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Plan

Mass without symmetry breaking (SMG)

’t Hooft anomalies and SMG in continuum.

Anomalies with Kähler–Dirac fermions on and off the lattice

Numerical results: SMG for staggered fermions in 3 and 4D

SMG using gauge interactions
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Fermion masses

Typically fermions acquire mass by breaking symmetries:

Explicitly eg Dirac mass breaks axial symmetry.

Spontaneously eg. < qq > 6= 0 in QCD.

Via anomalies eg η′

Does this exhaust the possibilities ?

No!

Fermions masses can arise without breaking symmetries

provided all ’t Hooft anomalies vanish

Symmetric Mass Generation (SMG)

3 / 28



Example of ’t Hooft anomaly constraints
Consider SU(5) gauge theory with global G = U(1)

L Weyl fields: χαβ(1) and ψα(−3)

chiral gauge theory

No invariant mass term but gauge anomaly cancels A(5) = −A(10)

Imagine weakly gauging G → ’t Hooft anomaly:
∑

a Q3
a = 5× (−3)3 + 10× (1)3 = −125

Key observation

’t Hooft anomalies must be same in IR and UV

Options in IR:

Composite (gauge singlet) massless fermions

Goldstone bosons from breaking G
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Symmetric mass generation

One obvious color singlet composite fermion in I.R

ξ = χabψ
aψb – U(1) charge −5

Precisely what is needed for the anomaly (−5)3 = −125 !

Can satisfy ’t Hooft anomaly if ξ remains massless!.

SMG - a small twist

To make all states massive in I.R must cancel ’t Hooft anomaly in U.V

Just add a singlet ξ(+5)!
Can now couple ξ, ξ with Dirac mass

Gξξ = Gχabψ
aψbξ ← four fermion term

Preserves G!

Another observation

Notice sixteen Weyl fermions needed...
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Discrete anomalies

Magic fermion numbers arise from cancellation of ’t Hooft anomalies

arising from discrete symmetries

D=1 Time reversal 8 Majorana

D=2 chiral fermion parity 8 Majorana/Weyl

D=3 Time reversal 16 Majorana

D=4 Spin-Z4 symmetry 16 Majorana/Weyl

eg. four dimensions: nL − nR = 0 mod 16

nL, nR number of L/R Weyl fermions

ψL → −iψL ψR → +iψR ← spin-Z4 symmetry

Arises from G = U(1)→ Z4 due to four fermion term
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How are these anomalies manifested ?

Z (A) =
∫

DψeiS(ψ,A)

A ≡ gauge or scalar field

Classical symmetry A → A′.

Global anomaly when Z (A′) = e2πiηZ (A)

eg. Witten’s global SU(2) anomaly corresponds to η = 1
2

Implies:

Z =
∫

DA Z (A) = 0

Hard to compute η in general

Dai-Freed method: calculate the dependence of Z for free fermions on

background geometry
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Consequences for SMG

Take home points ...

SMG requires that all anomalies cancel in the U.V – gauge plus ’t

Hooft anomalies associated with global symmetries including

discrete

One method to see anomalies is to examine Z in a curved

background. Cancelling anomalies amounts to demanding that Z

be independent of background.

Anomaly cancellation necessary condition for SMG. But

dynamics is also important...

Four fermion terms offer one path to SMG but structure of those

terms is largely unknown for D > 1.
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Why might a lattice theorist be interested in SMG ?

Chiral lattice gauge theories are hard ...

Nielsen-Ninomiya forces one to start with (lattice) Dirac fermions

Two main approaches:
◮ Separate L and R modes in 5th dimension (DWF)
◮ Separate L and R modes in p-space. Use strong interactions to

give cut-off scale masses to (say) the R handed states (mirrors)

In both approaches ...

Need to use four fermion operators to decouple L and R. Yields

theories with discrete global symmetries.

Cancelling all ’t Hooft anomalies necessary condition to gap

mirrors → fermions must come in multiples of 16 ..

