

ECT-Trento Workshop on Fission of Super-Heavy Elements, Trento, Italy, April 9-13, 2018 Theory of spontaneous fission of superheavy nuclei and its competitor decay modes.


D.N. Poenaru R.A. Gherghescu

Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), Bucharest-Magurele, Romania and

Frankfurt Institute for Advanced Studies (FIAS), J W Goethe University, Frankfurt am Main, Germany

DEDICATED TO WALTER GREINER

Prof Dr DrHCmult Walter Greiner (Courtesy J.H. Hamilton, Vanderbilt Uni) See J.H. Hamilton and D.N. Poenaru, Walter Greiner Obituary, in *Physics Today in People and History* 24 May 2017.

OUTLINE

Cluster preformation

Cold Fission; Macroscopic-microscopic model; Asymmetric two-center shell model. Example for fission of ²⁸⁶FI.

Fission dynamics:

Cranking inertia
The least action trajectory.

Competition of α - and cluster- decay

Possible Chains of Heaviest SHs

CLUSTER PREFORMATION

In 1928 Gamow and Condon & Gurney explained α decay as a quantum tunneling of a preformed particle at the nuclear surface. After discovery in 1984 by Rose and Jones of cluster radioactivity (CR), confirming 1980 predictions by Sandulescu, Poenaru and Greiner http://www.britannica.com/EBchecked/topic/465998/, a similar explanation was extended to CR. We show for the first time that in cold fission the shell corrections give a strong argument for preformation of a light fission fragment near the nuclear surface.

Objectiv

A better understanding of the cold fission process. Examples for ²⁸²Cn, ²⁵²Cf and ²⁴⁰Pu.

Solution

Using macroscopic-microscopic method with the radius of the light fragment, R_2 , linearly increasing with the separation distance, R.

COLD FISSION

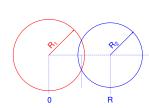
$${}^{Z}A \rightarrow {}^{Z_1}A_1 + {}^{Z_2}A_2$$

Parent nucleus \rightarrow heavy fragment + light fragment

Spontaneous fission was discovered in 1940 by G.N. Flerov and K.A. Petrzhak.

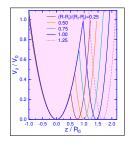
Usually the fission fragments are deformed and excited; they decay by neutron emission and/or γ rays, so that the total kinetic energy (TKE) of the fragments is smaller by about 25-35 MeV than the released energy, or Q-value.

In 1981 C. Signarbieux *et al.* (Journal de Physique (Paris) Lettres **42**, L437 (1981)) discovered the cold fission — a rare process in which TKE almost exhausts the Q-value (the fragments are not excited).

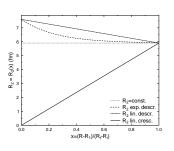

MACROSCOPIC-MICROSCOPIC MODEL

The asymmetric mass distributions of fission fragments and the spontaneously fissioning shape isomers, discovered by S.M. Polikanov *et al.* in 1962, could not be explained until 1967, when V.M. Strutinsky reported his macroscopic-microscopic method. He obtained a two hump potential barrier for heavy nuclei. Shape isomers occupied the second minimum. He added to the phenomenological deformation energy, E_{def} , the shell plus pairing correction energy,

$$\delta E = \delta U + \delta P = (\delta U + \delta P)_p + (\delta U + \delta P)_n$$
$$E_{def} = E_{LD} + \delta E$$

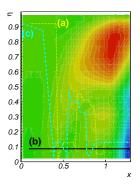

We use the Yukawa-plus-exponential model (Y+EM) to calculate $E_{def}=E_{Y+E}$, and R.A. Gherghescu's asymmetric two center shell model (ATCSM) to calculate δE . The BCS (Bardeen, Cooper, Schrieffer) system of two eqs. allows us to find the Fermi energy, λ , and the gap parameter, Δ , the pairing correction and the cranking inertia tensor needed to study Dynamics and calculate the half-life along the least action trajectory.

INTERSECTED SPHERES


Two intersected spheres. Volume conservation and $R_2 = \text{constant}$ or $R_2 = f(R)$. One or two deformation parameters: separation distance R and R_2 . Surface equation $\rho = \rho(z)$. Initial $R_i = R_0 - R_2$. Touching point $R_t = R_1 + R_2$. Normalized variable $x = (R - R_i)/(R_t - R_i)$

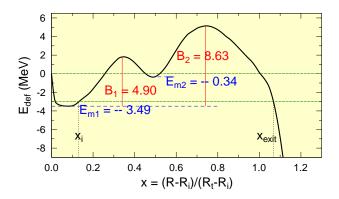
Example: $^{232}\text{U} \rightarrow \,^{24}\text{Ne} + ^{208}\text{Pb}$

TWO SHAPE COORDINATES: R and R2

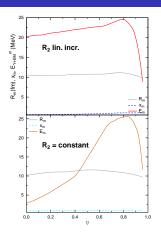

Different variation laws $R_2=R_2(R)$: $R_2=$ constant Exponentially decreasing $R_2=R_{2f}+(R_{20}-R_{2f})e^{-k_2\frac{R-R_i}{R_t-R_i}}$ Linearly decreasing $R_2=R_{2f}+(R_{20}-R_{2f})\frac{R_t-R}{R_t-R_i}$ Linearly increasing $R_2=R_{2f}\frac{R-R_i}{R_t-R_i}$

Only at the touching point $R_2 = R_{2f}$. This dynamical evolution produces the bunching (high quantum degeneracy) of the ATCSM single-particle levels responsible for the minimum of shell correction energy near the nuclear surface.

