Emergent SO(5) symmetry in the global phase diagram of extended Hubbard model in monolayer graphene

Bitan Roy Lehigh University, Bethlehem, PA

A. Szabo & **BR** To appear on arXiv

Relativistic Fermions in Flatland: Theory and Application, 2021

Exact

Emergent

- Exact symmetry \rightarrow Time reversal, SU(2) spin rotational symmetry
- Emergent symmetry → Lorentz symmetry, Chiral symmetry, …

PRB 79, 085116 (2009), JHEP 04, 018 (2016)

High energy or UV

Isospin doublet: electron & electron neutrino Top Unification of electromagnetic & weak forces SU(2) x U(1) symmetry (>246 GeV) Nucl. Phys. **10**, 107 (1959); Nuovo Cimento **11**, 568 (1959); PRL **19**, 1264 (1967)

Low energy or IR

Topological phase transition in d=3: Emergent U(1) chiral symmetry

PRB 94, 041101(R) (2016)

Topological phase transition

Quantum phase transition (QPT) @ m=0

• Symmetry under global chiral rotation: $\Psi(\tau, x) \to e^{i\theta\gamma_5}\Psi(\tau, x), \quad \Psi^{\dagger}(\tau, x) \to \Psi^{\dagger}(\tau, x)e^{-i\theta\gamma_5}$ Broken when $m, b \neq 0$

Emergent symmetry: An example

• Topological phase transition in the renormalization group (RG) language:

$$rac{dv}{d\ell} = 0, \quad rac{dm}{d\ell} = m, \quad rac{db}{d\ell} = -b \qquad \qquad \ell \; : \; ext{Logarithm of the RG time}$$

Determined by the bare scaling dimensions for a z=1 or Dirac system

Fermi velocity: *marginal*, Dirac mass: *relevant*, *b*: *irrelevant*

Topological quantum critical point: located @

(m,b)=(0,0)

U(1) chiral symmetry: Absent @ microscopic level

but restored @ a scale invariant QCP

Emergent phenomena! BR, P. Goswami & J. D. Sau, PRB **94**, 041101(R) (2016)

Emergent symmetry in correlated systems

Interacting Dirac liquid on a flatland

Dirac fermions in graphene

b

 \boldsymbol{a}

 δ_3

 δ_1

 $\mathbf{V2}$

 δ_2

Κ

• Honeycomb lattice: Two interpenetrating triangular sublattices

Lack of inversion symmetry about site centers \rightarrow Fermi points @ corners of Brillouin zone

RMP 81, 109 (2009)

• Low-energy Hamiltonian for massless Dirac fermions:

$$\hat{h}_{\rm D}(\mathbf{k}) = v \left[\Gamma_{3031} k_x - \Gamma_{3002} k_y \right] - \mu \Gamma_{3000}$$

 $\Gamma_{\mu\nu\lambda\rho} = \eta_{\mu} \otimes \sigma_{\nu} \otimes \tau_{\lambda} \otimes \alpha_{\rho} \equiv \mu\nu\lambda\rho$ $\mu, \nu, \rho, \lambda = 0, 1, 2, 3$

Pauli matrices

 $\alpha_{
ho}$: Sublattice au_{λ} : Valley

 σ_{ν} : Spin η_{μ} : Nambu

Symmetries in Dirac system

• Sublattice reflection:
$$S = \Gamma_{0001} \oplus \left(\begin{array}{c} k_x \to k_x \\ k_y \to -k_y \end{array} \right)$$

• Valley reflection:
$$T = \Gamma_{0010} \oplus \left(\begin{array}{c} k_x \to -k_x \\ k_y \to k_y \end{array} \right)$$

• Spatial Rotation:
$$R\left(\frac{\pi}{2}\right) = \exp\left(i\frac{\pi}{2}\Gamma_{0033}/2\right) \oplus \left(\begin{array}{c}k_x \to -k_y\\k_y \to k_x\end{array}\right)$$