Explicit four fermion terms needed for SMG only known in low

dimensions (Kitaev ..)
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(Reduced) staggered fermions and SMG

S =
∑

x ,µ

χa(x)ηµ(x)D
S
µχ

a(x)−
G2

8

∑

x

ǫabcdχ
a(x)χb(x)χc(x)χd(x)

χa(x): 4 single component Grassmanns

ηµ(x) = (−1)
∑

µ−1
i=1

xi and ξµ(x) = (−1)
∑d

i=µ+1 xi

Symmetries

SU(4)

shift: χ(x)→ ξµ(x)χ(x + µ)

Z4: χa(x)→ iǫ(x)χa(x)

Symmetries prohibit all bilinear terms in Γ(χ)
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Phase diagram D = 3
G →∞ < χ1χ2χ3χ4 > 6= 0. Fermions massive. But condensate

breaks no symmetries

G → 0. Massless fermions.

Must be at least 1 phase transition

S. Chandrasekharan PRD93 (2016) 081701
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(RH)MC simulations

Implement four fermion via Yukawa term with real scalar

Gσab
+ χaχb i.e replace SU(4)→ SO(4)

σab
+ = 1

2

(

σab + 1
2ǫ

abcdσcd
)

σ+ adj rep of SU+(2) ∈ SO(4) = SU+(2)× SU−(2)

Fermion operator M = η.∆+ Gσ+ is antisymmetric and invariant

under SU−(2). Hence eigenvalues come in quartets λ, λ,−λ,−λ.

Pf(M) =
(

M†M
)

1
4 with no sign problem.

In D = 4 need additional scalar kinetic term:

κ
∑

x σ+(x)−�σ+(x)← marginal in D = 4
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Phase diagram D = 4

(with David Schaich and Nouman Butt)
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Notice: four fermi as Dirac-like term

χaΩa

where Ωa = ǫabcdχbχcχd
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No symmetry breaking D = 4
Important to check that fermion bilinears do not form spontaneously:
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Evidence for direct, continuous phase transition between massless

and massive phases with no symmetry breaking (S.C et al. PRD98

(2018) 114514)

Notice: continuum limit describes 4× 4 = 16 Majorana fermions !
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Lattice anomalies ?

Simulations indicate that fermions gapped in continuum - 16 Majorana

fermions as required by continuum arguments

Is there any anomaly argument based directly in lattice for this ?

Yes !

A gravitational anomaly for staggered fermions

Staggered fermions may be generalized to random lattices of

arbitrary topology by replacing them by Kähler–Dirac fermions

Massless free Kähler–Dirac fermions have an exact U(1)
symmetry – analog of Uǫ(1) = eiαǫ(x) for staggered.

This symmetry is anomalous even for finite lattices:

Z → e2iαχZ whereχ = Euler character =

d
∑

i=0

Ni (−1)i

Example of QM anomaly for finite number dof !
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Kähler–Dirac fermions

Generalization of staggered fermions

Staggered fermions best understood as a discretization of

Kähler-Dirac (KD) fermions

KD equation alternative to Dirac equation. In locally flat

backgrounds describes 2D/2 degenerate Dirac spinors.

Kähler-Dirac equation

(K −m)Ω =
(

d − d† −m
)

Ω = 0

Note: K 2 = −�. Thus K alternative to γ.D.

Ω - collection of forms.
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More on Kähler-Dirac
From Kähler-Dirac field Ω = (ω0, ω1, . . . , ωD) form matrix

Ψ =

D
∑

p=0

ωn1...np(x)γ
n1

1 γ
n2

2 · · · γ
np

p

Can show that the Kähler-Dirac equation:

(d − d† −m)Ω = 0

in flat space equivalent to:

(γµ∂µ −m)Ψ = 0

In D = 4:

Four copies of Dirac equation where Dirac spinors correspond to

columns of Ψ.
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Lattice Kähler–Dirac fermions

Approximate continuum by (oriented) triangulation T

Place p-forms on p-simplices Ω→ ΩL

Replace d , d† by δ, δ where

δ(a0 . . . ap) =

p
∑

i=0

(−1)i (a0 . . . ak . . . ap)

Lattice Kähler–Dirac equation:

(δ − δ −m)ΩL = 0

No fermion doubling! Zero mode structure reproduced on lattice.

Yields staggered operator on hypercubic lattices with topology of torus.

Valid for any (oriented) random triangulation of any topology.
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An anomalous symmetry for Kähler–Dirac

Linear operator Γ : ωp → (−1)p ωp with {Γ,K} = 0

Generates exact U(1) symmetry of massless equation:

Ω→ eiαΓΩ

Ω→ ΩeiαΓ

∆SKD = 0

Measure ?
∏

p dωp → e2iN0αe−2iN1α..e2i(−1)d Ndα
∏

p dωp = e2iχα
∏

p dωp

Partition function transforms by a phase which depends only on

topology of lattice !

