9, 10]. See text for further
explanations.

sponse, and that this di↵erence is crucial for inferring the
charge-conjugation and parity violating phase, one of the
fundamental parameters of neutrino physics, to be mea-
sured at DUNE. The rest of this paper deals succinctly
with the most salient aspects of the present calculations.

The longitudinal and transverse response functions are
defined as

R↵(q,!) =
X

f

hf |j↵(q,!)|0ihf |j↵(q,!)|0i⇤

⇥ �(Ef � ! � E0) , ↵ = L, T (1)

where |0i and |fi represent the nuclear initial and final
states of energies E0 and Ef , and jL(q,!) and jT (q,!)
are the electromagnetic charge and current operators, re-
spectively. A direct calculation of R↵(q,!) is impractical,
since it would require evaluating each individual transi-
tion amplitude |0i �! |fi induced by the charge and cur-
rent operators. To circumvent this di�culty, the use of
integral transform techniques has proven to be quite help-
ful. One such approach is based on the Laplace transform
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FIG. 2. (Color online) Same as Fig. 1 but for the electromag-
netic transverse response functions. Since pion production
mechanisms are not included, the present theory underesti-
mates the (transverse) strength in the � peak region, see in
particular the q=570 MeV/c case.

of R↵(q,!)—so called Euclidean response [11]—which we
define as

E↵(q, ⌧) =

Z 1

!
+
el

d! e�!⌧
R↵(q,!)

[Gp

E
(q,!)]2

, (2)

where Gp

E
(q,!) is the (free) proton electric form factor

and the integration excludes the contribution due to elas-
tic scattering (!el is the energy of the recoiling ground
state). We elaborate this issue further below; for now
it su�ces to note that, in the specific case of 12C, the
ground state has quantum numbers J⇡ =0+ and there-
fore the elastic contribution vanishes in the transverse
channel. With the definition given in Eq. (2), the Eu-
clidean response function above can be thought of as be-
ing due to point-like, but strongly interacting, nucleons,
and can simply be expressed as

E↵(q, ⌧)=h0|O†
↵
(q)e�(H�E0)⌧O↵(q)|0i� |F↵(q)|2e�⌧!el ,

(3)
where H is the nuclear Hamiltonian (here, the AV18/IL7
model), F↵(q) = h0|O↵(q)|0i is the elastic form fac-
tor, and in the electromagnetic operators O↵(q) the de-

pendence on the energy transfer ! has been removed
by dividing the current j↵(q,!) by Gp

E
(q,!) [15]. The

calculation of this matrix element is then carried out
with GFMC methods [11] similar to those used in pro-
jecting out the exact ground state of H from a trial
state [28]. It proceeds in two steps. First, an un-
constrained imaginary-time propagation of the state |0i
is performed and saved. Next, the states O↵(q)|0i
are evolved in imaginary time following the path pre-
viously saved. During this latter imaginary-time evolu-
tion, scalar products of exp [�(H�E0) ⌧i]O↵(q)|0i with
O↵(q)|0i are evaluated on a grid of ⌧i values, and from
these scalar products estimates for E↵(q, ⌧i) are obtained
(a complete discussion of the methods is in Refs. [11, 29]).
Following Ref. [15] (see also extended material submit-

ted in support of that publication), we have exploited
maximum entropy techniques [13, 14] to perform the an-
alytic continuation of the Euclidean response function—
corresponding to the inversion of the Laplace transform
of Eq. (2). However, we have improved on the inver-
sion procedure described in [15] in order to better prop-
agate the statistical errors associated with E↵(q, ⌧) into
R↵(q,!). Specifically, the smallest possible value for pa-
rameter ↵ (see Ref. [15]) has been chosen to perform a
first inversion of the Laplace transform, which is then in-
dependent on the prior. The resulting response function
R(0) is the one whose Laplace transform E(0) is the clos-
est to the original average GFMC Euclidean response.
Then, N = 100 Euclidean response functions are sam-
pled from a multivariate gaussian distribution, with mean
value E(0) and covariance estimated from the original set
of GFMC Euclidean responses. The corresponding re-
sponse functions, obtained using the so called “historic
maximum entropy” technique, are used to estimate the
mean value and the variance of the final inverted response
function.

q (MeV/c) 2+ 0+ 4+

300 0.1286 0.0311 0.0060
380 0.0745 0.0051 0.0075
570 0.0064 0.0046 0.0037

TABLE I. Measured longitudinal transition form factors, de-
fined as hf |OL(q)|0i/Z, to the f =2+, 0+ (Hoyle), and 4+
states in 12C. Experimental data are from Refs. [30–32], and
have been divided by the proton electric form factorGp

E(q,!f )
with !f = Ef � E0.