- Translation: U(1) rotation generated by $I_{\rm tr} = \Gamma_{0030}$
- Time reversal: Generated by antiunitary operator $~~\mathcal{T}=\Gamma_{0210}~\mathcal{K}$
- SU(2) spin rotational symmetry: Generated by $S = \{\Gamma_{0100}, \Gamma_{0200}, \Gamma_{0300}\}$

PRB 79, 085116 (2009), PRB 103, 205135 (2021)

Interactions among Dirac fermions

Hubbardlike interactions

- Weak short-range interactions: *irrelevant* \rightarrow Stable Dirac liquid
- Sufficiently strong short-range interactions: *relevant* \rightarrow spontaneous symmetry breaking \rightarrow onset of ordered states
- At T=0: Best candidates for ordered states \rightarrow *dynamic generation of Dirac mass*

Through quantum phase transitions via quantum critical points (QCPs)

Spontaneous breaking of discrete (crystal or fundamental) and/or continuous symmetry

6 excitonic & 3 superconducting masses

Dirac masses: singlet excitonic

Charge density wave (CDW):
 Breaks sublattice symmetry

 Γ_{3003}

Semenoff PRL **53**, 2449 (1983)

 Quantum anomalous Hall insulator (QAHI): Breaks sublattice & time reversal symmetries

 Γ_{0033}

Haldane PRL 61, 2015 (1988)

 Kekule valence bond solid (KVBS): Breaks translational symmetry

 $(\Gamma_{3011},\Gamma_{3021})$

Hou, Chamon, Mudry PRL **98**, 186809 (2007)

 $-\cos(\alpha)$

 $\cos(\alpha + 2\pi/3)$

 $\cos(\alpha + 4\pi/3)$

 α : Internal U(1) angle

Dirac masses: Triplet excitonic

 Antiferromagnet (AFM): Breaks sublattice & spin rotational symmetries

```
(\Gamma_{0103},\Gamma_{0203},\Gamma_{0303})
```

Herbut PRL 97, 085116 (2006)

 Quantum spin Hall insulator (QSHI): Breaks sublattice & spin rotational symmetries

 $(\Gamma_{3133}, \Gamma_{3233}, \Gamma_{3333})$

Raghu, Qi, Honerkamp & Zhang PRL **100**, 156401 (2008)

• Spin Kekule valence bond solid (SKVBS): Breaks translational & spin rotational symmetries $(\Gamma_{0j11}, \Gamma_{0j21})$ j = 1, 2, 3Roy & Herbut PRB **93**, 155415 (2016) Dashed lines = - Solid lines

Dirac masses: Superconducting

Competing Dirac masses

 Antiferromagnet & Kekule valence bond solid: SO(5) symmetry

> (0103,0203,0303): Antiferromagnet (3011,3021): Kekule valence bond solid

(0100,0200,0300): SU(2) Spin rotation 0030: Generator of translation Remaining 6: General chiral rotations

 Quantum spin Hall insulator & s-wave pairing: SO(5) symmetry

(3133,3233,3333): Quantum spin Hall insulator (1000,2000): *s*-wave pairing

(0100,0200,0300): SU(2) Spin rotation 3000: Number operator Remaining 6: General chiral rotations

Competing Dirac masses

Charge-density-wave, Kekule valence bond solid & s-wave pairing: SO(5) symmetry

> 3003: Charge-density-wave (3011,3021): Kekule valence bond solid (1000,2000): *s*-wave pairing

(1003,2003,3000): SU(2) pseudo-spin rotation 0030: Generator of translation Remaining 6: General chiral rotations

Largest symmetry among competing Dirac masses in graphene: SO(5) Only **3** such candidates consistent with microscopic symmetries

