Lattice studies of supersymmetric Yang-Mills in 2+1 dimensions

David Schaich (Liverpool)

Relativistic Fermions in Flatland ECT* Trento 9 July 2021

arXiv:1810.09282 arXiv:2010.00026 and more to come with S. Catterall, J. Giedt, R. G. Jha, A. Sherletov & T. Wiseman

Overview and plan

2+1 dimensions is a promising frontier for practical lattice studies of supersymmetric QFTs

Why: Lattice supersymmetry motivation

How: Lattice formulation highlights

Maximally supersymmetric Yang-Mills (SYM)

Half-maximal SYM

Supersymmetric QCD

ECT*, 9 July 2021

Overview and plan

2+1 dimensions is a promising frontier for practical lattice studies of supersymmetric QFTs

Why: Lattice supersymmetry motivation

How: Lattice formulation highlights

What: Recent, ongoing & planned 3d work

These slides: davidschaich.net/talks/2107ECT.pdf

Interaction encouraged — complete coverage unnecessary

Motivations

Lattice field theory promises first-principles predictions for strongly coupled supersymmetric QFTs

Motivations

Lattice field theory promises first-principles predictions for strongly coupled supersymmetric QFTs

Quick reminder: Lattice regularization in the QFT context

Formally
$$\langle \mathcal{O} \rangle = \frac{1}{\mathcal{Z}} \int \mathcal{D} \Phi \ \mathcal{O}(\Phi) \ e^{-S[\Phi]}$$

Regularize by formulating theory in finite, discrete, euclidean space-time Gauge invariant, non-perturbative, *d*-dimensional

Spacing between lattice sites ("a")

 \longrightarrow UV cutoff scale 1/a

ECT*. 9 July 2021

3/29

Remove cutoff: $a \to 0$ $(L/a \to \infty)$

Discrete \longrightarrow continuous symmetries \checkmark

Supersymmetry must be broken on the lattice

Supersymmetry is a space-time symmetry, $({\rm I}=1,\cdots,\mathcal{N})$ adding spinor generators $\textit{Q}_{\alpha}^{\rm I}$ and $\overline{\textit{Q}}_{\dot{\alpha}}^{\rm I}$ to translations, rotations, boosts

$$\left\{ m{Q}_{\!lpha}^{\!\scriptscriptstyle \mathrm{I}}, \overline{m{Q}}_{\!\dot{lpha}}^{\!\scriptscriptstyle \mathrm{J}}
ight\} = 2\delta^{{\scriptscriptstyle \mathrm{IJ}}} \sigma_{lpha\dot{lpha}}^{\mu} m{ extstyle P}_{\!\mu} \;\;\; ext{broken in discrete space-time}$$

→ relevant susy-violating operators

Supersymmetry need not be *completely* broken on the lattice

Preserve susy sub-algebra in discrete lattice space-time

 \Longrightarrow correct continuum limit with little or no fine tuning

Equivalent constructions from 'topological' twisting and dim'l deconstruction

Review:

Catterall-Kaplan-Ünsal, arXiv:0903.4881

5/29

Need $Q = 2^d$ supersymmetries in d dimensions

 $d=3 \longrightarrow \text{Super-Yang-Mills (SYM)}$ with Q=8 or (maximal) Q=16

Supersymmetry need not be *completely* broken on the lattice

Preserve susy sub-algebra in discrete lattice space-time

 \Longrightarrow correct continuum limit with little or no fine tuning

Equivalent constructions from 'topological' twisting and dim'l deconstruction

Review:

Catterall–Kaplan–Ünsal, arXiv:0903.4881

5/29

Need $Q = 2^d$ supersymmetries in d dimensions

 $d=3 \longrightarrow \text{Super-Yang-Mills (SYM)}$ with Q=8 or (maximal) Q=16

3d maximal SYM in a nutshell

May be easiest to grok as dimensional reduction of 4d $\mathcal{N}=4$ SYM (famous testing ground for dualities, amplitudes & more)

All fields massless and in adjoint rep. of SU(N) gauge group

4d: Gauge field A_{μ} plus 6 scalars Φ^{IJ}

 $\mathcal{N}=4$ four-component fermions $\Psi^{\mathrm{I}}\longleftrightarrow$ 16 supersymmetries Q^{I}_{α} and $\overline{Q}^{\mathrm{I}}_{\dot{\alpha}}$ Global SU(4) \sim SO(6) R symmetry