We now proceed to address the issue alluded to earlier.
The low-lying spectrum of 12C consists of J⇡ =2+, 0+

(Hoyle), and 4+ states with excitation energies E?

f
� E0

experimentally known to be, respectively, 4.44, 7.65, and
14.08 in MeV units [33]. The contributions of these states
to the quasi-elastic longitudinal and transverse response
functions extracted from inclusive (e, e0) cross section
measurements are not included. Therefore, before com-

2

to self-consistently account for nucleon and nuclear struc-
ture [24, 25], leads to a reduction of the proton elec-
tric form factor, and, as a consequence, to a significant
quenching of the longitudinal response function of nu-
clear matter and associated Coulomb sum rule [18]. Such
a model does not explain the large enhancement of the
transverse response or the momentum-transfer depen-
dence in the quenching of the longitudinal one. It should
also be noted that medium modifications are not an in-
evitable consequence of the quark substructure of the nu-
cleon. For example, a study of the two-nucleon problem
in a flux-tube model of six quarks interacting via single
gluon and pion exchanges [26] indicates that the nucle-
ons retain their individual identities down to very short
separations, with little distortion of their substructures.

Figures 1–2, showing a comparison between the exper-
imental and theoretical RL(q,!) and RT (q,!) for mo-
mentum transfer values in the range 300–570 MeV/c,
immediately lead to the main conclusions of the present
work: (i) the dynamical approach outlined above (with
free nucleon electromagnetic form factors) is in excellent
agreement with experiment in both the longitudinal and
transverse channels; (ii) as illustrated by the di↵erence
between the plane-wave-impulse-approximation (PWIA)
and GFMC one-body-current predictions (curves labeled
PWIA and GFMC-O1b), correlations and interaction ef-
fects in the final states redistribute strength from the
quasi-elastic peak to the threshold and high-energy trans-
fer regions; and (iii) while the contributions from two-
body charge operators tend to slightly reduce RL(q,!)
in the threshold region, those from two-body currents
generate a large excess of strength in RT (q,!) over
the whole !-spectrum (curves labeled GFMC-O1b and
GFMC-O1b+2b), thus o↵setting the quenching noted in
(ii) in the quasi-elastic peak.

As a result of the present study, a consistent picture
of the electromagnetic response of nuclei emerges, which
is at variance with the conventional one of quasi-elastic
scattering as being dominated by single-nucleon knock-
out. This fact also has implications for the nuclear weak
response probed in inclusive neutrino scattering induced
by charge-changing and neutral current processes. In
particular, the energy dependence of the cross section
is quite important in extracting neutrino oscillation pa-
rameters. An earlier study of the sum rules associated
with the weak transverse and vector-axial interference re-
sponse functions in 12C found [27] a large enhancement
due to two-body currents in both the vector and axial
components of the neutral current. Only neutral weak
processes have been considered so far, but one would
expect these conclusions to remain valid in the case of
charge-changing ones. In this connection, it is important
to realize that neutrino and anti-neutrino cross sections
only di↵er in the sign of this vector-axial interference re-
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FIG. 1. (Color online) Electromagnetic longitudinal response
functions of 12C for q in the range (300–570) MeV. Exper-
imental data are from Refs. [9, 10]. See text for further
explanations.

sponse, and that this di↵erence is crucial for inferring the
charge-conjugation and parity violating phase, one of the
fundamental parameters of neutrino physics, to be mea-
sured at DUNE. The rest of this paper deals succinctly
with the most salient aspects of the present calculations.

The longitudinal and transverse response functions are
defined as

R↵(q,!) =
X

f

hf |j↵(q,!)|0ihf |j↵(q,!)|0i⇤

⇥ �(Ef � ! � E0) , ↵ = L, T (1)

where |0i and |fi represent the nuclear initial and final
states of energies E0 and Ef , and jL(q,!) and jT (q,!)
are the electromagnetic charge and current operators, re-
spectively. A direct calculation of R↵(q,!) is impractical,
since it would require evaluating each individual transi-
tion amplitude |0i �! |fi induced by the charge and cur-
rent operators. To circumvent this di�culty, the use of
integral transform techniques has proven to be quite help-
ful. One such approach is based on the Laplace transform

AL et al. PRL 117 082501 (2016)

• Need to include relativistic corrections in the kinematics

12C, q=570 MeV

Electron Scattering from 12C:  Transverse (Spin) Response



Neutrino Scattering from 12C: MiniBoone and T2K
MiniBoone: Neutrino

MiniBoone: Anti-Neutrino

A Lovato et al. PRX (2020)

Also: T2K comparison

Neutrinos and Antineutrinos
Vector Axial-vector response 

and V-A interference
Enhancement in two-body currents



Spin and Density Response in Cold Atoms

Mukherjee, et.a all PRX (2020)

Spectral Response / Contact

Density-Density Response at k=4.3 kFHO

Vale, Drut, Gandolfi, et al (2021)

Dynamic Spin Response of a Strongly-Interacting Fermi Gas
Hoinka, et al, PRL (2012)

Spin parallel and anti-parallel components



Can we mimic or test models of nuclear 
and cold atom response?

