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Motivation

Relativistic fermions in flatland have a rich class of fixed points.
Difficult to access them without Monte Carlo calculations

Monte Carlo calculations are difficult due to fermion sign problems

When sign problems can be solved, Monte Carlo methods scale
poorly with system size!

We have been exploring a new method: “Fermion Bag” approach.
Meron-clusters are also fermion bags!

What can we learn from them?



L attice Models for Fermion Bags

Unfortunately at the moment, fermion bag ideas are rather restrictive in
the type of lattice Hamiltonians we can solve.

A simple class of lattice models we can solve using them are given by
— 200 mjj E;V:f (C,-TC'Jrc.Tc,-) Mij
Ho= =) we Wi laors (Di-flux)

Th
e model has one Hij “bond” operator

tunable parameter

In terms of the familar scales t, V

w=(t/V)(1—(V/2t)*)  sinh(2a) = (V/t)/(1 - (V/2t)?)

When V = 2t fermion bags become meron clusters!



Why does this structure help for the “fermion bag” approach?

Let us write H = Z H, = Ho+ Hint where

b
Ho = 0, Hw=)» Hy H, = —H;
b

We can write the partition function as
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exponential of a free nearest
neighbor hopping term



We can now use the BSS formula

Z = [ a1 Y Te((~Ho)(-Ho.)-(~Ha,)
b \ e, e
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In traditional “auxiliary field” Monte Carlo approach B is more non-local.
This slows the calculations.



The termion bag idea

Z = /[dt] Z w*Det(1 + BiB»....By)
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The determinant is block diagonal




time

At small temperatures fermion bags merge!
but at high temperatures fermion bags naturally split
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Results with fermion bag method:
Huffman, SC Phys.Rev.D 101 (2020) 7, 074501

N =1 model, in the continuous-time formulation
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N =1 model, in the discrete-time formulation
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Importance of large lattice sizes in calculations
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Gross-Neveu (Nf = 1, Zo chiral universality)

Method v M N

4 — € [22] 0.898(30) 0.487(12) —

FRG [24] 0.93(1) 0.55 -~
Large-N [7, 84] 0.938 0.509 —
bootstrap [83] 1.32 0.544 —
LCT-INT QMC [37] 0.80(3) 0.30(2) 2 x 187
LCT-INT QMC [86] 0.74(4) 0.275(25) 2 x 212
MQMC [87] 0.77(3) 0.45(2) 2 X 242
SLAC QMC [88] 0.912(34) - 32
CT-FB QMC 0.89(1) 0.51(3) 64~
DT-FB QMC 0.94(3) 0.49(4) 1007

Huffman, SC Phys.Rev.D 101 (2020) 7, 074501

We would like to extend this success to Nf = 2




Symmetries: Lattice vs. Continuum

Symmetries of the lattice Hamiltonian are the same as those of
the free lattice Hamiltonian

N
H — _E : W e 2cc mij >0 (cich—l—chc,-)
(if)

Lattice Symmetries independent of N

Lattice Translations  T! T2 Parity P

Time Reversal ©

L attice Rotations Charge Conjugation C



Symmetries for Ni=2

Spin Rotations S
> Spin-Charge Flip F

—

Charge Rotation C

Internal Symmetry: SU(2) x SU(2) X Tn = O(4)
L

phase diagram (numerical evidence):

O(4) SU(2) x U(1)
O
massless massive

k anti-ferromagnetism
or

superconductivity!




Comparing with the Hubbard Model

The Hubbard model does not have the spin-charge flip symmetry
Internal Symmetry: SU(2) x SU(2) xx = 50(4)

c

The Hubbard interaction breaks
the spin-charge flip symmetry!

Phase Diagrams

AF
SO(4) SU((2) x U(1) ,_)
Hubbard model; O
massless massive
O(4) SU((2) x U(1)
Our model: O

massless massive
AF or SC



Symmetries and their breaking patterns determine the critical behavior

Does the spin-charge flip symmetry
change the critical behavior?



Embedding lattice symmetries in the Continuum

The free termion lattice theory in the continuum limit is described
by the Euclidean action

S = [ & Dmdent) a=12

Here we will choose ©=1,2,3 where 1, 2 are spatial and 3

is temporal (Euclidean), and 7u are 4 x 4 Dirac matrices.
From the lattice theory we can choose 71,72 to be purely imaginary.
The remaining three gamma matrices 3. 74, Y5 will then be real.

