Emergent supersymmetry at the critical point of Yukawa systems

Omar Zanusso

Università di Pisa

ECT* Trento, July 2021

Trento

Just to show you what we are missing, I believe that ECT^* is somewhere on the frame

DISCLAIMERS

Based on

- my small contribution to the topic which dates back to 2017 Hellwig et al.
- some unpublished material from 2018
- new material from 2020-21 thanks to O. Gelber see Gelber's poster

Emegent SUSY has been mentioned several times already during this conference

- My recent focus is on field theory and RG with a bit of CFT
- My knowledge of the topic is rather incomplete, to say the least
- ► For much more complete sets of references see H. Yao and I. Affleck's talks

Additional informations

- Currently in the middle of a heat wave, must keep the window open
- Italy is the country of noisy Vespas, be patient

Introduction

CRASH COURSE ON SUSY PART 1

Coleman-Mandula theorem:

"Space-time and internal symmetries cannot be combined in any but a trivial way"

 $ISO(3,1) \times G$

 Several assumptions of CM theorem to break. Simplest: Non-bosonic additional generators, imagine square root of translations

$$\delta_{\beta} \Phi = i \overline{\beta}^{a} \mathcal{Q}_{a} \Phi \qquad \left\{ \mathcal{Q}_{a}, \overline{\mathcal{Q}}^{b} \right\} \sim 2 \left(\gamma^{\mu} \right)_{a}{}^{b} \mathcal{P}_{\mu}$$

> Haag-ŁopuszańskiSohnius theorem: uniqueness and $N_{\rm susy}$

$$\left\{\mathcal{Q}_{Ia},\overline{\mathcal{Q}}_{J}{}^{b}\right\}\sim 2\left(\gamma^{\mu}\right)_{a}{}^{b}\mathcal{P}_{\mu}\delta_{IJ}+\cdots$$

Crash course on SUSY part 2

Fermionic generators, schematically

$$\mathcal{Q} |\text{boson}\rangle = |\text{fermion}\rangle \qquad \qquad \mathcal{Q} |\text{fermion}\rangle = |\text{boson}\rangle$$

Superfield and superspace

$$\Phi(x,\theta,\overline{\theta}) = \phi(x) + \overline{\theta}^{a}\psi_{a}(x) + \frac{1}{2}\overline{\theta}^{a}\theta_{a}F(x)$$

From potential to superpotential

$$\int d^d x \, U(\phi) \longrightarrow \int d^d x d\theta d\overline{\theta} \, W(\Phi)$$

WHY SUSY?

Upsides

- Development driven by a perid of mathematical success in QFT for particle physics
- \blacktriangleright Originally proposed as solution to hierarchy problem at $\Lambda_{\rm EW}$ \quad \odot
- Plays well in GUT, string theory, etc.

Downsides

- ► Doubling of DOFs (but we do need particles for DM/cosmology, right? ☺)
- ► No evidence ③
- Even less evidence of strings

(strings need SUSY is an understatement)

The current status of SUSY in particle physics

A snapshot from what feels like a long time ago

Instituto de Física Teórica UAM-CSIC Madrid, 28-30 September 2016 https://workshops.ift.uam-csic.es/susyaaw

Day 2: Thursday, 29 September 2016 Chairs: C. Muñoz, L. Ibáñez						
Schedule	Speaker	Title	Video	Slides		
10:00 - 10:30	A. Strumia	No	Video	PDF		
10:30 - 11:00	L. Hall	Saxion cosmology and dark matter	Video	PDF		
11:00 - 11:30	Coffee Break	Coffee Break				
11:30 - 12:00	J. Lykken	Emergent Supersymmetry	Video	PDF		
12:00 - 12:30	J. March-Russell	Journeying beyond the realm of the MSSM	Video	PDF		
12:30 - 13:00	D. Shih	Natural SUSY vs. the LHC	Video	PDF		
13:00 - 15:00	Lunch Break	Lunch Break				
15:00 - 15:30	G. G. Ross	Is (low energy) SUSY alive?	Video	PDF		
15:30 - 16:00	M. Cicoli	Soft terms in string models	Video	PDF		
16:00 - 16:30	Coffee Break	Coffee Break				
16:30 - 17:30	Discussion	Convener: X. Tata	Video	Survey		
21:00	Conference Disner	Conference Dinner				

