Anomalous Dimensions from Massive Vacuum Diagrams

Peter Marquard

Relativistic Fermions in Flatland: theory and application
Trento, July, 2021

Outline

(9) Introduction
(2) Method
(3) Results

4 Conclusions and Outlook

Introduction

- Interested in critical properties of condensed matter models

Introduction

- Interested in critical properties of condensed matter models
- Generally interested in results in 3d but
- strongly bound in 3d
- perturbatively only accessible in 2d or 4d

Introduction

- Interested in critical properties of condensed matter models
- Generally interested in results in 3d but
- strongly bound in 3d
- perturbatively only accessible in 2d or 4d
- Calculate anomalous dimensions of the ren. group equations in 2d and/or 4d and extrapolate to 3d

Introduction

- Interested in critical properties of condensed matter models
- Generally interested in results in 3d but
- strongly bound in 3d
- perturbatively only accessible in 2d or 4d
- Calculate anomalous dimensions of the ren. group equations in 2d and/or 4d and extrapolate to 3d
- Calculation of anom dim very well established field in particle physics \hookrightarrow apply these methods here

Models

- Gross-Neveu-Yukawa
- chiral Ising model
- chiral XY model
- chiral Heisenberg model
- QED ${ }_{3}$-Gross-Neveu-Yukawa
[Zerf,PM,Boyack,Maciejko '18]
- Néel algebraic spin liquid [Zerf,Boyack,PM,Gracey,Maciejko '19]
- Abelian Higgs model
[lhrig,Zerf,PM,Herbut,Scherer '19]
- lattice quantum electrodynamics

In short: Models with interactions between scalars, fermions and photons

Outline

(1) Introduction

(2) Method
(3) Results

4 Conclusions and Outlook

Calculation of anomalous dimensions

In general, one can follow the following recipe

- Start with a Lagrange density describing the model
- Derive the Feynman rules
- Calculate the relevant L-loop N-point functions
- Extract the renormalization factors (or anom dims) from the UV poles

Extraction of UV poles

- In the $\overline{\mathrm{MS}}$ scheme the renormalization constants do not depend on the kinematic configuration
\hookrightarrow Choose a kinematic configurations as simple as possible

Extraction of UV poles

- In the $\overline{\mathrm{MS}}$ scheme the renormalization constants do not depend on the kinematic configuration
\hookrightarrow Choose a kinematic configurations as simple as possible
- Simplest configurations are
- massless propagators (two-point function), external momentum q^{2}
- massive tadpoles (vacuum diagram), mass M

Extraction of UV poles

- In the $\overline{\mathrm{MS}}$ scheme the renormalization constants do not depend on the kinematic configuration
\hookrightarrow Choose a kinematic configurations as simple as possible
- Simplest configurations are
- massless propagators (two-point function), external momentum q^{2}
- massive tadpoles (vacuum diagram), mass M
- But: be careful to now change the infrared structure \hookrightarrow massive tadpoles easier to handle that massless propagators

Extraction of UV poles

- In the $\overline{\mathrm{MS}}$ scheme the renormalization constants do not depend on the kinematic configuration
\hookrightarrow Choose a kinematic configurations as simple as possible
- Simplest configurations are
- massless propagators (two-point function), external momentum q^{2}
- massive tadpoles (vacuum diagram), mass M
- But: be careful to now change the infrared structure \hookrightarrow massive tadpoles easier to handle that massless propagators
- For simplicity, make all lines massive to avoid infra-red problems \hookrightarrow infra-red rearrangement
- See also five-loop QCD anomalous dimensions

Infra-red rearrangement

Based on the exact decomposition
(k : loop momentum, q external momentum)

$$
\frac{1}{(k+q)^{2}}=\frac{1}{k^{2}-M^{2}}-\frac{q^{2}+2 k q+M^{2}}{\left(k^{2}-M^{2}\right)(k+q)^{2}}
$$

Note:

- the first term on the rhs is infra-red finite
- the second term can still lead to IR divergences but the UV degree of divergence is reduced
After subtraction of sub-divergences by explicit counter terms the UV-finite but IR-divergent remainder can be dropped.
\hookrightarrow need to use explicit counter terms (no multiplicative renormalization)
\hookrightarrow requires the introduction of a counter term for the auxiliary mass M.