3d: Gauge field A_{μ} plus 7 scalars Φ $\mathcal{N}=8$ two-component fermions $\Psi\longleftrightarrow$ 16 supersymmetries Global SO(8) \supset SO(4) \sim SU(2) \times SU(2) R symmetry

Symmetries relate kinetic, Yukawa and Φ^4 terms \longrightarrow single coupling $\lambda = g^2 N$

Intuitive 4d picture — expand 4×4 matrix of supersymmetries

$$\begin{pmatrix} Q_{\alpha}^{1} & Q_{\alpha}^{2} & Q_{\alpha}^{3} & Q_{\alpha}^{4} \\ \overline{Q}_{\dot{\alpha}}^{1} & \overline{Q}_{\dot{\alpha}}^{2} & \overline{Q}_{\dot{\alpha}}^{3} & \overline{Q}_{\dot{\alpha}}^{4} \end{pmatrix} = \mathcal{Q} + \mathcal{Q}_{\mu}\gamma_{\mu} + \mathcal{Q}_{\mu\nu}\gamma_{\mu}\gamma_{\nu} + \overline{\mathcal{Q}}_{\mu}\gamma_{\mu}\gamma_{5} + \overline{\mathcal{Q}}\gamma_{5} \\ \longrightarrow \mathcal{Q} + \mathcal{Q}_{a}\gamma_{a} + \mathcal{Q}_{ab}\gamma_{a}\gamma_{b} \\ \text{with } a, b = 1, \cdots, 5$$

R-symmetry index × Lorentz index ⇒ reps of 'twisted rotation group'

$$SO(4)_{tw} \equiv diag \bigg[SO(4)_{euc} \otimes SO(4)_{R} \bigg]$$
 $SO(4)_{R} \subset SO(6)_{R}$

Change of variables $\longrightarrow \mathcal{Q}s$ transform with integer 'spin' under SO(4)_{tw}

Intuitive 4d picture — expand 4×4 matrix of supersymmetries

$$\left(\begin{array}{ccc} Q_{\alpha}^{1} & Q_{\alpha}^{2} & Q_{\alpha}^{3} & Q_{\alpha}^{4} \\ \overline{Q}_{\dot{\alpha}}^{1} & \overline{Q}_{\dot{\alpha}}^{2} & \overline{Q}_{\dot{\alpha}}^{3} & \overline{Q}_{\dot{\alpha}}^{4} \end{array} \right) = \mathcal{Q} + \mathcal{Q}_{\mu}\gamma_{\mu} + \mathcal{Q}_{\mu\nu}\gamma_{\mu}\gamma_{\nu} + \overline{\mathcal{Q}}_{\mu}\gamma_{\mu}\gamma_{5} + \overline{\mathcal{Q}}\gamma_{5} \\ \longrightarrow \mathcal{Q} + \mathcal{Q}_{a}\gamma_{a} + \mathcal{Q}_{ab}\gamma_{a}\gamma_{b} \\ \text{with } a, b = 1, \cdots, 5$$

Discrete space-time

Can preserve closed sub-algebra

$$\{\mathcal{Q},\mathcal{Q}\}=2\mathcal{Q}^2=0$$

Intuitive 4d picture — expand 4×4 matrix of supersymmetries

$$\begin{pmatrix} Q_{\alpha}^{1} & Q_{\alpha}^{2} & Q_{\alpha}^{3} & Q_{\alpha}^{4} \\ \overline{Q}_{\dot{\alpha}}^{1} & \overline{Q}_{\dot{\alpha}}^{2} & \overline{Q}_{\dot{\alpha}}^{3} & \overline{Q}_{\dot{\alpha}}^{4} \end{pmatrix} = \mathcal{Q} + \mathcal{Q}_{\mu}\gamma_{\mu} + \mathcal{Q}_{\mu\nu}\gamma_{\mu}\gamma_{\nu} + \overline{\mathcal{Q}}_{\mu}\gamma_{\mu}\gamma_{5} + \overline{\mathcal{Q}}\gamma_{5} \\ \longrightarrow \mathcal{Q} + \mathcal{Q}_{a}\gamma_{a} + \mathcal{Q}_{ab}\gamma_{a}\gamma_{b} \\ \text{with } a, b = 1, \cdots, 5$$