My personal motivations

- Still theoretical interesting symmetry evading no-go theorem
- Low-dimensional tunable condensed matter with correct DOFs can display it as emergent symmetry
- Realistic possibility of observing SUSY in lab, just not as we originally thought

From the Yukawa model to supersymmetry

The Gross-Neveu-Yukawa model

Take φ real scalar and ψ 2-component spinor (Majorana)

$$S_{Y} = \int d^{d}x \Big\{ rac{1}{2} \partial_{\mu} \varphi \partial^{\mu} \varphi + rac{i}{2} \overline{\psi} \partial \psi + U(\varphi) + rac{1}{2} H(\varphi) \overline{\psi} \psi \Big\}$$

• Perturbatively renormalizable in $d = 4 - \epsilon$ for

$$U(arphi)\sim rac{1}{4!}\lambda arphi^4 \qquad \qquad H(arphi)\sim yarphi$$

• Invariant under $x o ilde{x} = (x_1, -x_2, x_3)$ in d = 3 for

$$arphi(\mathbf{x})
ightarrow - arphi(ilde{\mathbf{x}}) \qquad \qquad \psi(\mathbf{x})
ightarrow i \gamma^2 \psi(ilde{\mathbf{x}})$$

ENHANCED SYMMETRY

Suppose the functions satisfy

$$U(\varphi) = \frac{1}{2}W'(\varphi)^2$$
 $H(\varphi) = W''(\varphi)$

for some $W(\varphi)$

$$S_{
m susy} = rac{1}{2} \int d^d x \Big\{ \partial_\mu arphi \partial^\mu arphi + i \overline{\psi} \partial \!\!\!/ \psi + W'(arphi)^2 + W''(arphi) \overline{\psi} \psi \Big\}$$

Invariant under a supersymmetric transformation (on-shell)

$$\delta arphi = \overline{ heta} \psi \qquad \qquad \delta \psi = (i \partial \!\!\!/ \varphi + W'(arphi)) heta$$

• Perturbatively renormalizable in $d = 4 - \epsilon \ (\lambda = 6y^2)$ for

$$W(arphi)\sim rac{1}{3!}yarphi^3$$

The transformation is non-linear

$$\delta\psi = (i\partial\!\!\!/ \varphi + W'(\varphi))\theta \sim (i\partial\!\!\!/ \varphi + {1/2y}arphi^2) heta$$

Introduce an auxiliary field F

$$S_{\rm susy} = \int d^d x \Big\{ \frac{1}{2} \partial_\mu \varphi \partial^\mu \varphi + \frac{i}{2} \overline{\psi} \partial \psi - \frac{1}{2} F^2 + F W'(\varphi) + \frac{1}{2} W''(\varphi) \overline{\psi} \psi \Big\}$$

Off-shell transformations (wrt F)

$$\delta \varphi = \overline{\theta} \psi \qquad \qquad \delta \psi = (i \partial \varphi + F) \theta \qquad \qquad \delta F = i \overline{\theta} \partial \psi$$

Consider $\Phi(x, \theta, \overline{\theta}) = \varphi(x) + \overline{\theta}\psi(x) + \frac{1}{2}\overline{\theta}\theta F$

$$S_{\mathrm{susy}} = \int d^d x \, d heta \, d\overline{ heta} \Big\{ rac{1}{2} \mathcal{D} \Phi \overline{\mathcal{D}} \Phi + W(\Phi) \Big\}$$

Supercovariant derivatives, $\mathcal{D}=rac{\partial}{\partial\overline{ heta}}+i\gamma^{\mu} heta\partial_{\mu}$

$$\left\{\mathcal{D}_{a},\overline{\mathcal{D}}^{b}\right\} = -2\partial_{a}^{b}$$

They offer an explicit differential realization of $\left\{ \mathcal{Q}_a, \overline{\mathcal{Q}}^b \right\}$.

GENERAL IDEA FOR EMERGECE OF SUSY

> Yukawa models have a critical point as a function of $N_{\rm scalars}$ and $N_{\rm fermions}$,

- ▶ but SUSY model is also a Yukawa model (ex: $N_{\text{scalars}} = N_{\text{fermions}}$),
- ▶ so critical point has enhanced SUSY for certain N_{scalars} and N_{fermions} !