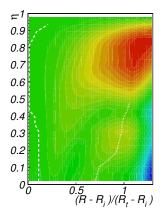
THREE LEAST ACTION PATHS ²⁸⁶FI

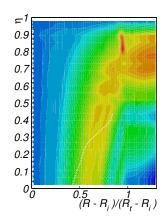

Three least action trajectories: (a) yellow dotted-line for exponentially decreasing R_2 ; (b) black solid line for R_2 = constant, and (c) cyan dashed-line for linearly increasing R_2 . $x = (R - R_i)/(R_t - R_i)$ and $\eta = (A_1 - A_2)/A$ are dimensionless quantities.

D.N. P. and R.A. G., Phys. Rev. C 94 (2016) 014309.


TWO HUMP FISSION BARRIER

A typical shape of the potential barrier for heavy and superheavy nuclei has two humps


The two minima are E_{m1} , E_{m2} and the barrier heights B_1 , B_2 . x_i , x_{exit} are the turning points. Penetration is made via quantum tunelling effect.


²⁸²Cn POSITIONS

Position and value of maximum Y+EM model deformation energy versus mass asymmetry, η , for fission of ²⁸²Cn with linearly increasing R_2 (top) and constant R_2 (bottom).

CONTOUR PLOTS 282Cn; TWO VALLEYS

R₂ CONSTANT

R₂ LIN. INCR.

The first and second minima of deformation energy at every value of mass asymmetry are plotted with dashed and dotted white lines.

SPONTANEOUS FISSION — DYNAMICS

The potential energy of deformation, E_{def} , in hyperspace of deformation parameters $\beta_1, \beta_2, ... \beta_n$ determines generalized forces acting on a nucleus. The nuclear inertia tensor with components B_{ij} , conteins information concerning the system reaction to these forces. Unlike E_{def} which depends only on the nuclear shape, the kinetic energy

$$E_k = \frac{1}{2} \sum_{i,j=1}^n B_{ij} \frac{d\beta_i}{dt} \frac{d\beta_j}{dt}$$

depends on the way of the shape variation.

The nuclear half-life, T, is determined by E_{def} and B via action integral, K

$$T = \frac{h \ln 2}{2E_{V} exp(K)} \; ; \; \; K = \frac{2\sqrt{2m}}{\hbar} \int_{R_{a}}^{R_{b}} \{ \frac{B(R)}{m} [E_{def}(R) - E_{def}(R_{a})] \}^{1/2} dR$$

where E_v is the zero point vibration energy, m is the nucleon mass, R_a , R_b — turning points, $E_{def}(R_a) = E_{def}(R_b)$.

CRANKING INERTIA TENSOR

$$B_{ij} = 2\hbar^2 \sum_{\nu\mu} \frac{\langle \nu | \partial H / \partial \beta_i | \mu \rangle \langle \mu | \partial H / \partial \beta_j | \nu \rangle}{(E_{\nu} + E_{\mu})^3} (u_{\nu} v_{\mu} + u_{\mu} v_{\nu})^2$$

H is the single-particle Hamiltonian

 E_{ν} is the quasiparticle energy $E_{\nu} = \sqrt{(\epsilon_{\nu} - \lambda)^2 + \Delta^2}$

 $|\nu\rangle$ is the wave function ; $u_{\nu}^2 = 1 - v_{\nu}^2$

 u_{ν}^2 , v_{ν}^2 are the BCS occupation probabilities $v_k^2 = [1 - (\epsilon_k - \lambda)/E_k]/2$

 $\{\beta_i\}$ — multidimensional hyperspace of deformation

 $2\hbar^2/m = 82.94 \text{ MeV} \cdot \text{fm}^2$.