Calculation strategy

For the calculation of the diagrams follow the standard multi-loop procedure

- generate diagrams e.g. using QGRAF

Calculation strategy

For the calculation of the diagrams follow the standard multi-loop procedure

- generate diagrams e.g. using QGRAF
- apply projectors to get scalar integrals take traces, expand (if necessary)
do algebra, e.g. using FORM

Calculation strategy

For the calculation of the diagrams follow the standard multi-loop procedure

- generate diagrams e.g. using QGRAF
- apply projectors to get scalar integrals take traces, expand (if necessary)
do algebra, e.g. using FORM
- map to integral families

Calculation strategy

For the calculation of the diagrams follow the standard multi-loop procedure

- generate diagrams e.g. using QGRAF
- apply projectors to get scalar integrals take traces, expand (if necessary)
do algebra, e.g. using FORM
- map to integral families
- reduce all scalar integrals to a small set of basis (master) integrals using integration-by-parts techniques

Calculation strategy

For the calculation of the diagrams follow the standard multi-loop procedure

- generate diagrams e.g. using QGRAF
- apply projectors to get scalar integrals take traces, expand (if necessary)
do algebra, e.g. using FORM
- map to integral families
- reduce all scalar integrals to a small set of basis (master) integrals using integration-by-parts techniques
- evaluate master integrals

Integration by parts

- individual calculation of all appearing $\mathcal{O}\left(10^{3}\right)-\mathcal{O}\left(10^{7}\right)$ Feynman integrals is not feasible
- the number of integrals can be greatly reduced by applying the so-called integration-by-parts identities
[Chetyrkin,Tkachov]
- Integration-by-parts identities are based on the property

$$
0=\int \mathrm{d}^{d} k \frac{\partial}{\partial k_{i}^{\mu}} \frac{1}{D_{1}^{k_{1}} \cdots D_{n}^{k_{n}}}
$$

which being the integral of a total derivative evaluates to a surface term and can be shown to vanish.

- allows to write all appearing integrals J_{i} as linear combination of $\mathcal{O}(10-100)$ basis (master) integrals M_{j}

$$
J_{i}=\sum_{j} C_{i j}(d) M_{j}
$$

Integration by parts

Integration-parts-relations can either be used by

- constructing a set of symbolic relations reducing the number of propagators LiteRed [Lee]
- explicitly applying the relations to a set of integrals and solving the resulting system of linear equations (Laporta's algorithm) (Air)

Massive Tadpoles - up to 4 loop

1 -loop :

2 - loop :

$3-$ loop :

63

4 - loop :

Master integrals - 2 loop

$$
\begin{aligned}
\begin{array}{|l}
\bigotimes^{2}
\end{array} & =-\frac{3(d-2)}{4(d-3)}\left\{{ }_{2} F_{1}\left(\frac{4-d}{2}, 1 ; \frac{5-d}{2} ; \frac{3}{4}\right)-3^{\frac{d-5}{2}} \frac{2 \pi \Gamma(5-d)}{\Gamma\left(\frac{4-d}{2}\right) \Gamma\left(\frac{6-d}{2}\right)}\right\} \\
& =-\frac{3(d-2)}{4(d-3)}\left\{1-3^{\frac{d-3}{2}}(d-4) \int_{0}^{\frac{\pi}{3}} d \tau(2 \sin (\tau))^{4-d}-3^{\frac{d-5}{2}} \frac{2 \pi \Gamma(5-d)}{\Gamma\left(\frac{4-d}{2}\right) \Gamma\left(\frac{6-d}{2}\right)}\right\} \\
d=n-2 \epsilon & -\frac{3(n-2-2 \epsilon)}{4(n-3-2 \epsilon)}\left\{1+3^{-\epsilon} \frac{\frac{n-4}{2}-\epsilon}{3^{\frac{3-n}{2}}} \sum_{j=0}^{\infty} \frac{(2 \epsilon)^{j}}{j!} \mathrm{Ls}_{j+1}^{(4-n)}-3^{-\epsilon} \frac{3^{\frac{n-5}{2}} 2 \pi \Gamma(5-n+2 \epsilon)}{\Gamma\left(\frac{4-n}{2}+\epsilon\right) \Gamma\left(\frac{6-n}{2}+\epsilon\right)}\right\}
\end{aligned}
$$