Discrete space-time

Can preserve closed sub-algebra

$$\{\mathcal{Q},\mathcal{Q}\}=2\mathcal{Q}^2=0$$

Reducing to 3d

$$\{\mathcal{Q},\mathcal{Q}_{a},\mathcal{Q}_{ab}\} \ \longrightarrow \ \{\mathcal{Q},\mathcal{Q}_{5},\mathcal{Q}_{a},\mathcal{Q}_{a5},\mathcal{Q}_{ab}\} \ \ \text{with} \ \ a,b=1,\cdots,4$$

Twisted rotation group now

$$\mathsf{SO(3)}_\mathsf{tw} \equiv \mathsf{diag} \Big[\mathsf{SO(3)}_\mathsf{euc} \otimes \mathsf{SO(3)}_R \Big]$$

$$SO(3)_R \subset SO(4)_R$$

Two closed supersymmetry sub-algebras

$$\{\mathcal{Q},\mathcal{Q}\}=2\mathcal{Q}^2=0$$

$$\{\mathcal{Q}_5,\mathcal{Q}_5\}=2\mathcal{Q}_5^2=0$$

Completing the twist

Fields also transform with integer spin under SO(4)tw — no spinors

$$\Psi$$
 and $\overline{\Psi}$ \longrightarrow $\eta,$ ψ_a and χ_{ab}

$$A_{\mu}$$
 and $\Phi^{\mathrm{I}} \longrightarrow \text{complexified gauge field } A_{a} \text{ and } \overline{A}_{a}$

$$\longrightarrow \mathsf{U}(N) = \mathsf{SU}(N) \otimes \mathsf{U}(1) \text{ gauge theory}$$

 $\checkmark~\mathcal{Q}~$ interchanges bosonic $\longleftrightarrow~$ fermionic d.o.f. with $~\mathcal{Q}^2=0$

$$Q A_a = \psi_a$$

$$Q \; \psi_{a} = 0$$

$${\cal Q} \; \chi_{\it ab} = - \overline{{\cal F}}_{\it ab}$$

$$Q \overline{\mathcal{A}}_a = 0$$

$$Q \eta = d$$

$$Q d = 0$$

 igwedge bosonic auxiliary field with e.o.m. $\emph{d}=\overline{\mathcal{D}}_{\emph{a}}\mathcal{A}_{\emph{a}}$

Completing the twist

Fields also transform with integer spin under SO(4)_{tw} — no spinors

$$\Psi$$
 and $\overline{\Psi}$ \longrightarrow $\eta,$ ψ_a and χ_{ab}

$$A_{\mu}$$
 and $\Phi^{\mathrm{I}} \longrightarrow \text{complexified gauge field } A_{a} \text{ and } \overline{A}_{a}$

$$\longrightarrow \mathsf{U}(N) = \mathsf{SU}(N) \otimes \mathsf{U}(1) \text{ gauge theory}$$

$$\checkmark \ \mathcal{Q} \ \ \text{interchanges bosonic} \ \longleftrightarrow \ \ \text{fermionic d.o.f.} \ \ \text{with} \ \ \mathcal{Q}^2 = 0$$

$$Q A_a = \psi_a$$

$$Q \; \psi_{a} = 0$$

$$\mathcal{Q} \; \chi_{\mathit{ab}} = - \overline{\mathcal{F}}_{\mathit{ab}}$$

$$\mathcal{Q} \; \overline{\mathcal{A}}_a = 0$$

$$Q \eta = d$$

$$Q d = 0$$

9/29

Dimensional reduction rearranges fermions and takes $A_5, \overline{A}_5 \longrightarrow \varphi, \overline{\varphi}$

Lattice maximal SYM

Lattice theory looks nearly the same despite breaking Q_a and Q_{ab}

Covariant derivatives --> finite difference operators

Complexified gauge fields $\mathcal{A}_a \longrightarrow \text{gauge links } \mathcal{U}_a \in \mathfrak{gl}(N,\mathbb{C})$

Geometry: η on sites, ψ_a on links, etc.