Five tuplet	Partner five-tuplet by C conjugation
{Re VBS, Im VBS, Re SSC, Im SSC, CDW}	{Re VBS, Im VBS, Néel _x , Néel _y , Néel _z }
{Im VBS, CDW, Re VBS _x , Re VBS _y , Re VBS _z }	{Im VBS, Néel _z , Im TSC _{32z} , Re TSC _{32z} , Re VBS _z }
{Re VBS, CDW, Im VBS _x , Im VBS _y , Im VBS _z }	{Re VBS, Néel _z , Re TSC _{02z} , Im TSC _{02z} , Im VBS _z }
{Re SSC, Im SSC, QSHE _x , QSHE _y , QSHE _z }	{Néel _x , Néel _y , Im TSC _z , Re TSC _z , QSHE _z }
{Re VBS, Re SSC, Re TSC_{02x} , Im TSC_{02y} , Re TSC_{02z} }	{Re VBS, Néel _x , Re TSC _{02x} , Im TSC _{02x} , Im VBS _x }
{Re VBS, Im SSC, Im TSC_{02x} , Re TSC_{02y} , Im TSC_{02z} }	{Re VBS, Néel _y , Im TSC _{02y} , Re TSC _{02y} , Im VBS _y }
{Im VBS, Im SSC, Re TSC_{32x} , Im TSC_{32y} , Re TSC_{32z} }	{Im VBS, Néel _y , Re TSC _{32y} , Im TSC _{32y} , Re VBS _y }
{Im VBS, Re SSC, Im TSC_{32x} , Re TSC_{32y} , Im TSC_{32z} }	{Im VBS, Néel _x , Im TSC _{32x} , Re TSC _{32x} , Re VBS _x }
{CDW, Im SSC, Im TSC_x , Re TSC_y , Im TSC_z }	{Néel _z , Néel _y , Im TSC _x , Re TSC _x , QSHE _x }
{CDW, Re SSC, Re TSC_x , Im TSC_y , Re TSC_z }	{Néel _z , Néel _x , Re TSC _y , Im TSC _y , QSHE _y }
$ \{ \text{Im VBS}_x, \text{ QSHE}_y, \text{ Im VBS}_z, \text{ Re TSC}_{32y}, \text{ Im TSC}_{32y} \} \\ \{ \text{Im VBS}_x, \text{ QSHE}_y, \text{ Re VBS}_x, \text{ Néel}_x, \text{ QSHE}_z \} \\ \{ \text{Im VBS}_x, \text{ Re TSC}_{32y}, \text{ Im TSC}_{32z}, \text{ Im TSC}_{02x}, \text{ Im TSC}_{32y} \} \\ \{ \text{Im VBS}_x, \text{ Re TSC}_{32z}, \text{ Re TSC}_{02x}, \text{ Re TSC}_x, \text{ Im TSC}_{32y} \} \\ \{ \text{Im VBS}_x, \text{ Re TSC}_{32z}, \text{ Im TSC}_{32z}, \text{ Im VBS}_y, \text{ QSHE}_z \} \\ \{ \text{Im VBS}_x, \text{ Re TSC}_x, \text{ Im TSC}_x, \text{ CDW}, \text{ Re VBS}_x \} $	$ \{ \text{Re TSC}_{02z}, \text{Re TSC}_z, \text{Im VBS}_z, \text{Re TSC}_{32x}, \text{Im TSC}_{32y} \} \\ \{ \text{Re TSC}_{02z}, \text{Re TSC}_z, \text{Im TSC}_{32z}, \text{Re SSC}, \text{QSHE}_z \} \\ \{ \text{Re TSC}_{02z}, \text{Re TSC}_{32x}, \text{Re VBS}_x, \text{Im TSC}_{02y}, \text{Im TSC}_x \} \\ \{ \text{Re TSC}_{02z}, \text{Re VBS}_y, \text{Re TSC}_{02x}, \text{Re TSC}_y, \text{Im TSC}_{32y} \} \\ \{ \text{Re TSC}_{02z}, \text{Re VBS}_y, \text{Re VBS}_x, \text{Im TSC}_{02z}, \text{QSHE}_z \} \\ \{ \text{Re TSC}_{02z}, \text{Re TSC}_y, \text{Im TSC}_x, \text{Néel}_z, \text{Im TSC}_{32z} \} \end{cases} $
{QSHE _y , Im VBS _z , QSHE _x , Re VBS _z , Néel _z }	{Re TSC _z , Im VBS _z , Im TSC _z , Re VBS _z , CDW}
{QSHE _y , Re TSC _{02y} , Re TSC _y , Im SSC, Im TSC _{32y} }	{Re TSC _z , Re TSC _{02y} , Re TSC _x , Néel _y , Im TSC _{32y} }
{QSHE _y , Re TSC _{02y} , Im TSC _{02y} , Re VBS _x , Re VBS _z }	{Re TSC _z , Re TSC _{02y} , Im TSC _{02x} , Im TSC _{32z} , Re VBS _z }
{QSHE _y , Re TSC _{32y} , Im TSC _{02y} , Im TSC _y , Re SSC}	{Re TSC _z , Re TSC _{32x} , Im TSC _{02x} , Im TSC _y , Néel _x }
{Re VBS _y , Néel _y , QSHE _x , Im VBS _y , QSHE _z }	{Re TSC _{32z} , Im SSC, Im TSC _z , Im TSC _{02z} , QSHE _z }
{Re VBS _y , Re TSC _y , Im TSC _y , CDW, Im VBS _y }	{Re TSC _{32z} , Re TSC _x , Im TSC _y , Néel _z , Im TSC _{02z} }
{Re VBS _y , Re TSC _{32y} , Im TSC _y , Im TSC _{02z} , Im TSC _{02x} }	{Re TSC _{32z} , Re TSC _{32x} , Im TSC _y , Im VBS _y , Im TSC _{02y} }
{Re VBS _y , Re TSC _{02x} , Im TSC _{02x} , QSHE _x , Re VBS _z }	{Re TSC _{32z} , Re TSC _{02x} , Im TSC _{02y} , Im TSC _z , Re VBS _z }
{Néel _y , Re TSC _{32y} , Im TSC _{02y} , Im TSC _z , Im TSC _x }	{Im SSC, Re TSC_{32x} , Im TSC_{02x} , $QSHE_x$, Im TSC_x }
{Im VBS _z , Re TSC _{32y} , Im TSC _{02z} , Im TSC _z , Im TSC _{32x} }	{Im VBS_z , Re TSC_{32x} , Im VBS_y , $QSHE_x$, Im TSC_{32x} }
{Re TSC _{02y} , Re TSC _y , Im TSC _{32z} , Im TSC _{32x} , Im VBS _y }	{Re TSC_{02y} , Re TSC_x , Re VBS_x , Im TSC_{32x} , Im TSC_{02z} }
{Re TSC _y , Re TSC _{02x} , Im TSC _z , Im TSC _{32x} , Néel _x }	{Re TSC_x , Re TSC_{02x} , $QSHE_x$, Im TSC_{32x} , Re SSC }

