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SymmetriesSymmetries

Exact symmetry → Time reversal, SU(2) spin rotational symmetry 

Emergent  symmetry → Lorentz symmetry, Chiral symmetry, ... 

PRB 79, 085116 (2009), JHEP 04, 018 (2016)

High energy or UV

Isospin doublet: electron & electron neutrino
Unification of electromagnetic & 
weak forces SU(2) x U(1) symmetry (>246 GeV)

Low energy or IR

Topological phase transition in d=3:
Emergent U(1) chiral symmetry

PRB 94, 041101(R) (2016)

Exact Emergent

Nucl. Phys. 10, 107 (1959); Nuovo Cimento 11, 568 (1959);
PRL 19, 1264 (1967)



  

Topological phase transitionTopological phase transition

Normal insulator Topological insulatorQCP

Massless Dirac fermions

Massive Dirac fermions

Hamiltonian: v :  Fermi velocity
m : Regular Dirac mass

b : Higher gradient term (>0)

Imaginary time action:

Phase diagram: m > 0 : topological insulator, m < 0 : trivial or normal insulator

Quantum phase transition (QPT) @ m=0

Symmetry under global chiral rotation:

Broken when

Science 314, 1157 (2006); PRB 82, 045122 (2010)



  

Emergent symmetry: An exampleEmergent symmetry: An example

Topological phase transition in the renormalization group (RG) language:

Determined by the bare scaling dimensions for a z=1 or Dirac system

Logarithm of the RG time

Fermi velocity: marginal, Dirac mass: relevant, b: irrelevant

Topological quantum critical point: located @

U(1) chiral symmetry: Absent @ microscopic level 

          but restored @ a scale invariant QCP

Emergent phenomena!
BR, P. Goswami & J. D. Sau, PRB 94, 041101(R) (2016)



  

Emergent symmetry in correlated 
systems

Interacting Dirac liquid on a flatland



  

Dirac fermions in grapheneDirac fermions in graphene

Honeycomb lattice: Two interpenetrating triangular sublattices

Lack of inversion symmetry about site centers 
→ Fermi points @ corners of Brillouin zone

Low-energy Hamiltonian for massless Dirac fermions:

Sublattice Valley

Spin Nambu

Pauli matrices

RMP 81, 109 (2009)



  

Sublattice reflection:

Symmetries in Dirac systemSymmetries in Dirac system

Valley reflection:

Spatial Rotation:

Translation: U(1) rotation generated by

Time reversal: Generated by antiunitary operator

SU(2) spin rotational symmetry: Generated by

PRB 79, 085116 (2009), PRB 103, 205135 (2021)



  

Interactions among Dirac fermionsInteractions among Dirac fermions

Long range Coulomb interaction Short range Hubbardlike interaction

Marginally irrelevant → Renormalization of Fermi velocity 
→ logarithmic enhancement of Fermi velocity → Experimentally observed
                      : Remains unchanged even for strong enough bare Coulomb coupling

No instability of Dirac liquid by pure 
long range Coulomb interaction!

PRB 59, R2474 (1999); PRL 97, 146401 (2006); PRB 75, 235423 (2007); 
PRB 80, 081405(R) (2009); PRB 87, 045425 (2013); PRL 113, 105502 (2013)

Nat. Phys. 7, 701 (2011)

PRL 118, 026403 (2017)



  

Hubbardlike interactionsHubbardlike interactions

Weak short-range interactions: irrelevant → Stable Dirac liquid

Sufficiently strong short-range interactions: relevant 
                  → spontaneous symmetry breaking → onset of ordered states

At T=0: Best candidates for ordered states → dynamic generation of Dirac mass
   
               Through quantum phase transitions via quantum critical points (QCPs)

Spontaneous breaking of discrete (crystal or fundamental) and/or continuous symmetry

6 excitonic & 3 superconducting masses



  

Dirac masses: singlet excitonicDirac masses: singlet excitonic

Charge density wave (CDW): 
Breaks sublattice symmetry

Quantum anomalous Hall insulator (QAHI): 
Breaks sublattice & time reversal symmetries

Kekule valence bond solid (KVBS): 
Breaks translational symmetry

Semenoff PRL 53, 2449 (1983)

Haldane PRL 61, 2015 (1988)

Hou, Chamon, Mudry 
PRL 98, 186809 (2007) Internal U(1) angle



  

Dirac masses: Triplet excitonicDirac masses: Triplet excitonic

Antiferromagnet (AFM): Breaks sublattice 
& spin rotational symmetries

Quantum spin Hall insulator (QSHI): 
Breaks sublattice & spin rotational symmetries

Herbut PRL 97, 085116 (2006)

Raghu, Qi, Honerkamp & Zhang PRL 100, 156401 (2008)

Dashed lines = - Solid linesRoy & Herbut PRB 93, 155415 (2016)