The crucial points are how many parameters must be tuned and how Weyl fermions are constructed to interplay with scalar order parameter...

Similar considerations can be made for Nambu-Jona-Lasinio-Yukawa model with charged scalar (twice as many generators), we concentrate on $N_{susy} = 1$.

Let's review some proposals before coming back to field theory.

Some proposed realizations

QIU ORIGINAL PROPOSAL

In d = 2:

- ► Tower of conformal CFTs $c = 1 \frac{6}{m(m+1)}$, potential: $\varphi^{2(m-1)}$ Zamolodchikov
- Tower of superconformal CFTs $c = \frac{3}{2} \left(1 \frac{8}{\hat{m}(\hat{m}+2)} \right)$ Friedan et al.

c = 7/10 shared by m = 4 and $\hat{m} = 3 \implies$ tricritical Ising model has SUSY?

Ising model with vacancies has first vs second order behavior in this universality

$$H = -J\sum_{\langle i,j
angle}\sigma_i\sigma_j - h\sum_i\sigma_i + \sum_i\Delta\sigma_i^2$$

 ψ comes from "disorder" operator (nonlocal) and magnetization with ad hoc BCs Realization: mixture of ⁴He and ³He at critical concentration Unfortunately, no conclusive observation. Also, works only in d = 2

GROVER-SHENG-VISHWANATH PROPOSAL

$$d = 1 + 1 \text{ boundary of } 2 + 1 \text{ topological superconductor, } g \sim \text{Yukawa, } h = \text{magnetic}$$
$$H = -i \sum \left\{ \left(1 - g\mu_{j+1/2}^z\right) \chi_j \chi_{j+1} + \mu_{j-1/2}^z \mu_{j+1/2}^z - h\mu_{j+1/2}^z \right\}$$

Weyl spinors ψ at boundary (nonlocal)

DMRG simulation \rightarrow central charge; c = 0 (gapped), c = 1/2 Ising, c = 7/10 SUSY

18/38

RAHMANI-ZHU-FRANZ-AFFLECK PROPOSAL

- Unpaired Majoranas, localized to topological defects (vortices, domain walls)
 ⇒ topological superconductor
- ▶ Difference from Grover et al. ⇒ purely self-interacting Majoranas ⇒ local interactions (vs long-range boson-mediated)

$$H = it \sum_{j} \gamma_j \gamma_{j+1} + g \sum_{j} \gamma_j \gamma_{j+2} \gamma_{j+3} \gamma_{j+4}$$

Evidence for tricritical Ising universality c = 7/10 by tuning one parameter. See Affleck's talk at this conference

Back to field theory in $d \le 4$

RG FLOW OF THE YUKAWA SYSTEM WITH ONE MAJORANA

Define dimensionless renormalized quantities ($v = \frac{\lambda}{4!} \varphi^4$ and $h = y \varphi$)

$$u(\varphi) = k^{-d} U(\varphi \, k^{d/2 - 1} Z_{\varphi}^{-1/2}) \qquad h(\varphi) = k^{-1} Z_{\psi}^{-1} H(\varphi \, k^{d/2 - 1} Z_{\varphi}^{-1/2})$$

Leading perturbative RG flow in $d=4-\epsilon$

$$\beta_{u} = -4u + \varphi u' + \epsilon \left(u - \frac{1}{2} \varphi u' \right) + \frac{\eta_{\varphi}}{2} \varphi u' + \frac{1}{2(4\pi)^{2}} (u'')^{2} - \frac{1}{2(4\pi)^{2}} h^{4}$$

$$\beta_{h} = -h + \varphi h' - \epsilon \frac{1}{2} \varphi h' + \eta_{\psi} h + \frac{\eta_{\varphi}}{2} \varphi h' + \frac{2}{(4\pi)^{2}} h(h')^{2}$$

Hint of SUSY

$$\eta_{\psi}=\eta_{\varphi}=\frac{1}{(4\pi)^2}h'(0)^2$$

which is necessary for them to combine in the same supermultiplet.