Ryu, Mudry, Hou, Chamon PRB 80, 205319 (2009)

Internal symmetry among competing orders → emergent symmetry @ QCPs?

Begin with generic four-fermion interactions:

$$g_{_{MN}}\left(\Psi^{\dagger}M\Psi\right)\left(\Psi^{\dagger}N\Psi\right)$$

 $g_{_{MN}}$: Coupling constant, M & N matrices operating on sublattice, valley & spin indices

- Impose discrete and continuous microscopic symmetries \rightarrow Number of coupling constants 544 \rightarrow 18
- Fierz relation: $[\Psi^{\dagger}(x)M\Psi(x)][\Psi^{\dagger}(y)N\Psi(y)]$ $= -\frac{1}{64} \operatorname{Tr}(M\Gamma^{a}N\Gamma^{b})[\Psi^{\dagger}(x)\Gamma^{b}\Psi(y)][\Psi^{\dagger}(y)\Gamma^{a}\Psi(x)]$

Herbut, Juricic & BR PRB **79**, 085116 (2009); O. Vafek PRB **82**, 205106 (2010) Number of linearly independent coupling constants = 18 - 9 = 9 for x = y

Results are insensitive to the choices of 9 couplings!

Scaling analysis

• Euclidean action in the presence of *e-e* interactions: $S_{ ext{total}} = S_0 + S_{ ext{int}}$

$$S_0 = \int d au \, \int d^d x \, \Psi^{\dagger}(au, x) \left[\partial_{ au} + \hat{h}_{
m D}(k
ightarrow - i oldsymbol{
abla})
ight] \Psi(au, x)$$

$$S_{\rm int} = g_M \int d\tau \int d^d x \left[\Psi^{\dagger}(\tau, x) M \Psi(\tau, x) \right]^2$$

• Scaling dimension: $[g_M] = d - z = 2 - 1 = -1 \rightarrow \text{Weak interactions: irrelevant}$

To capture intermediate & strong coupling phenomena $\,d
ightarrow 1+\epsilon$

$$[g_M] = -\epsilon$$

Controlled perturbative expansion about lower-critical one spatial dimension (d=1)

Feynman diagrams

Feynman diagrams & RG flow

Matrix algebra is performed in d=2 & shell integration in $d=1+\epsilon$

RG fixed points

• Fixed points: obtained from the zeros of the coupled RG flow equations

$$\frac{dg_i}{d\ell} = 0, \quad i = 1, \cdots, 9$$

• Fully stable Gaussian fixed points \rightarrow stable DSM phase (weak interactions)

$$\{g_i\}\equiv 0$$

- Infrared unstable (in one direction) QCPs → Continuous QPTs to various ordered phases: 5
- Unstable (in two directions) bi-critical points \rightarrow Typically separates basins of attraction of different QCPs: 9 • Unstable (in two directions) bi-critical points QCP CO $g_{A_{1g}}^s g_{A_{2g}}^s$
 - $\{g_i\}\sim\epsilon$

QCP		Coupling constants (in units of ϵ)										
	$g^s_{\scriptscriptstyle A_{1g}}$	$g^s_{\scriptscriptstyle A_{2g}}$	$g^s_{\scriptscriptstyle A_{2u}}$	$g^s_{{\scriptscriptstyle A}_{1{\bf k}}}$	$g^s_{\scriptscriptstyle A_{1u}}$	$g^t_{\scriptscriptstyle A_{1g}}$	$\boldsymbol{g}_{\boldsymbol{A_{2g}}}^{t}$	$\boldsymbol{g}_{\boldsymbol{A}_{2u}}^{t}$	$g^s_{{\scriptscriptstyle A}_{1{\bf k}}}$			
QCP_1	0.00	0.67	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
QCP_2	0.00	0.00	0.67	0.00	0.00	0.00	0.00	0.00	0.00			
QCP_3	-0.09	-0.12	0.10	0.10	0.00	-0.04	0.38	-0.14	-0.14			
QCP_4	0.00	-0.03	0.42	0.42	0.00	0.04	0.14	-0.14	-0.14			
QCP_5	0.00	0.04	-0.06	0.25	-0.09	-0.04	-0.02	0.26	0.02			

 $\{g_i\} \sim \epsilon$

Symmetry analysis @ QCPs

Couple massless Dirac excitation with all symmetry allowed fermion bilinears via conjugate field

$$S = \int d\tau \, \int d^d x \, \Delta_{\scriptscriptstyle O} \Psi^\dagger(\tau, x) O \Psi(\tau, x)$$

- 9 spin-singlet particle-hole & 9 spin triplet particle-hole orders
- 5 spin-singlet & 4 spin-triplet parings