Master integrals - 3+ loop

$$
\begin{aligned}
& \bigcirc \underset{J^{3}}{\substack{=4-2 \epsilon}}-2-\frac{5}{3} \epsilon-\frac{1}{2} \epsilon^{2}+\frac{103}{12} \epsilon^{3}+\frac{7}{24}\left(163-128 \zeta_{3}\right) \epsilon^{4} \\
& +\left(\frac{9055}{48}+\frac{136 \pi^{4}}{45}+\frac{32}{3} \ln ^{2} 2\left(\pi^{2}-\ln ^{2} 2\right)-168 \zeta_{3}-256 a_{4}\right) \epsilon^{5} \\
& +\left(\frac{63517}{96}+\frac{16}{5} \ln ^{4} 2(4 \ln 2-15)-\frac{16}{3} \pi^{2} \ln ^{2} 2(4 \ln 2-9)-\frac{68}{15} \pi^{4}(4 \ln 2-3)\right. \\
& \left.-\frac{1876}{3} \zeta_{3}+1240 \zeta_{5}-1152 a_{4}-1536 a_{5}\right) \epsilon^{6}+\mathcal{O}\left(\epsilon^{7}\right)
\end{aligned}
$$

\square
$\stackrel{d=4-2 \epsilon}{=}-2 \zeta_{3} \epsilon^{2}+\left(\frac{17 \pi^{4}}{90}+\frac{2}{3} \ln ^{2} 2\left(\pi^{2}-\ln ^{2} 2\right)+9 \mathrm{Ls}_{2}^{2}-16 a_{4}\right) \epsilon^{3}+\mathcal{O}\left(\epsilon^{4}\right)$

$d=\stackrel{4-2 \epsilon}{=}$

$$
1+\frac{8}{3} \epsilon+\left(\frac{25}{3}-6 \sqrt{3} \mathrm{Ls}_{2}\right) \epsilon^{2}+\left(\frac{76}{3}-6 \zeta_{3}+\sqrt{3}\left(-\frac{\pi^{3}}{3}+6(\ln 3-2) \mathrm{Ls}_{2}-6 \mathrm{Ls}_{3}\right)\right) \epsilon^{3}
$$

How to calculate the master integrals? Factorial Series

- The idea of the method goes back to Laporta who suggested the to calculate Feynman integrals in form of of a factorial series.
- Take an integral and raise the power of one propagator to the power x e.g. $I(1,1,1) \rightarrow I(x)=I(x, 1,1)$
- Using IBP relations on can obtain a difference equation for the integral

$$
\sum_{k+0}^{R} p_{k}(x) I(x+k)=\sum_{i} \sum_{k=0}^{R_{i}} p_{i k}(x) J_{i}(x+k)
$$

where J_{i} are integrals of simpler sectors

- Make an ansatz for $I(x)$ in terms of a factorial series (N.B. not the most general one)

$$
I(x)=\sum_{s=0}^{\infty} \frac{\Gamma(x+1)}{\Gamma(x+d / 2+s+1)} a_{s}
$$

Factorial Series cont'd

- Inserting the ansatz into the difference equation results in a recurrence relation for a_{s}

$$
\sum_{k=0}^{R^{\prime}} g_{k}(s) a_{s+k}=\sum_{i} \sum_{k=0}^{R_{i}^{\prime}} g_{i k}(s) a_{i, s+k}
$$

