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Disclaimers

Based on

I my small contribution to the topic which dates back to 2017 Hellwig et al.

I some unpublished material from 2018

I new material from 2020-21 thanks to O. Gelber see Gelber’s poster

Emegent SUSY has been mentioned several times already during this conference

I My recent focus is on field theory and RG with a bit of CFT

I My knowledge of the topic is rather incomplete, to say the least

I For much more complete sets of references see H. Yao and I. Affleck’s talks

Additional informations

I Currently in the middle of a heat wave, must keep the window open

I Italy is the country of noisy Vespas, be patient
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Introduction
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Crash course on SUSY part 1

I Coleman-Mandula theorem:
“Space-time and internal symmetries cannot be combined in any but a trivial way”

ISO(3, 1)× G

I Several assumptions of CM theorem to break. Simplest:
Non-bosonic additional generators, imagine square root of translations

δβΦ = iβ
aQaΦ

{
Qa,Q

b
}
∼ 2 (γµ)a

bPµ

I Haag- LopuszańskiSohnius theorem: uniqueness and Nsusy{
QI a,QJ

b
}
∼ 2 (γµ)a

bPµδIJ + · · ·
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Crash course on SUSY part 2

I Fermionic generators, schematically

Q |boson〉 = |fermion〉 Q |fermion〉 = |boson〉

I Superfield and superspace

Φ(x , θ, θ) = φ(x) + θ
a
ψa(x) +

1

2
θ
a
θaF (x)

I From potential to superpotential∫
ddx U(φ) −→

∫
ddxdθdθW (Φ)
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Why SUSY?

Upsides

I Development driven by a perid of mathematical success in QFT for particle physics

I Originally proposed as solution to hierarchy problem at ΛEW

,

I Plays well in GUT, string theory, etc.

Downsides

I Doubling of DOFs (but we do need particles for DM/cosmology, right? )

I No evidence ,
I Even less evidence of strings (strings need SUSY is an understatement)
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The current status of SUSY in particle physics

A snapshot from what feels like a long time ago

I S  S U S Y  A L I V E  A N D  W E L L ?
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Madrid, 28-30 September 2016
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SPLE Advanced Grant

B. Allanach (Cambridge U.) 

H. Baer (Oklahoma U.) 

G. Bélanger (LAPTH-Annecy) 

O. Buchmüller (Imperial Coll.) 

M. Carena (Fermilab) 

M. Cicoli (ICTP & Bologna U.) 

H. Dreiner (Bonn U.)

G. G. Ross (Oxford U.) 

X. Tata (Hawaii U.) 

D. Shih (Rutgers U.) 

F. Staub (CERN) 

A. Strumia (CERN & Pisa U.) 

I. Vivarelli (ATLAS-Sussex U.) 

A. Weiler (Munich)

ORGANIZERS 
S. Heinemeyer       L. E. Ibáñez       F. Marchesano      M. Peiró

SPEAKERS
J. Ellis (CERN & King’s Coll.)  

L. J. Hall (Berkeley) 

A. Katz (CERN & Geneva U.) 

J. Lykken (Fermilab) 

J. March-Russell (Oxford U.) 

F. Moortgat (CMS-CERN) 

P. Ramond (Florida U.)

Discussion convener: X. Tata (Hawaii U.)

© Warner Bros.

8/38



So, seriously, why SUSY?

My personal motivations

I Still theoretical interesting symmetry evading no-go theorem

I Low-dimensional tunable condensed matter with correct DOFs can display it
as emergent symmetry

I Realistic possibility of observing SUSY in lab, just not as we originally thought
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From the Yukawa model to supersymmetry
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The Gross-Neveu-Yukawa model

Take ϕ real scalar and ψ 2-component spinor (Majorana)

SY =

∫
ddx

{1

2
∂µϕ∂

µϕ+
i

2
ψ/∂ψ + U(ϕ) +

1

2
H(ϕ)ψψ

}
I Perturbatively renormalizable in d = 4− ε for

U(ϕ) ∼ 1

4!
λϕ4 H(ϕ) ∼ yϕ

I Invariant under x → x̃ = (x1,−x2, x3) in d = 3 for

ϕ(x)→ −ϕ(x̃) ψ(x)→ iγ2ψ(x̃)
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Enhanced symmetry

Suppose the functions satisfy

U(ϕ) =
1

2
W ′(ϕ)2 H(ϕ) = W ′′(ϕ)

for some W (ϕ)

Ssusy =
1

2

∫
ddx

{
∂µϕ∂

µϕ+ iψ/∂ψ + W ′(ϕ)2 + W ′′(ϕ)ψψ
}

I Invariant under a supersymmetric transformation (on-shell)