IREP (D_{3d})	Matrix (N)	Phase		PRB 103 ,	205135 (2021)	IREP (D_{3d})	Matrix (N)	Phase	
A_{1g}	Γ_{3000}	fermionic density	A_{1g}	Γ_{0s00}	ferromagnet	A_{1g}	$\Gamma_{lpha 000}$	s-wave SC	
A_{2g}	Γ_{0033}	quantum anomalous Hall ins.	A_{2g}	Γ_{3s33}	quantum spin Hall ins.	A_{2g}	$\Gamma_{\alpha s 33}$	fully gapless SC_1	
E_g	$\Gamma_{3001},\Gamma_{3032}$	$\mathrm{nematic}_1$	E_g	$\Gamma_{0s01},\Gamma_{0s32}$	$spin-nematic_1$	E_g	$\Gamma_{\alpha 001}, \Gamma_{\alpha 032}$	nematic SC_1	
A_{1u}	Γ_{0030}	chiral density	A_{1u}	Γ_{3s30}	chiral ferromagnet	A_{1u}	$\Gamma_{\alpha s 30}$	f-wave SC	
A_{2u}	Γ_{3003}	charge-density-wave	A_{2u}	Γ_{0s03}	antiferromagnet	A_{2u}	$\Gamma_{lpha 003}$	fully gapless SC_2	
E_u	$\Gamma_{0031},\Gamma_{0002}$	$\mathrm{nematic}_2$	E_u	$\Gamma_{3s31}, \Gamma_{3s02}$	$\operatorname{spin-nematic}_2$	E_u	$\Gamma_{\alpha s 31}, \Gamma_{\alpha s 02}$	nematic SC_2	
A_{1k}	$\Gamma_{3011},\Gamma_{3021}$	Kekulé valence bond solid	A_{1k}	$\Gamma_{0s11},\Gamma_{0s21}$	spin-Kekulé solid	A_{1k}	$\Gamma_{\alpha 011}, \Gamma_{\alpha 021}$	singlet Kekulé SC	
A_{2k}	$\Gamma_{0012},\Gamma_{0022}$	Kekulé current	A_{2k}	$\Gamma_{3s12}, \Gamma_{3s22}$	spin-Kekulé current	A_{2k}	$\Gamma_{\alpha s12}, \Gamma_{\alpha s22}$	triplet Kekulé SC	
E_k	$\Gamma_{3010}, \Gamma_{3023} \\ \Gamma_{3013}, \Gamma_{3020}$	smectic charge-density-wave	E_k	$\Gamma_{0s10}, \Gamma_{0s23}$ $\Gamma_{0s13}, \Gamma_{0s20}$	smectic spin-density-wave	E_k	$\Gamma_{lpha 010}, \Gamma_{lpha 023}$ $\Gamma_{lpha 013}, \Gamma_{lpha 020}$	smectic SC	

Symmetry analysis @ QCPs

• Compute the RG flow equations for the conjugate fields:

RHS of the flow equation \rightarrow scaling dimension of order parameter

@ fixed points when $\{g_i\} \equiv \{g_i^\star\}$

	Scaling dimension of fermion bilinears (in units of ϵ)																	
QCP	Singlet particle-hole							Triplet particle-hole										
	A_{1g}	A_{2g}	E_g	A_{1u}	A_{2u}	E_u	$A_{1\mathbf{K}}$	$A_{2\mathbf{K}}$	$E_{\mathbf{K}}$	A_{1g}	A_{2g}	E_g	A_{1u}	A_{2u}	E_u	$A_{1\mathbf{K}}$	$A_{2\mathbf{K}}$	$E_{\mathbf{K}}$
QCP_1	0.00	1.17	0.08	0.00	-0.17	0.08	-0.17	0.00	0.08	0.00	-0.17	0.08	0.00	-0.17	0.08	-0.17	0.00	0.08
QCP_2	0.00	-0.17	0.08	0.00	1.17	0.08	0.17	0.00	-0.08	0.00	-0.17	0.08	0.00	-0.17	0.08	0.17	0.00	-0.08
QCP_3	0.00	-0.19	0.19	0.00	-0.08	0.03	-0.09	0.00	0.19	0.00	0.71	-0.09	0.00	-0.09	0.03	-0.09	0.00	-0.09
QCP_4	0.00	-0.19	0.03	0.00	0.71	0.03	0.71	0.00	0.03	0.00	-0.09	-0.09	0.00	-0.09	0.20	-0.09	0.00	-0.09
QCP_5	0.00	-0.19	0.03	0.00	-0.09	0.19	0.71	0.00	-0.09	0.00	-0.09	-0.09	0.00	0.71	0.03	-0.09	0.00	0.03