- given the initial values a_{0}, a_{1}, \ldots are known, an arbitrary number of values for a_{n} can be calculated.
- using the obtained values for $a_{n} I(x)$ can be calculated

$$
\begin{aligned}
& I(x)=\sum_{s=0}^{\infty} \frac{\Gamma(x+1)}{\Gamma(x+d / 2+s+1)} a_{s} \\
& =\frac{\Gamma(x+1)}{\Gamma(x+d / 2+1)}\left(a_{0}+\frac{a_{1}}{(x+d / 2+1)}+\frac{a_{2}}{(x+d / 2+1)(x+d / 2+2)}\right. \\
& \quad+\cdots)
\end{aligned}
$$

Massive Tadpoles - 5 loop

$$
t=5:
$$

$$
t=6:
$$

29702

28686

$t=8:$

Massive Tadpoles - 5 loop

$t=9:$
[Luthe '15]

Some statistics

Loops	1	2	3	4
	2	20	370	9,291
	4	27	459	11,332
	5	107	3,078	106,501

from "Abelian Higgs model at four loops, fixed-point collision and deconfined criticality" [|hrig,Zert,PM,Herbut,Scherere' '99]

Outline

(1) Introduction

(2) Method
(3) Results

4 Conclusions and Outlook

Example: Abelian Higgs model

The Lagrangian is given by

$$
\mathcal{L}=\left|D_{\mu} \phi\right|^{2}+\frac{1}{4} F_{\mu \nu}^{2}+r|\phi|^{2}+\lambda\left(|\phi|^{2}\right)^{2}
$$

with scalar fields $\phi=\left(\phi_{1}, \ldots, \phi_{n}\right)$.

Example: Abelian Higgs model

The Lagrangian is given by

$$
\mathcal{L}=\left|D_{\mu} \phi\right|^{2}+\frac{1}{4} F_{\mu \nu}^{2}+r|\phi|^{2}+\lambda\left(|\phi|^{2}\right)^{2}
$$

with scalar fields $\phi=\left(\phi_{1}, \ldots, \phi_{n}\right)$.
Go to the renormalized Lagrangian

$$
\mathcal{L}^{\prime}=Z_{\phi}\left|D_{\mu} \phi\right|^{2}+Z_{\phi^{2}} r \mu^{2}|\phi|^{2}+Z_{\phi^{4}} \lambda \mu^{\epsilon}\left(|\phi|^{2}\right)^{2}+\frac{Z_{A}}{4} F_{\mu \nu}^{2}-\frac{1}{2 \xi}\left(\partial_{\mu} A_{\mu}\right)^{2} .
$$

with renomalized couplings

$$
\alpha=e_{0}^{2} \mu^{-\epsilon} Z_{A}, \quad \lambda=\lambda_{0} \mu^{-\epsilon} Z_{\phi}^{2} Z_{\phi^{4}}^{-1}
$$

Example: Abelian Higgs model

β functions given by

$$
\begin{gathered}
\beta_{i}=\frac{\mathrm{d} g_{i}}{\mathrm{~d} \ln b}=\epsilon g_{i}+\sum_{k} \beta_{i}^{(k \ell)} \\
\beta_{\alpha}^{(1 \ell)}=-\frac{n}{3} \alpha^{2}, \quad \beta_{\alpha}^{(2 \ell)}=-2 n \alpha^{3} \\
\beta_{\alpha}^{(3 \ell)}=\left(\frac{49}{72} n^{2}-\frac{29}{8} n\right) \alpha^{4}-\frac{n^{2}+n}{2} \alpha^{3} \lambda+\frac{n^{2}+n}{8} \alpha^{2} \lambda^{2}
\end{gathered}
$$

