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Introduction

Interested in critical properties of condensed matter models

Generally interested in results in 3d but

strongly bound in 3d

perturbatively only accessible in 2d or 4d

Calculate anomalous dimensions of the ren. group equations in 2d and/or

4d and extrapolate to 3d

Calculation of anom dim very well established field in particle physics

→֒ apply these methods here
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Introduction

Models

Gross-Neveu-Yukawa [Zerf,Mihaila,PM,Herbut,Scherer ’17]

chiral Ising model

chiral XY model

chiral Heisenberg model

QED3-Gross-Neveu-Yukawa [Zerf,PM,Boyack,Maciejko ’18]

Néel algebraic spin liquid [Zerf,Boyack,PM,Gracey,Maciejko ’19]

Abelian Higgs model [Ihrig,Zerf,PM,Herbut,Scherer ’19]

lattice quantum electrodynamics [Zerf,Boyack,PM,Gracey,Maciejko ’20]

In short: Models with interactions between scalars, fermions and photons
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Method

Calculation of anomalous dimensions

In general, one can follow the following recipe

Start with a Lagrange density describing the model

Derive the Feynman rules

Calculate the relevant L-loop N-point functions

Extract the renormalization factors (or anom dims) from the UV poles
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Method

Extraction of UV poles

In the MS scheme the renormalization constants do not depend on the

kinematic configuration

→֒ Choose a kinematic configurations as simple as possible

Simplest configurations are

massless propagators (two-point function), external momentum q2

massive tadpoles (vacuum diagram), mass M

But: be careful to now change the infrared structure

→֒ massive tadpoles easier to handle that massless propagators

For simplicity, make all lines massive to avoid infra-red problems

→֒ infra-red rearrangement [Misiak,Münz ’94, Chetyrkin,Misiak,Münz ’98, Larin,v.Ritbergen,Vermaseren ’97]

See also five-loop QCD anomalous dimensions [Luthe,Maier,PM,Schröder ’17]
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Method

Infra-red rearrangement

Based on the exact decomposition

(k : loop momentum, q external momentum)

1

(k + q)2
=

1

k2 − M2
− q2 + 2kq + M2

(k2 − M2)(k + q)2

Note:

the first term on the rhs is infra-red finite

the second term can still lead to IR divergences but the UV degree of

divergence is reduced

After subtraction of sub-divergences by explicit counter terms the UV-finite but

IR-divergent remainder can be dropped.

→֒ need to use explicit counter terms (no multiplicative renormalization)

→֒ requires the introduction of a counter term for the auxiliary mass M.
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Calculation strategy

For the calculation of the diagrams follow the standard multi-loop procedure

generate diagrams e.g. using QGRAF [Nogueira 1991]

apply projectors to get scalar integrals

take traces, expand (if necessary)

do algebra, e.g. using FORM [Vermaseren]

map to integral families

reduce all scalar integrals to a small set of basis (master) integrals using

integration-by-parts techniques

evaluate master integrals
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Method

Integration by parts

individual calculation of all appearing O(103) - O(107) Feynman integrals

is not feasible

the number of integrals can be greatly reduced by applying the so-called

integration-by-parts identities [Chetyrkin,Tkachov]

Integration-by-parts identities are based on the property

0 =

∫
d

dk
∂

∂k
µ
i

1

Dk1

1 · · ·Dkn
n

which being the integral of a total derivative evaluates to a surface term

and can be shown to vanish.

allows to write all appearing integrals Ji as linear combination of

O(10 − 100) basis (master) integrals Mj

Ji =
∑

j

Cij(d)Mj
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Method

Integration by parts

Integration-parts-relations can either be used by

constructing a set of symbolic relations reducing the number of

propagators

LiteRed [Lee]

explicitly applying the relations to a set of integrals and solving the

resulting system of linear equations (Laporta’s algorithm)

(Air) [Anastasiou, Lazopoulos]

FIRE [Smirnov]

(Reduze) [v. Manteuffel, (Studerus)]

KIRA [Maierhöfer,Usowitch,Uwer]
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Method

Massive Tadpoles – up to 4 loop
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Method

Master integrals – 2 loop

[Schröder,Vuorinen ’05]
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Method

Master integrals – 3+ loop

[Schröder,Vuorinen ’05]
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Method

How to calculate the master integrals?

Factorial Series

The idea of the method goes back to Laporta who suggested the to

calculate Feynman integrals in form of of a factorial series.