Dimensionless renormalized superpotential

$$w(\varphi) = k^{-d+1} W(\varphi k^{d/2-1} Z^{-1/2})$$

Leading perturbative RG flow of the superpotential

$$\beta_{\mathsf{w}} = -3\mathsf{w}(\varphi) + \varphi \mathsf{w}'(\varphi) + \epsilon \Big(\mathsf{w}(\varphi) - \frac{1}{2}\varphi \mathsf{w}'(\varphi)\Big) + \frac{\eta}{2}\varphi \mathsf{w}'(\varphi) + \frac{1}{3(4\pi)^2}\mathsf{w}''(\varphi)^3$$

Anomalous dimension

$$\eta = \frac{1}{(4\pi)^2} w'''(0)^2$$

SUSY IS A SOLUTION OF THE YUKAWA RG

 $T_{1} = (1)^{2} / 2_{1} = (1$

Take
$$u = (w)^{2}/2$$
 and $h = w'$, it is easy to show

$$\beta_{u} = w' \left\{ -2w' + \frac{1}{2}(2+\eta)\varphi w'' + \frac{1}{2}\epsilon \left(w' - \varphi w''\right) + \frac{1}{16\pi^{2}}w'''(w'')^{2} + \frac{1}{32\pi^{2}}w'(w''')^{2} \right\}$$

$$\simeq w' \left(k\partial_{k}w'\right) = k\partial_{k}\frac{(w')^{2}}{2} = \beta_{(w')^{2}/2}$$

and

$$\beta_h = (-1+\eta)w'' - \frac{1}{2}\epsilon\varphi w''' + \frac{1}{2}\varphi(2+\eta)w''' + \frac{1}{8\pi^2}w''(w''')^2$$
$$\simeq k\partial_k w'' = \beta_{w''}$$

RG flows consistent for properly ranked polynomials (LO and NLO perturbation theory) or up to irrelevant operators (in a functional interpretation).

The SUSY fixed point

Take
$$w(\varphi) = \frac{(4\pi)^2}{3!} \lambda \varphi^3$$
, at NLO
 $\beta_\lambda = -\frac{\epsilon}{2} \lambda + \frac{7}{2} \lambda^3 - \frac{21}{2} \lambda^5 \qquad \eta = \lambda^2 - \lambda^4$

The fixed point

$$(\lambda^*)^2 = rac{\epsilon}{7} + rac{3\epsilon^2}{49} \implies \eta = rac{1}{7}\epsilon + rac{2}{49}\epsilon^2$$

Super-superscaling relation determines ν for one superfield

$$\Delta_{\Phi} = rac{d-2+\eta}{2} \implies \Delta_{\Phi^2} = 2+\Delta_{\Phi}$$

Operator Φ^2 turns on the same mass for φ and $\psi \Longrightarrow \frac{1}{\nu} = \frac{d-\eta}{2} = 2 - \frac{4}{7}\epsilon - \frac{1}{49}\epsilon^2$

IDEA: REINTERPRET YUKAWA AS A BROKEN SUSY RG

Neglect zero point energy and set $H(\varphi) = W''(\varphi) + Y(\varphi)$

$$\mathcal{S}_{ ext{Yukawa}} = \int d^d x \left\{ rac{1}{2} \partial_\mu arphi \partial^\mu arphi + rac{i}{2} ar{\psi} \partial \!\!\!/ \psi - rac{1}{2} \mathcal{F}^2 + \mathcal{F} \mathcal{W}'(arphi) + rac{1}{2} \mathcal{W}''(arphi) ar{\psi} \psi + rac{1}{2} \mathcal{Y}(arphi) ar{\psi} \psi
ight\}$$

The relation $U(\varphi) = \frac{1}{2}W'(\varphi)^2$ can be integrated (use *h* over *y* for convenience)

$$\beta_{w} = -3w(\varphi) + \varphi w'(\varphi) + \epsilon \left(w(\varphi) - \frac{1}{2}\varphi w'(\varphi)\right) + \frac{\eta_{\varphi}}{2}\varphi w'(\varphi) + \frac{1}{3(4\pi)^{2}}w''(\varphi)^{3} + \int_{0}^{\varphi} dx \, \frac{w''(x)^{4} - h(x)^{4}}{2(4\pi)^{2}w'(x)} \beta_{h} = -h(\varphi) + \varphi h'(\varphi) - \frac{\epsilon}{2}\varphi h'(\varphi) - \eta_{\psi}h(\varphi) + \frac{\eta_{\varphi}}{2}\varphi h'(\varphi) + \frac{2}{(4\pi)^{2}}h(\varphi)h'(\varphi)^{2}$$