10/29

Supersymmetric lattice action (QS = 0) from $Q^2 \cdot = 0$ and Bianchi identity

$$\mathcal{S} = rac{\mathcal{N}}{4\lambda_{\mathsf{lat}}}\mathsf{Tr}\left[\mathcal{Q}\left(\chi_{\mathsf{ab}}\mathcal{F}_{\mathsf{ab}} + \eta\overline{\mathcal{D}}_{\mathsf{a}}\mathcal{U}_{\mathsf{a}} - rac{1}{2}\eta d
ight) - rac{1}{4}\epsilon_{\mathsf{abcde}}\;\chi_{\mathsf{ab}}\overline{\mathcal{D}}_{\mathsf{c}}\;\chi_{\mathsf{de}}
ight]$$

d+1 links in d dimensions $\longrightarrow A_d^*$ lattice

 $A_d^* \sim d$ -dimensional analog of 2d triangular lattice

Basis vectors linearly dependent and non-orthogonal

11/29

Large S_{d+1} point group symmetry

 S_{d+1} irreps precisely match onto irreps of twisted $SO(d)_{tw}$. 4d example:

$$\psi_{\mathsf{a}} \longrightarrow \psi_{\mu}, \ \overline{\eta} \qquad \text{is} \qquad \mathbf{5} \longrightarrow \mathbf{4} \oplus \mathbf{1}$$
 $\chi_{\mathsf{ab}} \longrightarrow \chi_{\mu\nu}, \ \overline{\psi}_{\mu} \qquad \text{is} \qquad \mathbf{10} \longrightarrow \mathbf{6} \oplus \mathbf{4}$

 $S_{d+1} \longrightarrow \mathsf{SO}(d)_\mathsf{tw}$ in continuum limit restores $\,\mathcal{Q}_a$ and $\,\mathcal{Q}_{ab}$

d+1 links in d dimensions $\longrightarrow A_d^*$ lattice

 $A_d^* \sim d$ -dimensional analog of 2d triangular lattice

Basis vectors linearly dependent and non-orthogonal

11/29

Large S_{d+1} point group symmetry

Twisted maximal SYM on A_d^* lattice is elegant formulation not yet practical for numerical calculations

Must regulate zero modes and flat directions, especially in U(1) sector

Deformations to stabilize lattice calculations

1) Add SU(*N*) scalar potential $\propto \mu^2 \sum_a \text{Tr} \left[\left(\mathcal{U}_a \overline{\mathcal{U}}_a - \mathbb{I}_N \right)^2 \right]$

Softly breaks susy $\longrightarrow \mathcal{Q}$ -violating operators vanish $\propto \mu^2 \to 0$

Test via Ward identity violations $\mathcal{Q}\left[\eta\mathcal{U}_{a}\overline{\mathcal{U}}_{a}\right]\neq0$

Deformations to stabilize lattice calculations

2) Constrain U(1) plaquette determinant $\sim G \sum_{a < b} (\det \mathcal{P}_{ab} - 1)$

Implemented supersymmetrically by modifying auxiliary field equations of motion

Test via Ward identity violations $\mathcal{Q}\left[\eta\mathcal{U}_{a}\overline{\mathcal{U}}_{a}\right]\neq0$

Log-log axes

 \longrightarrow violations $\propto (a/L)^2$

Deformations to stabilize lattice calculations

Enable naive dimensional reduction (4d code with $N_x = 1$)

3) Potential $\propto \text{Tr}\left[(\varphi - \mathbb{I}_{\textit{N}})^{\dagger} (\varphi - \mathbb{I}_{\textit{N}})\right]$ to break center symmetry in reduced dir(s) (\sim Kaluza–Klein rather than Eguchi–Kawai reduction)

12/29

David Schaich (Liverpool) 3d lattice SYM ECT*, 9 July 2021

Public code for supersymmetric lattice field theories

so that the full improved action becomes

$$S_{\text{imp}} = S_{\text{exact}}' + S_{\text{closed}} + S_{\text{soft}}'$$

$$S_{\text{exact}}' = \frac{N}{4\lambda_{\text{lat}}} \sum_{n} \text{Tr} \left[-\overline{\mathcal{F}}_{ab}(n) \mathcal{F}_{ab}(n) - \chi_{ab}(n) \mathcal{D}_{[a}^{(+)} \psi_{b]}(n) - \eta(n) \overline{\mathcal{D}}_{a}^{(-)} \psi_{a}(n) \right]$$

$$+ \frac{1}{2} \left(\overline{\mathcal{D}}_{a}^{(-)} \mathcal{U}_{a}(n) + G \sum_{a \neq b} (\det \mathcal{P}_{ab}(n) - 1) \mathbb{I}_{N} \right)^{2} \right] - S_{\text{det}}$$