The free theory has an O(8) internal symmetry not U(4)!



To see the O(8) symmetry we have to go to the Majorana representation:

4
S =[x 3 s =123
=1

|

r, @l

We can now see the internal O(8) symmetry explicitly.

Lattice Symmetries are embedded in this internal O(8) symmetry
and the usual space-time symmetries of the continuum.

In particular the lattice O(4) symmetry mixes the four Majorana fields

& — Vi &, Ve 04)



The other discrete lattice symmetries are embedded as follows:
T1: Y(x) — iva(x)
To: d(x) = insy(x)
R: ¥(x) — eiﬂ/4(i%vziiv4v5)¢(x)
P iyl ( Px)
These involve mixing in the Dirac space.

There are 36 mass terms and 28 current terms that are allowed In
the continuum based on the lattice symmetries and possible

symmetry breaking patterns.  poqio by Hanging Liu (this workshop)
Ryu, Mudry, Hou and Chamon, PRB 80, 205319

There is a large “tfour-fermion” coupling constant space
within which our lattice model lies.

Similar to Bitan Roy’s talk (this workshop)



To make some progress we focus on Gross-Neveu models.

Anti-ferromagnetism and superconductivity form due to mass terms

that break SU,(2) or SU.(2)

—

Anti-ferromagnetic mass terms:  M(x) = ¥(x) & ¥(x)

Superconducting mass terms:
U] ()swa(x) + Va(x)138y (x)
M2(x) = i(9] ()ysta(x) — Da(x)1301 ()
ME(x) = (D1(en(x) + Da(x)un(x))

M (x)

C



Continuum Analysis: Vet + RG + new FP

How does the free fermion behave, when perturbed by the two order
parameter tluctuations through appropriate four-termion couplings.

We begin with the Euclidean four-fermion action:

S = Sy— %/d3x Mq(x) - Ms(x) — %/df& Mc(x) - M(x)

Our lattice model has spin-charge flip symmetry: G, = G,

We can perform a mean field analysis and compute the effective potential
that arises due to the presence of the two couplings.

massless fermions for small couplings
We find two phases:

broken phase at large couplings



Effective Potential in the broken phase




Renormalization Group Analysis

We have performeda 2 + ¢ and 4 — ¢ calculations, and find that

when G, = G, there is a new fixed point.

The Hubbard model, where we expect Gs # G, is described by

a different fixed point.

One-loop beta function in 2 4+ € expansion

B(Gs)

B(Ge)

1
cGs — —(5G2 — 3G,G,)

T

1
eGe — —(5G2 — 3G.Gs)

T

Four-fixed points



spin-charge
symmetric FP

new

RG flow diagramin 2+«

Free massless
fermion FP

Hubbard model FP



Critical Exponents to leading order

7] y_l
2+¢€ 2 3
4 —¢ 2¢ /7 2 —6g/7

These are ditferent from those we get in the Hubbard model.

We have not seen this new FP discussed in the literature,
but if we have missed the discussion please let us know.



Monte Carlo Results

1
Observable:  (C) = ?Tr<e_5H O /2 Oo)

Here O; = (—1Y (nj+ —n; ) isthe z-component of the

Anti-terromagnetic order parameter.

< C> -~ [ 1+n

Expected Behavior l
_ (C) ~1/L" (C) ~ Const.
inthe 1M

L— o0 o .
massless massive




Evidence for two phases and a transition
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Critical region
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Critical Scaling
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Evidence for SSB of spin-charge flip symmetry

From our effective potential analysis we expect the spin-charge
flip symmetry F to be broken spontaneously.

A new observable Is necessary to study this

1 _
(C!) = ?Tr(e H Oy O')
Here O'; = (nj+ —1/2)(n; — 1/2) is odd under spin-charge

symmetry, but invariant under spin and charge transtormations.

In the broken phase we expect L“_)”‘OO (C"Y ~ Const.



Scaling with system size
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Conclusions

Lattice Model that is suitable for fermion bag calculations naturally
contains a spin-charge flip symmetry.

This symmetry can lead to new fixed points different from that usually
observed with the Hubbard interaction.

Our model shows an interesting quantum critical point, governed by
this new FP.

The phase transition is between a semi-metal and an anti-ferromagnet
(or a superconductor) which is accompanied by the breaking of the
spin-charge flip symmetry.

An analysis up to L = 48 lattices suggests 1 = 1.1(1), v = 0.67(10)