Symmetry analysis @ QCPs

• Compute the RG flow equations for the conjugate fields:

RHS of the flow equation \rightarrow scaling dimension of order parameter

@ fixed points when $\{g_i\} \equiv \{g_i^\star\}$

	Scaling dimension of fermion bilinears (in units of ϵ)											
QCP	Pairing											
	$A_{1g}(S) A_{2g}(T) E_g(S) A_{1u}(T) A_{2u}(S) E_u(T) A_{1K}(S) A_{2K}(T) E_{2K}(T) E_{2K}(T) $											
QCP_1	-0.17	0.00	0.08	-0.17	0.00	0.08	0.00	-0.17	0.08			
QCP_2	0.17	0.00	-0.08	0.17	0.00	-0.08	0.00	-0.17	0.08			
QCP_3	0.71	0.00	-0.09	-0.09	0.00	0.03	0.00	-0.09	-0.09			
QCP_4	0.71	0.00	0.03	-0.09	0.00	-0.09	0.00	-0.09	0.03			
QCP_5	-0.09	0.00	0.19	-0.09	0.00	-0.09	0.00	-0.09	-0.09			

Emergent symmetry @ QCPs

- QCP_1 : Quantum anomalous Hall insulator \rightarrow largest scaling dimension
- QCP_2 : Charge-density-wave \rightarrow largest scaling dimension
- QCP₃: QSHI & s-wave \rightarrow largest scaling dimension \rightarrow SO(5) symmetry
 - QCP₄: CDW, KVBS & s-wave \rightarrow largest scaling dimension \rightarrow SO(5) symmetry
 - QCP₅: AFM & KVBS \rightarrow largest scaling dimension \rightarrow SO(5) symmetry

All three SO(5) symmetry \rightarrow emergent symmetry @ QCPs

• Same results with Lorentz symmetric Wilsonian shell elimination

• Same results with Lorentz symmetry @ microscopic level

How do they manifest on the phase diagram of microscopic models?

Extended Honeycomb Hubbard model

$$H_{U} = \frac{U}{2} \sum_{R} n_{\uparrow}(R) n_{\downarrow}(R),$$

$$H_{V_{1}} = \frac{V_{1}}{2} \sum_{\langle A,B \rangle} \sum_{\sigma,\sigma'=\uparrow,\downarrow} n_{\sigma}(A) n_{\sigma'}(B),$$

$$H_{V_{2}} = \frac{V_{2}}{2} \sum_{\langle \langle R,R' \rangle \rangle} \sum_{\sigma,\sigma'=\uparrow,\downarrow} n_{\sigma}(R) n_{\sigma'}(R')$$

Onsite Hubbard: U Nearest-neighbor: V_1 Next nearest-neighbor: V_2

Repulsive interaction: $(U,V_1,V_2) > 0$ Attractive interaction: $(U,V_1,V_2) < 0$

- Express the fermionic creation & annihilation operators in terms of Fourier modes around two valley → Initial conditions for microscopic models in terms of the bare values of 9 chosen couplings
- Increase the strength of bare microscopic coupling(s) until at least one coupling diverges: breakdown of nodal Dirac liquid → Onset of ordered state
- Simultaneously at last one conjugate field diverges \rightarrow Pattern of symmetry breaking
- Identifying QCP: At the DSM-Ordered phase boundary running couplings spend a Large amount of RG time in the close vicinity of a QCP before diverging (BSP) or falling back to 0 (DSM) → Pins QCP controlling different segments of the phase boundary

Phase diagram: Kekule Hubbard model

 $g_{\scriptscriptstyle A1K}$: Quartic interaction in the KVBS channel

Phase diagram: U-V, model

Phase diagram: U or V₁-V₂ model

• NNN repulsion \rightarrow QSHI \rightarrow Nucleated via QCP₂:

Numerical simulations → conflicting outcomes PRB 89, 035103 (1014); PRB 92, 085147 (2015); PRB 92, 085146 (2015); ...