S.C et al JHEP 2010 (2018) 013.
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Cancelling the anomaly

Consider the sphere: χ(S2n) = 2. Phase=e4iα. Gravitational

anomaly breaks U(1)→ Z4.

Cancelled if we have 4n flavors of Kähler–Dirac (staggered) field.

Equal to 16n Dirac in flat space limit.

SMG is then possible using four fermion terms built from 4 flavors

of Kähler–Dirac /staggered fermion.

But the simulations (and continuum anomaly cancellation) suggest

minimum number of Dirac is 8 (i.e 16 Majorana).

Can we find an extension of this argument that gives this result ?
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DWF setup

Consider M = Sd × [0, Ld+1] with χM = 0

Dd+1 = DKD
d + Γ

∂

∂xd+1
−M

Localizes reduced Kähler–Dirac fermions Ψ± on boundaries.

ΓΨ± = ±Ψ± Ψ± = 1
2 (1± Γ)Ψ

These boundary modes are gapped m ∼ e−MLd+1 and yield 4 Majorana

per bulk Kähler–Dirac field as Ld+1 →∞

To cancel Z4 anomaly on each boundary separately need 4 flavors of

bulk Kähler–Dirac field.

Each boundary then carries 16 Majorana fermions
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Summary and what’s next ...

Generalizations of staggered fermions have gravitational anomalies

that can be computed exactly in lattice

Cancellation of all ’t Hooft anomalies to achieve SMG requires that we

cancel off these anomalies

Get results consistent with continuum arguments

Can we use Kähler–Dirac /staggered fermions +SMG to formulate

a chiral lattice gauge theory ? DWF construction ? .. or directly in

bulk – see PRD104 (2021) 014503.

Can we replace irrelevant four fermion operators by

renormalizable gauge interactions ?
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Rewriting the SO(4) model
(with Goksu Can Toga and Nouman Butt) Consider

S =
∑

x ,µ

ηµ(x)Tr

(

ψ†∆µψ
)

− λ2
Tr

(

ψ†ψψ†ψ
)

where ψ → GψH† under SU−(2)× SU+(2).

Impose reality condition: ψ† = σ2ψ
Tσ2

Satisfied if ψ =
∑4

A=1 σAχA with σA = (I, iσi) and χ real

→ action and symmetries identical to SO(4) model eg. Tr(ψ†ψ) = 0

Quick check:
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Gauging the SU+(2)

The idea ...

Use the SU+(2) gauge interaction to generate an effective strong four

fermi term in the I.R even as λ→ 0.

Skin =
∑

x ,µ

1

2
ηµ(x)Tr

[

ψ†(x)
(

ψ(x + µ)V †
µ(x)− ψ(x − µ)Vµ(x − µ)

)]

Four fermion condensate vs βH

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0  0.5  1  1.5  2  2.5  3

Tr
(

2
)-

3
/2

H

=0.5

L=44

L=64

24 / 28



Phases
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String tension Polyakov line

Four fermion condensate forms when SU+(2) confines (even for

small Yukawa).

Theory admits exact Z2 center symmetry: Vµ(x)→ −Vµ(x) and

ψ(x)→ ǫ(x)ψ(x) with ǫ(x) = (−1)
∑

i xi . |P| good order parameter

for deconfinement. |P| → 0 as V →∞ suggests no phase

transition.

25 / 28



No symmetry breaking

Add explicit shift symmetry breaking link bilinear

O1 = m1

∑

x ,µ

ǫ(x)ξµ(x)χ(x)χ(x + µ)
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Summary

SMG allows fermions to acquire masses without breaking

symmetries and leads to new phase transitions for strongly

interacting fermions.

D = 3, 4 there are well studied lattice examples which use

staggered/Kähler–Dirac fermions

Necessary condition for SMG is cancellation of all ’t Hooft

anomalies. Leads to magic numbers of fermions (8 Weyl in 2d, 16

Majorana in 3d, 16 Weyl 4d). These numbers can be gotten from

gravitational anomalies of staggered fermions.

SMG may offer new mechanism to gap out mirrors in efforts to

construct chiral lattice gauge theories

Standard method uses four fermion interactions. May be possible

to circumvent irrelevant ops using gauge interactions.
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Backups
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