ORIGIN OF THE NONLOCAL TERM

We have broken SUSY in the Yukawa sector with $Y(\varphi)$, but RG generates $C(\varphi) \propto W''(\varphi)^4 - H(\varphi)^4 \sim \varphi^4$ outside the potential

These cancel only if $W''(\varphi) - H(\varphi) = Y(\varphi) = 0$

 $\overline{\rm MS}$ preserves on/off-shell susy at 2-loops

$$S_{
m susy}
ightarrow S_{
m susy} - rac{\delta\mu}{\mu} \int d^d x \Big\{ eta_W' F + rac{1}{2} eta_W'' ar\psi \psi \Big\}$$

In general (beyond NLO or nonperturbatively), for some RG scale k

$$S
ightarrow S - rac{\delta k}{k} \int d^d x \Big\{ A(\varphi) F + rac{1}{2} B(\varphi) ar{\psi} \psi + C(\varphi) \Big\}$$

Three independent functions to attribute to the RG of $W(\varphi)$ and $Y(\varphi)$

F-FIELD REDEFINITION

Redefine *F* along the flow: $\beta_F \equiv k \partial_k F = D(\varphi)$

$$S \to S - \frac{\delta k}{k} \int d^d x \Big\{ A(\varphi)F + \frac{1}{2}B(\varphi)\bar{\psi}\psi + C(\varphi) - \frac{\delta S}{\delta F}D(\varphi) \Big\}$$

Choose

$$\beta_F = D(\varphi) = \frac{C(\varphi)}{W'(\varphi)}$$

to get

$$S \to S - \frac{\delta k}{k} \int d^{d}x \Big\{ \Big(A(\varphi) - \frac{C(\varphi)}{W'(\varphi)} \Big) F + \frac{1}{2} B(\varphi) \bar{\psi} \psi \Big\}$$
$$\equiv S - \frac{\delta k}{k} \int d^{d}x \Big\{ \beta_{W'} F + (\beta_{W''} + \beta_{Y}) \bar{\psi} \psi \Big\}$$

Now we can use nonperturbative methods such as FRG for a broken-SUSY flow

Big advantage of broken SUSY RG and F-redefinition: $\eta = \eta_{\varphi} = \eta_{\psi}$.

Decent numbers even for LPA truncations, which is surprising, in need of improvement.

	FRG ₁	FRG ₂	[2/2]	[3/1]	СВ	FRG _{old}
η	0.174	0.167	0.171	0.170	0.164	0.185*
$ u^{-1}$	1.385	1.395	1.415	1.415	1.418*	1.29

- ► Hellwig et al. 1705.08312
- ► Zerf et al. 1709.05057
- ▶ Iliesu et al. 1508.00012
- Vacca-Zambelli 1503.09136

Flavors of SUSY

Coupling generalizes to a "tensor"

$$W(arphi) = rac{1}{3!} \lambda_{ijk} arphi^i arphi^j arphi^k$$

Structural similarity with $U(\varphi) = \frac{1}{3!}g_{ijk}\varphi^i\varphi^j\varphi^k$ in $d = 6 - \epsilon$ (Lee-Yang, Landau-Potts)!

Corresponds to a Yukawa model with N_f scalars and N_f fermions

$$\mathcal{L}_{\rm int} = \lambda_{ijk}\varphi_i\overline{\psi}_j\psi_k + \frac{1}{4}\lambda_{k(ij}\lambda_{mn)k}\varphi_i\varphi_j\varphi_m\varphi_n$$

RG flow has a richer structure since there is no symmetry input. In $d=4-\epsilon$

$$\beta_{\lambda_{ijk}} = -\frac{\epsilon}{2}\lambda_{ijk} + \frac{2}{3}\lambda_{abc}\lambda_{ab(i}\lambda_{jk)c} + 2\lambda_{iab}\lambda_{jbc}\lambda_{kca}$$