Take an integral and raise the power of one propagator to the power x

e.g. I(1, 1, 1) → I(x) = I(x , 1, 1)

Using IBP relations on can obtain a difference equation for the integral

R∑
k+0

pk (x)I(x + k) =
∑

i

Ri∑
k=0

pik (x)Ji(x + k)

where Ji are integrals of simpler sectors

Make an ansatz for I(x) in terms of a factorial series

(N.B. not the most general one)

I(x) =

∞∑
s=0

Γ(x + 1)

Γ(x + d/2 + s + 1)
as
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Method

Factorial Series cont’d

Inserting the ansatz into the difference equation results in a recurrence

relation for as

R′∑
k=0

gk (s)as+k =
∑

i

R′

i∑
k=0

gik (s)ai,s+k

given the initial values a0, a1, . . . are known, an arbitrary number of values

for an can be calculated.

using the obtained values for an I(x) can be calculated

I(x) =

∞
∑

s=0

Γ(x + 1)

Γ(x + d/2 + s + 1)
as

=
Γ(x + 1)

Γ(x + d/2 + 1)

(

a0 +
a1

(x + d/2 + 1)
+

a2

(x + d/2 + 1)(x + d/2 + 2)

+ · · ·

)
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Method

Massive Tadpoles – 5 loop
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Method

Massive Tadpoles – 5 loop

[Luthe ’15]
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Method

Some statistics

Loops 1 2 3 4

2 20 370 9, 291

4 27 459 11, 332

5 107 3, 078 106, 501

32 1, 042 40, 164 1, 735, 706

from “Abelian Higgs model at four loops, fixed-point collision and deconfined

criticality”[Ihrig,Zerf,PM,Herbut,Scherer ’19]
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Results

Example: Abelian Higgs model

The Lagrangian is given by

L = |Dµφ|2 +
1

4
F 2
µν + r |φ|2 + λ(|φ|2)2

with scalar fields φ = (φ1, ..., φn).
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Results

Example: Abelian Higgs model

The Lagrangian is given by

L = |Dµφ|2 +
1

4
F 2
µν + r |φ|2 + λ(|φ|2)2

with scalar fields φ = (φ1, ..., φn).
Go to the renormalized Lagrangian

L′ = Zφ|Dµφ|2 + Zφ2 rµ2|φ|2 + Zφ4λµǫ(|φ|2)2 +
ZA

4
F 2
µν − 1

2ξ
(∂µAµ)

2 .

with renomalized couplings

α = e2
0µ

−ǫZA , λ = λ0µ
−ǫZ 2

φZ−1
φ4
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Results

Example: Abelian Higgs model

β functions given by

βi =
dgi

d ln b
= ǫgi +

∑
k

β
(kℓ)
i

β(1ℓ)
α = −

n

3
α2 , β(2ℓ)

α = −2nα3 ,

β(3ℓ)
α =

(

49
72

n2
−

29
8

n
)

α4
−

n2+n
2

α3λ+ n2+n
8

α2λ2 .
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∑
k

β
(kℓ)
i

β(1ℓ)
α = −

n

3
α2 , β(2ℓ)

α = −2nα3 ,

β(3ℓ)
α =

(

49
72

n2
−

29
8

n
)

α4
−

n2+n
2

α3λ+ n2+n
8

α2λ2 .

β
(1ℓ)
λ

= −6α2 + 6αλ− (n + 4)λ2 ,

β
(2ℓ)
λ

=
(

14
3

n + 30
)

α3
−

(

71
6

n + 29
2

)

α2λ− (4n + 10)αλ2 +
(

9
2
n + 21

2

)

λ3 ,

β
(3ℓ)
λ

=
(

−

7
18

n2 +
[

203
8

− 27ζ3

]

n + 367
8

− 45ζ3

)

α4

+
(

−

5
216

n2 +
[

18ζ3 −
989

8

]

n −

889
4

− 54ζ3

)

α3λ

+
(

43
16

n2 +
[

18ζ3 +
1749

16

]

n + 1093
8

+ 126ζ3

)

α2λ2

+
(

−

33
16

n2 +
[

−15ζ3 −
461
16

]

n −

185
4

− 33ζ3

)

λ4

+
([

25
2
− 6ζ3

]

n + 29
2
+ 6ζ3

)

αλ3
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Results

Fixed points

Looking for fixed points: βi(g
∗

i ) = 0 ∀ i

At one loop:

α∗ = 3ǫ/n +O(ǫ2)

λ∗

± =
3(18 + n ±

√
n2 − 180n − 540)

2n(n + 4)
ǫ+O(ǫ2)
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Fixed points

Looking for fixed points: βi(g
∗

i ) = 0 ∀ i

At one loop:

α∗ = 3ǫ/n +O(ǫ2)

λ∗

± =
3(18 + n ±

√
n2 − 180n − 540)

2n(n + 4)
ǫ+O(ǫ2)

Imλ
λ λ λ

α α α

n

nc

WF WF WF

cFPcFP bFP
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Results

Fixed-point collision

Critical number nc , extrapolation to d = 3, i.e. ǫ = 1

Padé Padé-Borel
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Results

Fixed-point collision

Critical number nc , interpolate to d = 3 using information at d = 2
Polynomial 2-sided Padé
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Conclusions and Outlook

Conclusions

We calculated the beta functions and anomalous dimensions for several

models up to four-loop order

From this the behaviour near critical points can be obtained

Four-loop is rather straight forward

Five-loop is still a challange and needs a good motivation
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