δϕ = θψ δψ = (i /∂ϕ+ W ′(ϕ))θ

I Perturbatively renormalizable in d = 4− ε (λ = 6y2) for

W (ϕ) ∼ 1

3!
yϕ3
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On-shell vs off-shell SUSY

The transformation is non-linear

δψ = (i /∂ϕ+ W ′(ϕ))θ ∼ (i /∂ϕ+ 1/2yϕ2)θ

Introduce an auxiliary field F

Ssusy =

∫
ddx

{1

2
∂µϕ∂

µϕ+
i

2
ψ/∂ψ − 1

2
F 2 + FW ′(ϕ) +

1

2
W ′′(ϕ)ψψ

}
Off-shell transformations (wrt F )

δϕ = θψ δψ = (i /∂ϕ+ F )θ δF = iθ/∂ψ
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Superspace formulation

Consider Φ(x , θ, θ) = ϕ(x) + θψ(x) + 1
2θθF

Ssusy =

∫
ddx dθ dθ

{1

2
DΦDΦ + W (Φ)

}
Supercovariant derivatives, D = ∂

∂θ
+ iγµθ∂µ{
Da,D

b
}

= −2/∂a
b

They offer an explicit differential realization of
{
Qa,Q

b
}

.
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General idea for emergece of SUSY

I Yukawa models have a critical point as a function of Nscalars and Nfermions,

I but SUSY model is also a Yukawa model (ex: Nscalars = Nfermions),

I so critical point has enhanced SUSY for certain Nscalars and Nfermions!

The crucial points are how many parameters must be tuned
and how Weyl fermions are constructed to interplay with scalar order parameter...

Similar considerations can be made for Nambu-Jona-Lasinio-Yukawa model with
charged scalar (twice as many generators), we concentrate on Nsusy = 1.

Let’s review some proposals before coming back to field theory.
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Some proposed realizations
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Qiu original proposal

In d = 2:

I Tower of conformal CFTs c = 1− 6
m(m+1) , potential: ϕ2(m−1) Zamolodchikov

I Tower of superconformal CFTs c = 3
2

(
1− 8

m̂(m̂+2)

)
Friedan et al.

c = 7/10 shared by m = 4 and m̂ = 3 =⇒ tricritical Ising model has SUSY?

Ising model with vacancies has first vs second order behavior in this universality

H = −J
∑
〈i ,j〉

σiσj − h
∑
i

σi +
∑
i

∆σ2
i

ψ comes from “disorder” operator (nonlocal) and magnetization with ad hoc BCs
Realization: mixture of 4He and 3He at critical concentration
Unfortunately, no conclusive observation. Also, works only in d = 2
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Grover-Sheng-Vishwanath proposal

d = 1 + 1 boundary of 2 + 1 topological superconductor, g ∼Yukawa, h =magnetic

H = −i
∑{(

1− gµzj+1/2

)
χjχj+1 + µzj−1/2

µzj+1/2
− hµzj+1/2

}
Weyl spinors ψ at boundary (nonlocal)
DMRG simulation → central charge; c = 0 (gapped), c = 1/2 Ising, c = 7/10 SUSY
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Rahmani-Zhu-Franz-Affleck proposal

I Unpaired Majoranas, localized to topological defects (vortices, domain walls)
=⇒ topological superconductor

I Difference from Grover et al. =⇒ purely self-interacting Majoranas
=⇒ local interactions (vs long-range boson-mediated)

H = it
∑
j

γjγj+1 + g
∑
j

γjγj+2γj+3γj+4

Evidence for tricritical Ising universality c = 7/10 by tuning one parameter.
See Affleck’s talk at this conference
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Back to field theory in d ≤ 4
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RG flow of the Yukawa system with one Majorana

Define dimensionless renormalized quantities (v = λ
4!ϕ

4 and h = yϕ)

u(ϕ) = k−dU(ϕ kd/2−1Z−1/2
ϕ ) h(ϕ) = k−1Z−1

ψ H(ϕ kd/2−1Z−1/2
ϕ )

Leading perturbative RG flow in d = 4− ε

βu = −4u + ϕu′ + ε
(
u − 1

2
ϕu′
)

+
ηϕ
2
ϕu′ +

1

2(4π)2
(u′′)2 − 1

2(4π)2
h4

βh = −h + ϕh′ − ε1

2
ϕh′ + ηψh +

ηϕ
2
ϕh′ +

2

(4π)2
h(h′)2

Hint of SUSY

ηψ = ηϕ =
1

(4π)2
h′(0)2

which is necessary for them to combine in the same supermultiplet.
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RG flow of the superpotential