Collective index a = (i, j, k). Admits a gradient form (at NLO)

$$\beta_{\lambda_a} = G^{ab} \frac{\partial}{\partial \lambda_b} A(\lambda) \qquad \qquad G_{ab} = \delta_{ab} + \dots$$

Checked: SUSY solves RG flow of general Yukawa system at NLO like for $N_f = 1$

MAXIMAL SYMMETRY AND IRREPS

 $w(\varphi)$ has no symmetry...

if
$$w^*(arphi)$$
 is solution then also $ilde w^*(arphi) = w^*(\mathcal{R} \cdot arphi)$ is for $\mathcal{R} \in O(N_f)$

 $O(N_f)$ is maximal symmetry and induces an action on λ_{ijk} as

$$ilde{\mathsf{w}}(arphi) = \mathsf{w}(\mathcal{R} \cdot arphi)$$

 $O(N_f)$ is always broken because irreps have no singlet

$$\lambda_{ijk} = \kappa_{(i}\delta_{jk}) + \sigma_{ijk} \quad \text{with} \quad \sigma_{iij} = 0$$

Example: for $N_f = 3$ then $\lambda \in \underline{10} = \underline{3} \oplus \underline{7}$

Use global $O(N_f)$ freedom to fix κ_i axially (also, full irreps decomposition) and then solve numerically:

N _f	Anomalous dim./ ϵ	Symmetry	A_*/ϵ^2
1	$\left(\frac{1}{7}\right)$	-	-0.01786
2	$\left(\frac{1}{3},\frac{1}{3}\right)$	<i>S</i> ₃	-0.08333
	$\left(\frac{18}{109}, \frac{13}{109}\right)$	\mathbb{Z}_2	-0.03555
3	$\left(\frac{1}{5},\frac{1}{5},\frac{1}{5}\right)$	<i>S</i> ₄	-0.15
	(0.464138, 0.292417, 0.292417)	<i>O</i> (2)	-0.26224
	$\left(\frac{47}{285},\frac{47}{285},\frac{9}{95}\right)$	S_3	-0.10615
	(0.337931, 0.312268, 0.0877323)	$\mathbb{Z}_2 imes \mathbb{Z}_2$	-0.18449
	(0.164912, 0.164912, 0.0947368)	\mathbb{Z}_2	-0.10648
	(0.343715, 0.32918, 0.127884)	\mathbb{Z}_2	-0.2002

Rychkov-Stergiou (1810.10541) offered a bottle of Champagne for finding a perturbatively unitary scalar theory with \mathbb{Z}_2 symmetry in $d = 4 - \epsilon$ and $N_{\text{scalars}} > 1$

Take our second solution and integrate-out the fermions

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \varphi^{i} \partial^{\mu} \varphi^{i} + \frac{1}{4} \lambda_{k(ij} \lambda_{mn)k} \varphi_{i} \varphi_{j} \varphi_{m} \varphi_{n} - \frac{1}{2} \operatorname{Tr} \log \left(i \partial \!\!\!/ + \lambda_{i..} \varphi_{i} \right)_{jk}$$

Hopefully this one qualifies... though it circumvents their original motivation.

 S_q -invariance in $U \sim \varphi^3 \Longrightarrow$ Landau-Potts field theory (universality of Potts model)

 S_{q} -invariance with vertices e^{lpha} of (q-1)-symplex in \mathbb{R}^{q-1}

 $\psi^{\alpha} = e_i^{\alpha} \varphi_i \ q$ -states order parameter, with potential $U = \frac{1}{3!} g \sum_{\alpha} (\psi^{\alpha})^3$ which belongs to universality class of lattice Potts model (q = 0 are percolations)

What about a superpotential $W = \frac{1}{3!} \lambda \sum_{\alpha} e_i^{\alpha} e_j^{\alpha} e_k^{\alpha} \Phi_i \Phi_j \Phi_k$?

Family of solutions considered by Rong-Su in 1910.08578. Enhanced SUSY for q = 3 with $\Delta_{\Phi} = 1 - \frac{\epsilon}{3} \rightarrow 2/3$ for d = 3 (exact).

- Realistic possibility of observing SUSY in tabletop experiments
- Now regarded as more likely than observing it at LHC
- Potentially interesting families of Yukawa models in $d = 4 \epsilon$ with enhanced sym

Thank you