• y-scaling (different momenta), 
• superscaling (different systems)
• QMC / short-time approximation
• Importance of short-range correlations
• Microscopic understanding of contacts

Extend to low-energy regime: superfluidity,  etc.

Valuable Experimental Aspects in Cold Atom Systems
• Flexibility in Interaction Strength (and range?)
• Flexibility in External Potential
• Spin Imbalance (np vs pp, ↑↑ vs  ↑↓)
• Others ?



Towards real-time dynamics: Short-time approximation

Saori Pastore, et al, 2019

I. INTRODUCTION

The scattering of electrons and neutrinos by nuclei is governed by the relevant electroweak

response functions. These are given in detail in Refs. [1, 2], generically they are given by:

RO(q,!) =

R
d⌦q

4⇡

X

f

h 0|O
†(q)| fih f |O(q)| 0i�(Ef � E0 � !), (1)

for all relevant electroweak current operators O. This can be equivalently written as a

current-current matrix element with the insertion of a real-time propagator in place of the

sum over final states:

RO(q,!) =

R
d⌦q

4⇡

Z
dt

2⇡
exp[i!t]h 0|O

†(q, t0) exp[�iHt]O(q, t = 0) 0i, (2)

The nuclear Hamiltonian is a sum of one-particle kinetic terms plus two- and three-nucleon

interactions: H =
P

i
�

~2
2mr

2
i
+

P
i<j

Vij +
P

i<j<k
Vijk. Similarly the current operators O

are written as a sum of one-, two- and in principle many-nucleon operators: O =
P

i
Oi +

P
i<j

Oij + ...

Calculations of nuclear response based upon realistic interactions and currents using

the imaginary-time formalism have been used to calculate electron[? ] and neutrino[?

] scattering. In this approach, one calculates the imaginary-time response RO(q, ⌧) =
R
exp[�!⌧ ]RO(q,!) through the imaginary-time correlation function, making the replace-

ment (t ! �i⌧) in Eq. 2. Quantum Monte Carlo methods can then be used to calculate

the relevant matrix elements. Since the nuclear response in the quasi-elastic region is fairly

smooth in the energy !, maximum entrop techniques are successful in obtaining the real-time

response from the imaginary time response.

This method has the advantage that final-state interactions and two-nucleon currents are

included completely, that these interactions and currents are tied to the same interaction

used to calculate the ground state | 0i, and that the current operators are the same as

those used to study other observables like nuclear form factors [, REF] low-energy transitions

including beta decay [, REF] and double beta decay [? , REF] The disadvantages of this

approach are that it is computationally intensive since it involves the propagation of the full

A-nucleon system, and that it provides direct information on only inclusive response, the

sum over all final states.

Other approaches including PWIA and spectral function approaches involve o↵-diagonal

density matrix elements of one (and sometimes two-) nucleons. However the propagation of
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the final state is treated in a rather simplified way and in general these approaches often

do not include full two-nucleon interactions and currents and do not yield the correct sum

rules of the response.

II. REAL-TIME RESPONSE AT SHORT TIMES

In this paper we evaluate the real-time matrix element in Eq. 2 for short times including

the full ground state wave function, current operator and final-state interactions. The short-

time approximation should be valid at high energies such as the quasielastic regime. It

naturally incorporates two nucleon interactions, currents, and their interference that have

been demonstrated to be important in [? ]. Since it is based on the full A-nucleon ground

state, it also includes the Pauli principle and reproduces the correct nuclear sum rules.