Dimensionless renormalized superpotential

w(ϕ) = k−d+1W (ϕ kd/2−1Z−1/2)

Leading perturbative RG flow of the superpotential

βw = −3w(ϕ) + ϕw ′(ϕ) + ε
(
w(ϕ)− 1

2
ϕw ′(ϕ)

)
+
η

2
ϕw ′(ϕ) +

1

3(4π)2
w ′′(ϕ)3

Anomalous dimension

η =
1

(4π)2
w ′′′(0)2
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SUSY is a solution of the Yukawa RG

Take u = (w ′)2/2 and h = w ′′, it is easy to show

βu = w ′
{
−2w ′ +

1

2
(2 + η)ϕw ′′ +

1

2
ε
(
w ′ − ϕw ′′

)
+

1

16π2
w ′′′(w ′′)2 +

1

32π2
w ′(w ′′′)2

}
' w ′

(
k∂kw

′) = k∂k
(w ′)2

2
= β(w ′)2/2

and

βh = (−1 + η)w ′′ − 1

2
εϕw ′′′ +

1

2
ϕ(2 + η)w ′′′ +

1

8π2
w ′′(w ′′′)2

' k∂kw
′′ = βw ′′

RG flows consistent for properly ranked polynomials (LO and NLO perturbation theory)
or up to irrelevant operators (in a functional interpretation).
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The SUSY fixed point

Take w(ϕ) = (4π)2

3! λϕ3, at NLO

βλ = − ε
2
λ+

7

2
λ3 − 21

2
λ5 η = λ2 − λ4

The fixed point

(λ∗)2 =
ε

7
+

3ε2

49
=⇒ η =

1

7
ε+

2

49
ε2

Super-superscaling relation determines ν for one superfield

∆Φ =
d − 2 + η

2
=⇒ ∆Φ2 = 2 + ∆Φ

Operator Φ2 turns on the same mass for ϕ and ψ =⇒ 1
ν = d−η

2 = 2− 4
7ε−

1
49ε

2
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Idea: reinterpret Yukawa as a broken SUSY RG

Neglect zero point energy and set H(ϕ) = W ′′(ϕ) + Y (ϕ)

SYukawa =

∫
ddx

{1

2
∂µϕ∂

µϕ+
i

2
ψ̄ /∂ψ − 1

2
F 2 + FW ′(ϕ) +

1

2
W ′′(ϕ)ψ̄ψ +

1

2
Y (ϕ)ψ̄ψ

}
The relation U(ϕ) = 1

2W
′(ϕ)2 can be integrated (use h over y for convenience)

βw =− 3w(ϕ) + ϕw ′(ϕ) + ε
(
w(ϕ)− 1

2
ϕw ′(ϕ)

)
+
ηϕ
2
ϕw ′(ϕ) +

1

3(4π)2
w ′′(ϕ)3

+

∫ ϕ

0
dx

w ′′(x)4 − h(x)4

2(4π)2w ′(x)

βh =− h(ϕ) + ϕh′(ϕ)− ε

2
ϕh′(ϕ)− ηψh(ϕ) +

ηϕ
2
ϕh′(ϕ) +

2

(4π)2
h(ϕ)h′(ϕ)2
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Origin of the nonlocal term

We have broken SUSY in the Yukawa sector with Y (ϕ),
but RG generates C (ϕ) ∝W ′′(ϕ)4 − H(ϕ)4 ∼ ϕ4 outside the potential

F F

ϕ

ϕ

ψ

These cancel only if W ′′(ϕ)− H(ϕ) = Y (ϕ) = 0
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General form of the RG steps

MS preserves on/off-shell susy at 2-loops

Ssusy → Ssusy −
δµ

µ

∫
ddx

{
β′WF +

1

2
β′′W ψ̄ψ

}

In general (beyond NLO or nonperturbatively), for some RG scale k

S → S − δk

k

∫
ddx

{
A(ϕ)F +

1

2
B(ϕ)ψ̄ψ + C (ϕ)

}

Three independent functions to attribute to the RG of W (ϕ) and Y (ϕ)
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F -field redefinition

Redefine F along the flow: βF ≡ k∂kF = D(ϕ)

S → S − δk

k

∫
ddx

{
A(ϕ)F +

1

2
B(ϕ)ψ̄ψ + C (ϕ)− δS

δF
D(ϕ)

}
Choose

βF = D(ϕ) =
C (ϕ)

W ′(ϕ)

to get

S → S − δk

k

∫
ddx

{(
A(ϕ)− C (ϕ)

W ′(ϕ)

)
F +

1

2
B(ϕ)ψ̄ψ

}
≡ S − δk

k

∫
ddx

{
βW ′F + (βW ′′ + βY )ψ̄ψ

}
Now we can use nonperturbative methods such as FRG for a broken-SUSY flow
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Some numbers in d = 3

Big advantage of broken SUSY RG and F -redefinition: η = ηϕ = ηψ.
Decent numbers even for LPA truncations, which is surprising, in need of improvement.