$$S_{\text{det}} = \frac{N}{4\lambda_{\text{lat}}} G \sum_{n} \text{Tr} \left[\eta(n) \right] \sum_{a \neq b} \left[\det \mathcal{P}_{ab}(n) \right] \text{Tr} \left[\mathcal{U}_{b}^{-1}(n) \psi_{b}(n) + \mathcal{U}_{a}^{-1}(n + \widehat{\mu}_{b}) \psi_{a}(n + \widehat{\mu}_{b}) \right]$$

$$S_{\text{closed}} = -\frac{N}{16\lambda_{\text{lat}}} \sum_{n} \text{Tr} \left[\epsilon_{abcde} \chi_{de}(n + \widehat{\mu}_{a} + \widehat{\mu}_{b} + \widehat{\mu}_{c}) \overline{\mathcal{D}}_{c}^{(-)} \chi_{ab}(n) \right] ,$$

$$S_{\text{soft}}' = \frac{N}{4\lambda_{\text{lat}}} \mu^{2} \sum_{n} \sum_{a} \left(\frac{1}{N} \text{Tr} \left[\mathcal{U}_{a}(n) \overline{\mathcal{U}}_{a}(n) \right] - 1 \right)^{2}$$

≥100 inter-node data transfers in the fermion operator — non-trivial...

Public parallel code to reduce barriers to entry: github.com/daschaich/susy

Evolved from MILC QCD code, user guide in arXiv:1410.6971

Formulate on $r_1 \times r_2 \times r_\beta$ (skewed) 3-torus

Thermal boundary conditions

$$\longrightarrow$$
 dimensionless temperature $t = \frac{T}{\lambda} = \frac{1}{r_{\beta}}$

Low temperatures t at large N

Black branes in dual supergravity

3d maximal SYM phase diagram

Holography \longrightarrow rich low-t phase diagram conjectured

(simpler 2d case studied in arXiv:1709.07025)

3d maximal SYM phase diagram

Holography \longrightarrow rich low-t phase diagram conjectured

For now consider simplest homogeneous black D2-branes $\longrightarrow r_1 = r_2 = r_\beta$

David Schaich (Liverpool) 3d lattice SYM ECT*, 9 July 2021 15/29

Homogeneous D2 phase

Lattice volume L^3 , continuum limit $L \to \infty$ with fixed $t = 1/r_{\beta}$

Homogeneous D2-branes \longleftrightarrow uniform Wilson line eigenvalue phases at large N

Holographic black brane energies and continuum extrapolation

Lattice volume L^3 with fixed N=8

 \longrightarrow results approach leading holographic expectation $\propto t^{10/3}$ for low $t\lesssim 0.4$

Carry out first $L \to \infty$ continuum extrapolations

(not yet attempted for 2d)

Work in progress: Half-maximal (Q = 8) SYM

Slight simplification of twisted formulation

Q = 8 supercharges $\{Q, Q_a, Q_{ab}, Q_{abc}\}$ with $a, b = 1, \dots, 3$

 \longrightarrow site / link / plaquette / cube fermions $\{\eta, \psi_{\it a}, \chi_{\it ab}, \theta_{\it abc}\}$ on simple cubic lattice

Work in progress: Half-maximal (Q = 8) SYM

Slight simplification of twisted formulation

Q=8 supercharges $\{Q,Q_a,Q_{ab},Q_{abc}\}$ with $a,b=1,\cdots,3$

 \longrightarrow site / link / plaquette / cube fermions $\{\eta, \psi_{\it a}, \chi_{\it ab}, \theta_{\it abc}\}$ on simple cubic lattice

Parallel code developed

(Angel Sherletov)

Tests passed

 \longrightarrow larger-scale calculations

Work coming up: Supersymmetric QCD

Add 'quarks' and squarks — investigate electric-magnetic dualities, dynamical supersymmetry breaking and more

Quiver construction based on twisted SYM [arXiv:1505.00467] preserves susy sub-algebra to reduce fine-tuning

Quiver superQCD from twisted SYM

First check 3d SYM → 2d superQCD

then new 4d SYM \longrightarrow 3d superQCD

2-slice lattice SYM
with U(N) × U(F) gauge group
Adj. fields on each slice
Bi-fundamental in between

Decouple U(F) slice

 \longrightarrow U(N) SQCD in d-1 dims. with F fund. hypermultiplets

Recap: An exciting time for lattice supersymmetry

2+1 dimensions is a promising frontier for practical lattice studies of supersymmetric QFTs

Preserving susy sub-algebra enables lattice calculations, public code available

3d maximal SYM thermodynamics consistent with holography

Work in progress on 3d Q = 8 SYM \longrightarrow superQCD

Phase diagrams, sign problems and much more for the future

Thanks for your attention!

