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@ Generally interested in results in 3d but

e strongly bound in 3d
@ perturbatively only accessible in 2d or 4d

@ Calculate anomalous dimensions of the ren. group equations in 2d and/or
4d and extrapolate to 3d

@ Calculation of anom dim very well established field in particle physics
— apply these methods here
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Introduction

Models

@ Gross-Neveu-Yukawa [Zerf,Mihaila,PM,Herbut,Scherer '17]
e chiral Ising model
@ chiral XY model
@ chiral Heisenberg model

(] QED3-GI’OSS-NGVGU-YUK8.W3 [Zerf,PM,Boyack Maciejko '18]
@ Néel algebraic spin |IC]UId [Zerf, Boyack,PM,Gracey,Maciejko '19]
@ Abelian HIggS model [Ihrig,Zerf,PM,Herbut,Scherer '19]
@ lattice quantum electrodynamics (Zerf Boyack PM, Gracey,Maciejko '20]

In short: Models with interactions between scalars, fermions and photons

Peter Marquard (DESY) AD from Tadpoles 4/28



Method

Outline

e Method

Peter Marquard (DESY) AD from Tadpoles 5/28



Calculation of anomalous dimensions

In general, one can follow the following recipe
@ Start with a Lagrange density describing the model
@ Derive the Feynman rules
@ Calculate the relevant L-loop N-point functions
@ Extract the renormalization factors (or anom dims) from the UV poles
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Method

Extraction of UV poles

In the MS scheme the renormalization constants do not depend on the
kinematic configuration
— Choose a kinematic configurations as simple as possible
Simplest configurations are
@ massless propagators (two-point function), external momentum q>
@ massive tadpoles (vacuum diagram), mass M
But: be careful to now change the infrared structure
— massive tadpoles easier to handle that massless propagators
For simplicity, make all lines massive to avoid infra-red problems
— infra-red rearrangement [Misiak,Miinz ‘94, Chetyrkin,Misiak,Miinz '98, Larin,v.Ritbergen, Vermaseren '97)

See also five-loop QCD anomalous dimensions [Luthe,Maier,PM,Schrdder '17]
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Infra-red rearrangement

Based on the exact decomposition
(k: loop momentum, g external momentum)

T 1 P +2kg+ M
(k+9q)?2  k2—M (k2 —M?)(k+q)?

Note:
@ the first term on the rhs is infra-red finite

@ the second term can still lead to IR divergences but the UV degree of
divergence is reduced

After subtraction of sub-divergences by explicit counter terms the UV-finite but
IR-divergent remainder can be dropped.

— need to use explicit counter terms (no multiplicative renormalization)
— requires the introduction of a counter term for the auxiliary mass M.
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Calculation strategy

For the calculation of the diagrams follow the standard multi-loop procedure
@ generate diagrams e.g. using QGRAF INogueira 1991]
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Calculation strategy

For the calculation of the diagrams follow the standard multi-loop procedure

generate diagrams e.g. using QGRAF [Nogueira 1991]

apply projectors to get scalar integrals
take traces, expand (if necessary)
do algebra, e.g. using FORM [Vermaseren]

@ map to integral families
@ reduce all scalar integrals to a small set of basis (master) integrals using

integration-by-parts techniques
evaluate master integrals
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Integration by parts

e individual calculation of all appearing O(10%) - O(10”) Feynman integrals
is not feasible

@ the number of integrals can be greatly reduced by applying the so-called
integration-by-parts identities [Chetyrkin, Tkachov]

@ Integration-by-parts identities are based on the property

a9
0— /d kwm =

which being the integral of a total derivative evaluates to a surface term
and can be shown to vanish.

@ allows to write all appearing integrals J; as linear combination of
O(10 — 100) basis (master) integrals M;

Ji = Z Ci(d)M,
J
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Method

Integration by parts

Integration-parts-relations can either be used by
@ constructing a set of symbolic relations reducing the number of
propagators
LiteRed [Lee]
@ explicitly applying the relations to a set of integrals and solving the
resulting system of linear equations (Laporta’s algorithm)

(Ai r) [Anastasiou, Lazopoulos]
FIRE [Smirnov]
(Reduze) [v. Manteuffel, (Studerus)]
KIRA [Maierhéfer,Usowitch, Uwer]
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Method

Massive Tadpoles — up to 4 loop

1 —loop: O

. OO O
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Method

Master integrals — 2 loop

@ B 3(d—2) 4—d  5-d 3 s 27T (5 — d)

J2 - _4(d—3){2F1( 7 g ’Z)_3 P(%)F(G;—d)}
_ 0 3d-2)f e 5 i gz 2705 —d)
- e 3){1 37 (d 4)/0 dr(2sin(7))*"* - 3 —F(%)F(G%d)}
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[Schréder,Vuorinen "05]
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Method

Master integrals — 3+ loop

@ d=4-2¢ 5 1, 103, 7 4
S, Geile o D s 2ans iy Lies o
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[Schréder,Vuorinen '05]

AD from Tadpoles 14/28

Peter Marquard (DESY)



Method

How to calculate the master integrals?