Example: Abelian Higgs model

β functions given by

$$
\begin{gathered}
\beta_{i}=\frac{\mathrm{d} g_{i}}{\mathrm{~d} \ln b}=\epsilon g_{i}+\sum_{k} \beta_{i}^{(k \ell)} \\
\beta_{\alpha}^{(1 \ell)}=-\frac{n}{3} \alpha^{2}, \quad \beta_{\alpha}^{(2 \ell)}=-2 n \alpha^{3}, \\
\beta_{\alpha}^{(3 \ell)}=\left(\frac{49}{72} n^{2}-\frac{29}{8} n\right) \alpha^{4}-\frac{n^{2}+n}{2} \alpha^{3} \lambda+\frac{n^{2}+n}{8} \alpha^{2} \lambda^{2} . \\
\beta_{\lambda}^{(1 \ell)}=-6 \alpha^{2}+6 \alpha \lambda-(n+4) \lambda^{2}, \\
\beta_{\lambda}^{(2 \ell)}=\left(\frac{14}{3} n+30\right) \alpha^{3}-\left(\frac{71}{6} n+\frac{29}{2}\right) \alpha^{2} \lambda-(4 n+10) \alpha \lambda^{2}+\left(\frac{9}{2} n+\frac{21}{2}\right) \lambda^{3}, \\
\beta_{\lambda}^{(3 \ell)}=\left(-\frac{7}{18} n^{2}+\left[\frac{203}{8}-27 \zeta_{3}\right] n+\frac{367}{8}-45 \zeta_{3}\right) \alpha^{4} \\
+\left(-\frac{5}{216} n^{2}+\left[18 \zeta_{3}-\frac{989}{8}\right] n-\frac{889}{4}-54 \zeta_{3}\right) \alpha^{3} \lambda \\
+\left(\frac{43}{16} n^{2}+\left[18 \zeta_{3}+\frac{1749}{16}\right] n+\frac{1093}{8}+126 \zeta_{3}\right) \alpha^{2} \lambda^{2} \\
+\left(-\frac{33}{16} n^{2}+\left[-15 \zeta_{3}-\frac{461}{16}\right] n-\frac{185}{4}-33 \zeta_{3}\right) \lambda^{4} \\
+\left(\left[\frac{25}{2}-6 \zeta_{3}\right] n+\frac{29}{2}+6 \zeta_{3}\right) \alpha \lambda^{3}
\end{gathered}
$$

Fixed points

$$
\text { Looking for fixed points: } \beta_{i}\left(g_{i}^{*}\right)=0 \forall i
$$

At one loop:

$$
\begin{aligned}
& \alpha^{*}=3 \epsilon / n+\mathcal{O}\left(\epsilon^{2}\right) \\
& \lambda_{ \pm}^{*}=\frac{3\left(18+n \pm \sqrt{n^{2}-180 n-540}\right)}{2 n(n+4)} \epsilon+\mathcal{O}\left(\epsilon^{2}\right)
\end{aligned}
$$

Fixed points

Looking for fixed points: $\beta_{i}\left(g_{i}^{*}\right)=0 \forall i$
At one loop:

$$
\begin{aligned}
& \alpha^{*}=3 \epsilon / n+\mathcal{O}\left(\epsilon^{2}\right) \\
& \lambda_{ \pm}^{*}=\frac{3\left(18+n \pm \sqrt{n^{2}-180 n-540}\right)}{2 n(n+4)} \epsilon+\mathcal{O}\left(\epsilon^{2}\right)
\end{aligned}
$$

Fixed-point collision

Critical number n_{c}, extrapolation to $d=3$, i.e. $\epsilon=1$

Fixed-point collision

Critical number n_{c}, interpolate to $d=3$ using information at $d=2$

Polynomial

2-sided Padé

Outline

(1) Introduction

(2) Method
(3) Results

4 Conclusions and Outlook

Conclusions

- We calculated the beta functions and anomalous dimensions for several models up to four-loop order
- From this the behaviour near critical points can be obtained
- Four-loop is rather straight forward
- Five-loop is still a challange and needs a good motivation