Any further questions?

Collaborators

Simon Catterall, Joel Giedt, Raghav Jha, Angel Sherletov, Toby Wiseman

Funding and computing resources

UK Research

Supplement: 2d maximal SYM phase diagram

arXiv:1709.07025

Dimensionally reduce to 2d $\mathcal{N}=(8,8)$ SYM on $(r_L \times r_\beta)$ torus with four scalar \mathcal{Q} Low temperatures $t=1/r_\beta \longleftrightarrow$ black holes in dual supergravity

For decreasing r_L at large N

homogeneous black string (D1)

→ localized black hole (D0)

"spatial deconfinement" signalled by Wilson line P_L

Spatial deconfinement transition signals

Peaks in Wilson line susceptibility match change in its magnitude |PL|, grow with size of SU(N) gauge group, comparing N = 6, 9, 12

Agreement for 16×4 vs. 24×6 lattices (aspect ratio $\alpha = r_L/r_\beta = 4$)

Check Wilson line eigenvalues

Wilson line eigenvalue phases sensitive to 'spatial deconfinement'

Left: $\alpha = 2$ distributions more uniform as *N* increases \longrightarrow D1 black string

Right: $\alpha = 1/2$ distributions more compact as *N* increases \longrightarrow D0 black hole

Lattice results for 2d $\mathcal{N}=(8,8)$ SYM phase diagram

Good agreement with bosonic QM at high temperatures

Harder to control low-temperature uncertainties (larger N > 16 should help)

Overall consistent with holography

Comparing multiple lattice sizes and $6 \le N \le 16$

Controlled extrapolations are work in progress

Check holographic black hole energies

Lattice results consistent with leading expectation for sufficiently low $t \lesssim 0.4$

Similar behavior $\,\longrightarrow\,$ difficult to distinguish phases

 $\propto t^{3.2}$ for small- r_L D0 phase

 $\propto t^3$ for large- r_L D1 phase

Supplement: Sign problems

Recall typical algorithms sample field configurations Φ with probability $\frac{1}{\mathcal{Z}}e^{-S[\Phi]}$ \longrightarrow "sign problem" if action $S[\Phi]$ can be negative or complex

Lattice SYM has complex pfaffian $\operatorname{pf} \mathcal{D} = |\operatorname{pf} \mathcal{D}| e^{i\alpha}$

$$\langle \mathcal{O} \rangle = rac{1}{\mathcal{Z}} \int [d\mathcal{U}] [d\overline{\mathcal{U}}] \ \mathcal{O} \ e^{-S_B[\mathcal{U},\overline{\mathcal{U}}]} \ \mathsf{pf} \, \mathcal{D}[\mathcal{U},\overline{\mathcal{U}}]$$

We phase quench $\operatorname{pf} \mathcal{D} \longrightarrow |\operatorname{pf} \mathcal{D}|$, need to reweight $\langle \mathcal{O} \rangle = \frac{\left\langle \mathcal{O} e^{i\alpha} \right\rangle_{\operatorname{pq}}}{\left\langle e^{i\alpha} \right\rangle_{\operatorname{pq}}}$ $\Longrightarrow \left\langle e^{i\alpha} \right\rangle_{\operatorname{pq}} = \frac{\mathcal{Z}}{\mathcal{Z}_{\operatorname{pq}}} \quad \text{quantifies severity of sign problem}$

Lattice maximal SYM sign problems

Fix $\lambda_{lat} \longrightarrow pfaffian nearly real positive for all accessible volumes$

Lattice maximal SYM sign problems

Fix volume \longrightarrow 4d signal-to-noise becomes obstruction for $\lambda_{\text{lat}} \gtrsim 4$

3d temperatures studied so far $\longleftrightarrow \lambda_{lat} \le 1$ with no problem