Factorial Series

@ The idea of the method goes back to Laporta who suggested the to
calculate Feynman integrals in form of of a factorial series.

@ Take an integral and raise the power of one propagator to the power x
e.g. I(1,1,1) = I(x) = I(x,1,1)
@ Using IBP relations on can obtain a difference equation for the integral

R
D pk()I(x + k) = ZZp,k )Ji(x + k)

k+0 i k=0

where J; are integrals of simpler sectors

@ Make an ansatz for /(x) in terms of a factorial series
(N.B. not the most general one)

i F(x+1) a
T(x+d2+s+1)7°
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Factorial Series cont'd

@ Inserting the ansatz into the difference equation results in a recurrence
relation for as

R Rl
> ok(S)asik =Y > gk(s)ais:k
k=0 =0

i k
@ given the initial values ay, ay, . . . are known, an arbitrary number of values
for a, can be calculated.
@ using the obtained values for a,, /(x) can be calculated

R rx+1)
I(X)_SZ:;r(erd/erSJm)as
__ x+1) (a+ a N a
TTx+d2+ )\ T (x+d/2+1) T (x+d/2+1)(x+d/2+2)

)
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Method

‘ Integral with exponent @ ‘
i

) = s}y Di*...Df...Dyy
4 expand H eg. via
behaviour l IBP
Factorial series Difference 9‘1“3“0“
i T(z+1) &
(e)i= ZFx+d/2+s+1) s kzom(l)l(x‘*'k Zkzom @)Ji(x +k)
= =
‘ ‘ insert translate ‘

l

Initial condition:
@g, @y, .-, QR Egk(s Oyrfp = EZ.‘M $)845k

Recurrence re]atmn

iteration ‘

of rec. rel.

sum over fact.
All @, up t0 smax (@ mae)s =y L (@max — B+ 1)
ser. for large =

iteration
of diff. eq.

[ Solution for master integral I(1) ]
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Method

Massive Tadpoles — 5 loop

B
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Method

Massive Tadpoles — 5 loop
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32648 32608 32592 32518 32394 32390
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32712 32708 32674 32652 32596 32562 32534
32391 32279 31420 30563 30239 29550
32737 32713 32682 31736 30691 30526
31740 30699 3

[Luthe '15]
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Some statistics

Loops 1 2 3 4

(O 2 20 370 9,291

A 4 27 459 11,332

O 5 107 3,078 106,501
A

s R

O 32 1,042 40,164 1,735,706

from “Abelian Higgs model at four loops, fixed-point collision and deconfined
Criticality”uhmg Zerf,PM,Herbut,Scherer '19)]
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Example: Abelian Higgs model

The Lagrangian is given by
1
L =|Dugl* + g FL, + rlol* + M(|o[)?
with scalar fields ¢ = (¢4, ..., ¢n).
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Example: Abelian Higgs model

The Lagrangian is given by

1
L =|Dugl* + g FL, + rlol* + M(|o[)?

with scalar fields ¢ = (¢4, ..., ¢n).
Go to the renormalized Lagrangian

Za

1
L' = 24Dyl + Zia P8 + Zps Mu(16°)* + Sl — Z@AM)?

with renomalized couplings

o=@ Zy, A= Aou*fzgz;
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Example: Abelian Higgs model

B functions given by

d .
fi= dlglb =cgity B
k
6(1[)_ n 2 @) _ _opgd
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(8¢) _ (49,2 29 4 P4n 3 nP4n 242
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Example: Abelian Higgs model

B functions given by
d .
=2 _ gty Bko
k

dinb
(1e) _ n o (2¢) 3
B¢ 7_501 , Ba = —-2na”,
B8 = (330 — ) ot — Tma®A 4 Tnatal,
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Fixed points

Looking for fixed points: 5;(g;) =0V
At one loop:
o = 3e/n+ O(?)

3(18 + n+v/n2 — 180n — 540)
2n(n+4)

AL = +0(&2)
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Fixed points

Looking for fixed points: 5;(g;) =0V

At one loop:

o = 3e/n+ O(?)
3(18 + n+v/n2 — 180n — 540)

N = on(n T 4) + O(e?)
« (0% «
J {cFP bFP cFP
{ WF A WF A WFE A
m A
SR > 7
Ne
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Results

Fixed-point collision

Critical number n¢, extrapolationto d = 3,i.e. e =1

Padé Padé-Borel

€ €
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Results

Fixed-point collision

Critical number ng, interpolate to d = 3 using information at d = 2

Polynomial 2-sided Padé
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Conclusions and Outlook

Conclusions

@ We calculated the beta functions and anomalous dimensions for several
models up to four-loop order

@ From this the behaviour near critical points can be obtained
@ Four-loop is rather straight forward
@ Five-loop is still a challange and needs a good motivation
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