QSHI + s-wave \rightarrow SO(5)

● Spinless fermions: NNN repulsion → Quantum Anomalous Hall insulator!

- Not only internal symmetry between competing orders emerges @ QCPs, but they also control QPTs into either of two phases
- Examples:

(a) QPTs to AFM & KVBS \rightarrow controlled by QCP₅ : SO(5) symmetric (b) QPTs to *s*-wave & CDW & KVBS \rightarrow controlled by QCP₄: SO(5) symmetric (c) QPTs to QSHI & s-wave \rightarrow controlled by QCP₃: SO(5) symmetric

• No QCPs with pure AFM, QSHI or *s*-wave order

How about order parameter fluctuation?

Gross-Neveu-Yukawa formalism

$$L_{Y} = g_{1} \sum_{j=1}^{S_{1}} \Phi_{j}(x) \Psi^{\dagger}(x) M_{j} \Psi(x) \qquad \qquad L_{b}^{1} = \sum_{j=1}^{S_{1}} \left[\frac{1}{2} (\partial_{\mu} \Phi_{j})^{2} + m_{1}^{2} \Phi_{j}^{2} + \frac{\lambda_{1}}{4!} (\Phi_{j}^{2})^{2} \right],$$

$$+ g_{2} \sum_{j=S_{1}+1}^{S} \Phi_{j}(x) \Psi^{\dagger}(x) M_{j} \Psi(x) \qquad \qquad L_{b}^{2} = \sum_{j=S_{1}+1}^{S} \left[\frac{1}{2} (\partial_{\mu} \Phi_{j})^{2} + m_{2}^{2} \Phi_{j}^{2} + \frac{\lambda_{2}}{4!} (\Phi_{j}^{2})^{2} \right],$$

$$L_{b}^{12} = \frac{\lambda_{12}}{12} \sum_{j=1}^{S_{1}} \sum_{k=S_{1}+1}^{S} \Phi_{j}^{2} \Phi_{k}^{2}.$$

- O(S₁) & O(S₂) symmetry breaking bosonic order parameters: Coupled with gapless
 Dirac fermions via Yukawa coupling: Composite O(S) order with S=S₁+S₂
- AFM: $S_1 = 3 \& KVBS$: $S_2 = 2 \rightarrow O(S) = O(5)$ QSHI: $S_1 = 3 \& s$ -wave: $S_2 = 2 \rightarrow O(S) = O(5)$
- Perturbative analysis about upper critical three spatial dimension with $\epsilon = 3 d$ Herbut, Juricic, Vafek PRB **80**, 075432 (2009)

But competing orders need to be introduced from outset!

Emergent symmetry @ Yukawa fixed point

- Pure QCPs with $O(S_1) \& O(S_2)$ symmetries (blue and purple dots) are unstable
- Enlarged O(S) symmetry emerges on the critical Hyperplane @ Yukawa fixed point (red dot)
- Controls QPTs from DSM-distinct ordered phases, ⁹⁵
 between two competing ordered phases

- Correlated nodal semimetal: Ideal platform to demonstrate emergent symmetries @ scale invariant metallic critical points
- Graphene: Massless Dirac fermions on flatland showing emergent SO(5) symmetry among antiferromagnet & valence bond solid, quantum spin-Hall insulator and *s*-wave pairing
- High symmetric QCPs or multi-critical points controls the phase boundaries between DSM and distinct competing ordered phases, as well as direct order-order transition via metallic fixed point
- Emergent symmetry also operative beyond

(a) Relativistic flatland (3D interacting DSM)

A. Szabo & BR JHEP **2021**, 4 (2021)

(b) Beyond relativistic fermions BR & M. Foster, PRX 8, 011049 (2018)

Determines nature of competing superconductors @ finite doping
 A. Szabo & BR, PRB 103, 205135 (2021)