Calculating the full response requires the matrix element of the real-time propagator

hR0, �0, ⌧ 0| exp[�iHt]|R, �, ⌧i between A-particle spatial, spin, and isospin states denoted by

R0, �0, ⌧ 0 and R, �, ⌧ . The propagator can be expanded in a manner similar to the Trotter

decomposition typically used in Quantum Monte Carlo (QMC) simulations:

hR0, �0, ⌧ 0| exp[�iHt]|R, �, ⌧i ⇡ hR0, �0, ⌧ 0|
Y

i

exp[�iH0
i
t]
S
Q

i<j
exp[�iHijt]Q

i<j
exp[�iH0

ij
t]

|R, �, ⌧i (3)

where H0
i
is the single-particle kinetic energy and Hij and Hij are the interacting and free

two-particle Hamiltonians. The interacting Hamiltonian includes the two-nucleon interac-

tion, we have dropped the three-nucleon interaction in the final state interaction but its

should be of order 10 per cent of the two-nuceon interaction

Inserting this expression into Eq. 2, keeping only the single-particle propagators and

currents, and factoring out the spectator nucleons reproduces the plane-wave impulse ap-

proximation (PWIA) calculation at high-momentum transfer. At low momentum transfer

Eq. 2 includes Pauli blocking as it is evaluated in the full A-nucleon ground state. Since the

full currents and ground-state are included in Eq. 2 the sum rules are also exactly recovered

at t = 0 in the short-time approximation.

We can go further and include the two-nucleon contributions to the response. Includ-

ing two-nucleon current operators, ground-state correlations, and two-nucleon terms in the

propagator allows us to go beyond the PWIA or spectral function approach. Calculations of

the imaginary-time response have demonstrated that both two-nucleon correlations and cur-

3

At short time evolution can be described as a product of  NN propagators

Evaluate as a sum of matrix elements of NN states embedded in the Nucleus

X

q,Q,J,L,S,T

h 0| ji† | NN (q,Q)i h NN (q,Q)| ji | 0i �(Ef � Ei � !)
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Incoherent sum of single nucleon currents

X

q,Q,J,L,S,T
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Interference of 1- and 2-nucleon currents

X

q,Q,J,L,S,T

h 0| jij† | NN (q,Q)i h NN (q,Q)| jij | 0i �(Ef � Ei � !)

<latexit sha1_base64="GKVhOJ0rrCR8nftwgd9tOaYypps="></latexit><latexit sha1_base64="GKVhOJ0rrCR8nftwgd9tOaYypps="></latexit><latexit sha1_base64="GKVhOJ0rrCR8nftwgd9tOaYypps="></latexit><latexit sha1_base64="GKVhOJ0rrCR8nftwgd9tOaYypps="></latexit>

Diagonal 2-nucleon currents



Properties of short-time approximation

• Includes incoherent scattering plus interference between single nucleon terms 
and interference between one- and two-nucleon currents


• Must be calculated at each q 
   Fully incorporates Pauli exclusion principle 
   Correct sum rule, good approximation to energy-weighted sum rule 
   Includes charge propagation due to pion exchange


• Gives two-nucleon information after the vertex 
    Now: relative and CM energy (or momentum) of the pair 
             separation into different kind of pairs 
    Future:  angular dependence of q.P’, q.p’  
               (where p’,P’ are the momenta of the final state pair)


• Intermediate between fully quantum evolution and single-nucleon vertex 
      Classical evolution of the pair interacting with other nucleons still required




component and the spectator nucleus, one can more easily incorporate relativistic kinemat-

ics and currents, pion production, and resonance production. Treating such e↵ects at the

two-nucleon level is vastly easier than calculating the same processes in a full A-nucleon

treatment. We expect that interference processes, for example di↵ernt processes leading to

pion production, may be important here as well.

0
50

10050

100

0

2,000

4,000

E [MeV]e [MeV]

S
(E

,e
)

Transverse Density q = 300 MeV

add comment on momentum distribution vs STA, and comment on 1st king scaling
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Towards real-time dynamics: Short-Time Approx

• Integral over surfaces w/ constant e+E gives full response

S. Pastore, et al, PRC (2020) 



• STA Comparison to data/ GFMC : electron scattering on A=4



Towards exclusive final states

event generators take vertex (now moving to two 
nucleon vertex and perform semiclassical propagation 
through the nucleus

Barrow, et al, PRD 2021



R(q,!) =

Z
dt h0| j† exp[i(H � !)t] j |0i
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• use quantum computer
• test ideas on simple problems
• gradually extend to more realistic cases

Lower Energy Response/ Exclusive Final States
Quantum Computing 

and Real-Time quantum dynamics
 

Alessandro Roggero, et al (2018)
Rogggero, Lu, PRD (2020) 

Roggero, Baroni, et al. (in prep)

•  Only fairly modest time-propagation is required  
     (modest coherence time)

•  Quantum vs. Classical dynamics
•  Dynamics of entanglement
•  Impact on specific observables
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where F2W (x) is the well-known Fejer kernel from Fourier
analysis (see eg. [45]). The probability distribution P (y)
is a good approximation of SO(!) since this kernel can
be seen as a representation of the delta function with
width �x ⇡ 2�W . Therefore if we require a frequency
resolution �! we will need W = log2 (�H/�!) auxiliary
qubits and a polynomial number of applications of the
time evolution operator to obtain a sample from P (y).