Spin Kekule valence bond solid (SKVBS): 
Breaks translational & 
spin rotational symmetries



  

Dirac masses: SuperconductingDirac masses: Superconducting

s-wave pairing (singlet): 
Breaks global U(1) symmetry

f-wave pairing (triplet): 
Breaks valley & spin 
rotational symmetries

Kekule superconductor (triplet): 
Breaks translational & spin 
rotational symmetries

Zhao & Paramekanti PRL 97, 230404 (2006)

Honerkamp PRL 100, 146404 (2008)

Roy & Herbut PRB 82, 035429 (2010)



  

Competing Dirac massesCompeting Dirac masses

Antiferromagnet & Kekule valence bond solid: 
SO(5) symmetry

Quantum spin Hall insulator & s-wave pairing: 
SO(5) symmetry

(0103,0203,0303): Antiferromagnet
(3011,3021): Kekule valence bond solid

(0100,0200,0300): SU(2) Spin rotation
0030: Generator of translation
Remaining 6: General chiral rotations

(3133,3233,3333): Quantum spin Hall insulator
(1000,2000): s-wave pairing

(0100,0200,0300): SU(2) Spin rotation
3000: Number operator
Remaining 6: General chiral rotations



  

Competing Dirac massesCompeting Dirac masses

Charge-density-wave, Kekule valence bond solid
& s-wave pairing: SO(5) symmetry

3003: Charge-density-wave
(3011,3021): Kekule valence bond solid
(1000,2000): s-wave pairing

(1003,2003,3000): SU(2) pseudo-spin rotation
0030: Generator of translation
Remaining 6: General chiral rotations

Largest symmetry among competing Dirac masses in graphene: SO(5)
Only 3 such candidates consistent with microscopic symmetries



  

Ryu, Mudry, Hou, Chamon PRB 80, 205319 (2009)



  

Internal symmetry among competing 
orders → emergent symmetry 

@ QCPs?



  

SetupSetup

Begin with generic four-fermion interactions:

g
MN

: Coupling constant, M & N matrices operating on sublattice, valley & spin indices

Impose discrete and continuous microscopic symmetries 
→ Number of coupling constants 544 → 18

Fierz relation:

Number of linearly independent coupling constants = 18 – 9 = 9 for x = y

Results are insensitive to the choices of 9 couplings!

Herbut, Juricic & BR PRB 79, 085116 (2009); O. Vafek PRB 82, 205106 (2010)



  

Scaling analysisScaling analysis

Euclidean action in the presence of e-e interactions:

Scaling dimension: → Weak interactions: irrelevant

To capture intermediate & strong coupling phenomena

Controlled perturbative expansion about lower-critical one spatial dimension (d=1)

Feynman diagrams



  

Feynman diagrams & RG flowFeynman diagrams & RG flow

(a) (b) (c) (d) (e)

Slow modes Fast modes

Renormalization group flow equations

Matrix algebra is performed in d=2 & shell integration in 



  

RG fixed pointsRG fixed points

Fixed points: obtained from the zeros of the coupled RG flow equations

Fully stable Gaussian fixed points → stable DSM phase (weak interactions)

Infrared unstable (in one direction) QCPs → Continuous QPTs 
to various ordered phases: 5

Unstable (in two directions) bi-critical points 
→ Typically separates 
basins of attraction of 
different QCPs: 9 



  

Symmetry analysis @ QCPsSymmetry analysis @ QCPs

Couple massless Dirac excitation with all symmetry allowed fermion bilinears 
via conjugate field

9 spin-singlet particle-hole & 9 spin triplet particle-hole orders
 
5 spin-singlet & 4 spin-triplet parings

PRB 103, 205135 (2021)



  

Symmetry analysis @ QCPsSymmetry analysis @ QCPs

Compute the RG flow equations for the conjugate fields:

RHS of the flow equation → scaling dimension of order parameter
 
@ fixed points when 



  

Symmetry analysis @ QCPsSymmetry analysis @ QCPs

Compute the RG flow equations for the conjugate fields:

RHS of the flow equation → scaling dimension of order parameter
 
@ fixed points when 



  

Emergent symmetry @ QCPsEmergent symmetry @ QCPs

QCP
1
: Quantum anomalous Hall insulator → largest scaling dimension

QCP
2
: Charge-density-wave → largest scaling dimension

QCP
3
: QSHI & s-wave → largest scaling dimension → SO(5) symmetry

QCP
4
: CDW, KVBS & s-wave → largest scaling dimension → SO(5) symmetry

QCP
5
: AFM & KVBS → largest scaling dimension → SO(5) symmetry



  

All three SO(5) symmetry → 
emergent symmetry @ QCPs

How do they manifest on the phase 
diagram of microscopic models?