Backup: Breakdown of Leibniz rule on the lattice

$$\left\{Q_{\alpha},\overline{Q}_{\dot{\alpha}}\right\}=2\sigma^{\mu}_{\alpha\dot{\alpha}}P_{\mu}=2i\sigma^{\mu}_{\alpha\dot{\alpha}}\partial_{\mu} \ \ \text{is problematic}$$
 $\Longrightarrow ext{try finite difference} \ \ \partial\phi(x) \ \longrightarrow \ \Delta\phi(x)=rac{1}{a}\left[\phi(x+a)-\phi(x)
ight]$

Crucial difference between ∂ and Δ

$$\Delta [\phi \eta] = a^{-1} [\phi(x+a)\eta(x+a) - \phi(x)\eta(x)]$$
$$= [\Delta \phi] \eta + \phi \Delta \eta + a[\Delta \phi] \Delta \eta$$

Full supersymmetry requires Leibniz rule $\ \partial \left[\phi\eta\right] = \left[\partial\phi\right]\eta + \phi\partial\eta$ only recoverd in $\ a\to 0$ continuum limit for any local finite difference

Backup: Breakdown of Leibniz rule on the lattice

Full supersymmetry requires Leibniz rule $\ \partial \left[\phi\eta\right] = \left[\partial\phi\right]\eta + \phi\partial\eta$ only recoverd in $\ a \to 0$ continuum limit for any local finite difference

Supersymmetry vs. locality 'no-go' theorems by Kato-Sakamoto-So [arXiv:0803.3121] and Bergner [arXiv:0909.4791]

Complicated constructions to balance locality vs. supersymmetry

Non-ultralocal product operator \longrightarrow lattice Leibniz rule but not gauge invariance D'Adda-Kawamoto-Saito, arXiv:1706.02615

Cyclic Leibniz rule → partial lattice supersymmetry but only (0+1)d QM so far Kadoh-Kamei-So, arXiv:1904.09275

Backup: Complexified gauge field from twisting

Combining A_μ and $\Phi^{\rm I}$ \longrightarrow \mathcal{A}_a and $\overline{\mathcal{A}}_a$ produces $\mathsf{U}(\mathit{N}) = \mathsf{SU}(\mathit{N}) \otimes \mathsf{U}(1)$ gauge theory

Complicates lattice action but needed so that $Q A_a = \psi_a$

Further motivation: Under
$$SO(d)_{tw} = diag[SO(d)_{euc} \otimes SO(d)_{R}]$$

 $A_{\mu} \sim \operatorname{vector} \otimes \operatorname{scalar} = \operatorname{vector}$

 $\Phi^{I} \sim \text{scalar} \otimes \text{vector} = \text{vector}$

Easiest to see in 5d (then dimensionally reduce)

$$\mathcal{A}_a = \mathcal{A}_a + i\Phi_a \longrightarrow (\mathcal{A}_\mu, \phi) + i(\Phi_\mu, \overline{\phi})$$

Backup: A_4^* lattice from five dimensions

Again dimensionally reduce, treating all five gauge links symmetrically

Start with hypercubic lattice in 5d momentum space

Symmetric constraint $\sum_{a} \partial_{a} = 0$ projects to 4d momentum space

Result is A_4 lattice \longrightarrow dual A_4^* lattice in position space

Backup: Restoration of Q_a and Q_{ab} supersymmetries

"
$$Q$$
 + discrete $R_a \subset SO(4)_{tw} = Q_a$ and Q_{ab} "

[arXiv:1306.3891]

Test R_a on Wilson loops

$$\widetilde{\mathcal{W}}_{ab} \equiv R_{a}\mathcal{W}_{ab}$$

Tune coeff. c_2 of d^2 term in action for fastest restoration towards continuum limit

Backup: Problem with SU(N) flat directions

 $\mu^2/\lambda_{
m lat}$ too small $\longrightarrow \, \mathcal{U}_a$ can move far from continuum form $\, \mathbb{I}_{\it N} + \mathcal{A}_a \,$

Example: $\mu = 0.2$ and $\lambda_{lat} = 2.5$ on $8^3 \times 24$ volume

Left: Bosonic action stable \sim 18% off its supersymmetric value

Right: (Complexified) Polyakov loop wanders off to $\sim 10^9$

Backup: Problem with U(1) flat directions

Monopole condensation \longrightarrow confined lattice phase not present in continuum