As mentioned above, for most Hamiltonians of interest
the energy gap�H scales only polynomially with the size
of the system.

We now need to estimate P (y) from N samples drawn
from it. Since y is a discrete variable an e�cient way of
reconstructing the probability distribution is by produc-
ing an histogram hN (y) from the samples. Using Hoe↵d-
ing’s inequality [46] we find that

Pr (|hN (y)� P (y)| � �)  2e�2N�2 , (15)

which implies in order to obtain a precision � with prob-
ability 1� ✏ we need approximately

N = ln

✓
2

✏

◆
1

2�2
(16)

independent samples.
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FIG. 1. Approximations of the true response function SO(!)
for the model system described by the hamiltonian of Eq. (5)
for di↵erent numbers of the work qubits: W = 6 (blue line),
W = 8 (red line) and W = 12 (green line). The exact re-
sponse is also shown with black dots. The inset shows the
maximum error in the sample estimate of P (y) as a function
of the number of samples.

In Fig. 1 we plot the approximate response P (y) for
the model Hamiltonian Eq. (5) at three di↵erent values
of W (6,8,12). By comparing with the exact result shown
as black dots, we see that for W = 12 the e↵ect of energy
resolution is negligible but already with W = 8 we ob-
tain a rather accurate estimate for SO(!). Even W = 6
reproduces important features of the response, which in
experiments is convoluted with the detector resolution.
The inset shows the convergence of the maximum error

�max = sup
y2[0,...,2W�1]

|hN (y)� P (y)| (17)

as a function of the sample size N . Response functions
relevant for ⌫ and e� scattering are typically smooth at
high energy and hence require small W and short prop-
agation times.
Finally, in order to obtain a negligible bias from the

state preparation we need the parameter � to scale as

� / C

p
�

kÔk
(18)

for some constant C = O(1). Note that the Hamilto-
nian evolution implemented in Ût has to have an error
✏t  �2

kÔk
2 to be negligible (luckily algorithms with

only logarithmic dependence on ✏t are known [34, 41]).
This concludes the proof of the scalings (3) and (4).

II. FINAL STATE MEASUREMENTS

In electron- or neutrino-nuclear scattering experi-
ments [9, 47–60] one would like to infer the probability
P (q,!|~p) that the probe transferred energy-momentum
(q,!) to the nucleus and simultaneously that the final
state includes a nucleon (or neutron or proton) of mo-
mentum (~p). More concretely this amounts to an infer-
ence procedure of the form

P (q,!|~p) = P (~p|q,!)
P (q,!)

P (~p)

= P (~p|q,!)
P (!|q)P (q)

P (~p)

(19)

where P (~p) results from the experimental measure,
P (~p|q,!) is the momentum distribution of the final states
for a process with given (q,!) and P (q|!) ⌘ S(q,!). The
prior probability P (q) depends on the static response of
the nucleus and the characteristic of the probe beam and
can be updated given the other ones by a Bayesian pro-
cedure. The above section explains how to obtain S(q,!)
with a given accuracy and in the following we will show
how to evaluate few-body momentum distributions given
by the final state of the algorithm above. Note that af-
ter measuring the W ancilla qubits of Sec.I B the main
register will be left in a state | f i composed by a lin-
ear superposition of final states corresponding to energy
transfer ! ±�!. Imagine we want now to compute ex-
clusive 1 and 2-body momentum distributions

n1(A) = h f |n̂A| f i n2(A,B) = h f |n̂An̂B | f i (20)

where n̂k ⌘ n̂(~pk,�k, ⌧k) is the number operator for a
state with momentum ~pk, spin �k and isospin ⌧k. We
can define a unitary operator UnA = exp(�i⇡n̂A) (which
is e�ciently implementable) and run the following circuit
with an ancilla qubit

|0i H • H

| f i UnA

(21)



Future directions

• Compare theories of nuclear and cold atom response with data


• Can we merge quantum/classical approaches to get  
     exclusive cross sections? What are the requirements


• Tests of this quantum/classical transition 
   Nuclear physics 
   Finite cold atom systems


• Other (Bulk) Responses (Spin susceptibility, viscosity, …)


• Beyond Linear Response ….   Quench, more general scattering, …