FRG1 FRG2 [2/2] [3/1] CB FRGold

η 0.174 0.167 0.171 0.170 0.164 0.185*

ν−1 1.385 1.395 1.415 1.415 1.418* 1.29

I Hellwig et al. 1705.08312

I Zerf et al. 1709.05057

I Iliesu et al. 1508.00012

I Vacca-Zambelli 1503.09136
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Flavors of SUSY
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Generalize to Nf superfields

Coupling generalizes to a “tensor”

W (ϕ) =
1

3!
λijkϕ

iϕjϕk

Structural similarity with U(ϕ) = 1
3!gijkϕ

iϕjϕk in d = 6− ε (Lee-Yang, Landau-Potts)!

Corresponds to a Yukawa model with Nf scalars and Nf fermions

Lint = λijkϕiψjψk +
1

4
λk(ijλmn)kϕiϕjϕmϕn
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RG flow with flavors

RG flow has a richer structure since there is no symmetry input. In d = 4− ε

βλijk = − ε
2
λijk +

2

3
λabcλab(iλjk)c + 2λiabλjbcλkca

Collective index a = (i , j , k). Admits a gradient form (at NLO)

βλa = G ab ∂

∂λb
A(λ) Gab = δab + . . .

Checked: SUSY solves RG flow of general Yukawa system at NLO like for Nf = 1
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Maximal symmetry and irreps

w(ϕ) has no symmetry...

if w∗(ϕ) is solution then also w̃∗(ϕ) = w∗(R · ϕ) is for R ∈ O(Nf )

O(Nf ) is maximal symmetry and induces an action on λijk as

w̃(ϕ) = w(R · ϕ)

O(Nf ) is always broken because irreps have no singlet

λijk = κ(iδjk) + σijk with σiij = 0

Example: for Nf = 3 then λ ∈ 10 = 3⊕ 7
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General solutions for Nf = 1, 2, 3

Use global O(Nf ) freedom to fix κi axially (also, full irreps decomposition)
and then solve numerically:

Nf Anomalous dim./ε Symmetry A∗/ε
2

1
(

1
7

)
- −0.01786

2

(
1
3 ,

1
3

)
S3 −0.08333(

18
109 ,

13
109

)
Z2 −0.03555

3

(
1
5 ,

1
5 ,

1
5

)
S4 −0.15

(0.464138, 0.292417, 0.292417) O(2) −0.26224(
47

285 ,
47

285 ,
9

95

)
S3 −0.10615

(0.337931, 0.312268, 0.0877323) Z2 × Z2 −0.18449

(0.164912, 0.164912, 0.0947368) Z2 −0.10648

(0.343715, 0.32918, 0.127884) Z2 −0.2002
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Nf = 2 solution with Z2, is it worth a Dom Pèrignon?

Rychkov-Stergiou (1810.10541) offered a bottle of Champagne for finding a
perturbatively unitary scalar theory with Z2 symmetry in d = 4− ε and Nscalars > 1

Take our second solution and integrate-out the fermions

L =
1

2
∂µϕ

i∂µϕi +
1

4
λk(ijλmn)kϕiϕjϕmϕn −

1

2
Tr log

(
i /∂ + λi ··ϕi

)
jk

Hopefully this one qualifies... though it circumvents their original motivation.
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Super-Potts solutions

Sq-invariance in U ∼ ϕ3 =⇒ Landau-Potts field theory (universality of Potts model)

Sq-invariance with vertices eα of (q − 1)-symplex in Rq−1

ψα = eαi ϕi q-states order parameter, with potential U = 1
3!g
∑

α(ψα)3

which belongs to universality class of lattice Potts model (q = 0 are percolations)

What about a superpotential W = 1
3!λ
∑

α e
α
i e

α
j e

α
k ΦiΦjΦk ?

Family of solutions considered by Rong-Su in 1910.08578. Enhanced SUSY for q = 3
with ∆Φ = 1− ε

3 → 2/3 for d = 3 (exact).
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Conclusions

I Realistic possibility of observing SUSY in tabletop experiments

I Now regarded as more likely than observing it at LHC

I Potentially interesting families of Yukawa models in d = 4− ε with enhanced sym
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Thank you
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