Around the same $2\lambda_{lat} \approx 2...$

Left: Polyakov loop falls towards zero

Center: Plaquette determinant falls towards zero

Right: Density of U(1) monopole world lines becomes non-zero

Backup: Naively regulating U(1) flat directions

In earlier work we added another soft *Q*-breaking term

$$S_{\mathsf{soft}} = rac{\mathit{N}}{4\lambda_{\mathsf{lat}}} \mu^2 \sum_{\mathit{a}} \left(rac{1}{\mathit{N}} \mathsf{Tr} \left[\mathcal{U}_{\mathit{a}} \overline{\mathcal{U}}_{\mathit{a}}
ight] - 1
ight)^2 + \kappa \sum_{\mathit{a} < \mathit{b}} \left| \mathsf{det} \, \mathcal{P}_{\mathit{ab}} - 1
ight|^2$$

More sensitivity to κ than to μ^2

Showing *Q* Ward identity from bosonic action

$$\langle s_B \rangle = 9N^2/2$$

Backup: Better regulating U(1) flat directions

$$S = \frac{\textit{N}}{4\lambda_{\text{lat}}} \left[\mathcal{Q} \left(\chi_{ab} \mathcal{F}_{ab} + \eta \left\{ \overline{\mathcal{D}}_{a} \mathcal{U}_{a} + G \sum_{a < b} \left[\det \mathcal{P}_{ab} - 1 \right] \mathbb{I}_{\textit{N}} \right\} - \frac{1}{2} \eta d \right) - \frac{1}{4} \epsilon_{abcde} \chi_{ab} \overline{\mathcal{D}}_{c} \chi_{de} + \mu^{2} \textit{V} \right]$$

 $\mathcal Q$ Ward identity violations scale $\propto 1/N^2$ (**left**) and $\propto (a/L)^2$ (**right**) \sim effective ' $\mathcal O(a)$ improvement' since $\mathcal Q$ forbids all dim-5 operators

Backup: Supersymmetric moduli space modification

[arXiv:1505.03135]

29/29

Method to impose \mathcal{Q} -invariant constraints on generic site operator $\mathcal{O}(n)$

Modify auxiliary field equations of motion \longrightarrow moduli space

$$d(n) = \overline{\mathcal{D}}_a^{(-)} \mathcal{U}_a(n) \qquad \longrightarrow \qquad d(n) = \overline{\mathcal{D}}_a^{(-)} \mathcal{U}_a(n) + G\mathcal{O}(n) \mathbb{I}_N$$

Including both U(1) and SU(N) $\in \mathcal{O}(n)$ over-constrains system

David Schaich (Liverpool) 3d lattice SYM ECT*, 9 July 2021

Backup: Dimensional reduction to 2d $\mathcal{N}=(8,8)$ SYM

Naive for now: 4d
$$\mathcal{N}=4$$
 SYM code with $N_x=N_y=1$

$$A_4^* \longrightarrow A_2^*$$
 (triangular) lattice

Torus **skewed** depending on $\alpha = L/N_t$

Also need to stabilize compactified links to ensure broken center symmetries

ECT*. 9 July 2021

Backup: High-temperature ($t \gtrsim 1$) 3d maximal SYM

Wilson line eigenvalue phases localized rather than uniform (left)

Thermodynamics consistent with weak-coupling expectation $\propto t^3$ (**right**)

Backup: Dynamical susy breaking in 2d lattice superQCD

U(N) superQCD with F fundamental hypermultiplets

Observe spontaneous susy breaking only for N > F, as expected

Catterall-Veernala, arXiv:1505.00467

Backup: More on dynamical susy breaking

Spontaneous susy breaking means $\langle 0 | H | 0 \rangle > 0$ or equivalently $\langle QO \rangle \neq 0$

Twisted superQCD auxiliary field e.o.m. \longleftrightarrow Fayet-Iliopoulos D-term potential

$$d = \overline{\mathcal{D}}_{a}\mathcal{U}_{a} + \sum_{i=1}^{F} \phi_{i}\overline{\phi}_{i} - r\mathbb{I}_{N} \qquad \longleftrightarrow \qquad \text{Tr}\left[\left(\sum_{i} \phi_{i}\overline{\phi}_{i} - r\mathbb{I}_{N}\right)^{2}\right] \in \mathcal{H}$$

Have $F \times N$ scalar vevs to zero out $N \times N$ matrix

$$\longrightarrow$$
 $N > F$ suggests susy breaking, $\langle 0 | H | 0 \rangle > 0 \longleftrightarrow \langle Q \eta \rangle = \langle d \rangle \neq 0$

29/29