Same results with Lorentz symmetric Wilsonian shell elimination

Same results with Lorentz symmetry @ microscopic level



  

Onsite Hubbard: U
Nearest-neighbor: V

1

Next nearest-neighbor: V
2

Repulsive interaction: (U,V
1
,V

2 
) >0

Attractive interaction:(U,V
1
,V

2 
) <0

Express the fermionic creation & annihilation operators in terms of Fourier modes
around two valley → Initial conditions for microscopic models in terms of the bare 
values of 9 chosen couplings

Increase the strength of bare microscopic coupling(s) until at least one coupling 
diverges: breakdown of nodal Dirac liquid → Onset of ordered state

Simultaneously at last one conjugate field diverges → Pattern of symmetry breaking

Extended Honeycomb Hubbard modelExtended Honeycomb Hubbard model

Identifying QCP: At the DSM-Ordered phase boundary running couplings spend a
Large amount of RG time in the close vicinity of a QCP before diverging (BSP) or 
falling back to 0 (DSM) → Pins QCP controlling different segments of the 
phase boundary



  

Phase diagram: Kekule Hubbard modelPhase diagram: Kekule Hubbard model

QCP
5
: AFM & KVBS → SO(5)

QCP
4
: CDW, KVBS, s-wave 

                               → SO(5)

Quartic interaction in the KVBS channel

Only two SO(5) QCPs: Operative



  

Phase diagram: U-VPhase diagram: U-V
11
 model model

QCP
2
: Pure CDW

QCP
5
: AFM + KVBS → SO(5)

QCP
4
: CDW + s-wave + KVBS 

→ SO(5)

Two SO(5) QCPs & one Z
2
 

          QCP: Operative



  

Phase diagram: U or VPhase diagram: U or V
11
-V-V

22
 model model

Numerical simulations → conflicting outcomes

Spinless fermions: NNN repulsion → Quantum Anomalous Hall insulator!

PRB 89, 035103 (1014); PRB 92, 085147 (2015); PRB 92, 085146 (2015); ... 

NNN repulsion → QSHI → Nucleated via QCP
3
 :        QSHI + s-wave → SO(5)



  

Not only internal symmetry between competing orders emerges @ QCPs, 
but they also control QPTs into either of two phases

Examples: 

(a) QPTs to AFM & KVBS → controlled by QCP
5
 : SO(5) symmetric

(b) QPTs to s-wave & CDW & KVBS → controlled by QCP
4
: SO(5) symmetric 

(c) QPTs to QSHI & s-wave → controlled by QCP
3
: SO(5) symmetric

No QCPs with pure AFM, QSHI or s-wave order

How about order parameter fluctuation?



  

Gross-Neveu-Yukawa formalismGross-Neveu-Yukawa formalism

O(S
1
) & O(S

2
) symmetry breaking bosonic order parameters: Coupled with gapless 

Dirac fermions via Yukawa coupling: Composite O(S) order with S=S
1
+S

2

AFM: S
1
=3 & KVBS: S

2
=2 → O(S) = O(5)

QSHI: S
1
=3 & s-wave: S

2
=2 → O(S) = O(5)

Perturbative analysis about upper critical three spatial dimension with 

But competing orders need to be introduced from outset!

Herbut, Juricic, Vafek PRB 80, 075432 (2009)



  

Emergent symmetry @ Yukawa fixed Emergent symmetry @ Yukawa fixed 
pointpoint

Enlarged O(S) symmetry emerges on the critical 
Hyperplane @ Yukawa fixed point (red dot)

Pure QCPs with O(S
1
) & O(S

2
) symmetries (blue 

and purple dots) are unstable

Controls QPTs from DSM-distinct ordered phases, 
between two competing ordered phases

Identical critical exponents

BR PRB 84, 113404 (2011)
BR, V. Juricic PRB 90, 041413(R) (2014)

L. Jansen, I. F. Herbut, M. M. Scherer, PRB 97, 041117(R) (2018)
BR, P. Goswami, V. Juricic, PRB 97, 205117 (2018)

BR, V. Juricic, PRB 99, 241103(R) (2019)



  

● Correlated nodal semimetal: Ideal platform to demonstrate 
emergent symmetries @ scale invariant metallic critical points

● Graphene: Massless Dirac fermions on flatland showing emergent 
SO(5) symmetry among antiferromagnet & valence bond solid, 
quantum spin-Hall insulator and s-wave pairing  

● High symmetric QCPs or multi-critical points controls the phase 
boundaries between DSM and distinct competing ordered phases, 
as well as direct order-order transition via metallic fixed point

● Emergent symmetry also operative beyond 

       (a) Relativistic flatland (3D interacting DSM)

       (b) Beyond relativistic fermions

● Determines nature of competing superconductors @ finite doping

SummarySummary

A. Szabo & BR JHEP 2021, 4 (2021)

BR & M. Foster, PRX 8, 011049 (2018)

A. Szabo & BR, PRB 103, 205135 (2021)
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