Dorin, Radu (IFIN-HH)

For spherical shapes we choose 2 independent deformation parameters R, η or R, R_2 :

$$B(R) = B_{RR}(R, R_2) + 2B_{RR_2} \frac{dR_2}{dR} + B_{R_2R_2} \left(\frac{dR_2}{dR}\right)^2 = B_{11} + B_{12} + B_{22}$$

14/31

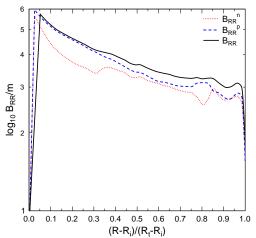
TECHNICAL DETAILS

FORTRAN PROGRAMS

- Radu: two center shell model; cranking inertia tensor and least action trajectory
- Dorin: macroscopic deformation energy (Coulomb plus Y+EM) and shell plus BCS pairing corrections

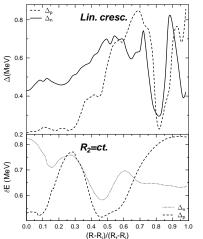
ECT-Trento Workshop on

- Graphics
 - Two dimensions: GLE
 - Three dimensions: PAW


R.A. Gherghescu, Phys. Rev. C 67 (2003) 014309.

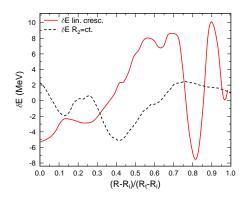
D.N. Poenaru, M. Ivaşcu, D. Mazilu, Computer Phys.

Communic. 19 (1980) 205.

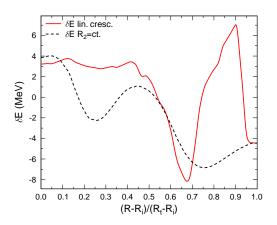


282 NUCLEAR INERTIA B_{RR}

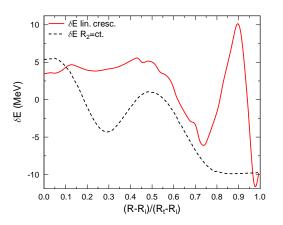
Decimal logarithm of the dimensionles RR component of nuclear inertia tensor for symmetrical fission of ²⁸²Cn with linearly increasing R_2 . Proton contribution is more important.


SOLUTIONS Δ_p , Δ_n OF BCS EQS. ²⁸²Cn

Solution of BCS equations for symmetrical fission of 282 Cn with R_2 constant (bottom) and linearly increasing (top): the gap for protons and neutrons.



282 Cn SHELL & PAIRING CORR. δE

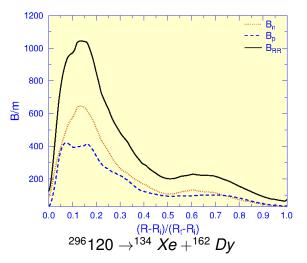

Comparison of absolute values of shell and pairing correction energies for symmetrical fission of 282 Cn with R_2 constant (dashed line) and linearly increasing R_2 (solid line)

240 Pu δE

Comparison of shell plus pairing effects for fission of 240 Pu with linearly increasing R_2 and constant R_2 .

Comparison of shell plus pairing effects for fission of ²⁵²Cf with linearly increasing R_2 and constant R_2 .

EXPERIMENT


MeV beam energy.

An interesting experiment performed by Astier et al. at the Strasbourg Vivitron with EUROBALL IV γ multidetector array proved experimentally for the first time the existence of cluster states, more exactly of α + 208 Pb structure in 212 Po, whose excited states have been populated by α transfer using the 208 Pb(18 O, 14 C) reaction at 85

A. Astier, P. Petkov, M.-G. Porquet, D. Delion, P. Schuck, Phys. Rev. Lett. **104** (2010) 042701; Europ. Phys. J. A **46** (2010) 165-185.

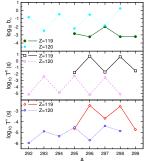
EXAMPLE of INERTIA for 296120

Prediction of heavy ion radioactivity

The New Encyclopaedia Britannica: "**Heavy-ion radioactivity.** In 1980 A. Sandulescu, D.N. Poenaru, and W. Greiner described calculations indicating the possibility of a new type of decay of heavy nuclei intermediate between alpha decay and spontaneous fission. The

first observation of heavy-ion radioactivity was that of a 30-MeV carbon-14 emission from radium-223 by H.J. Rose and G.A.

Jones in 1984." The following cluster decay modes have been experimentally confirmed: ¹⁴C, ²⁰O, ²³F, ^{22,24–26}Ne, ^{28,30}Mg, ^{32,34}Si with half-lives in good agreement with predicted values within our analytical superasymmetric fission model.


http://www.britannica.com/EBchecked/topic/465998/

ALPHA DECAY AND CLUSTER RADIOACTIVITY

In figure and table we compare the half-lives for $\alpha {\rm D}$ and CR, and the branching ratio relative to α decay

 $b_{\alpha} = \log_{10} T_{\alpha}(s) - \log_{10} T_{c}(s)$ for the examples we took.

Since 2011 we saw that for Z > 121 cluster decay may compete with α decay: DNP, RAG, WG, Phys. Rev. Lett. 107 (2011) 062503.

ALPHA DECAY AND CLUSTER RADIOACTIVITY 2

Parent	Emitted	$Q_c(MEV)$	$\log_{10} T_{\alpha}(s)$	b_{α}
²⁹⁸ 119	⁹⁰ Rb	311.36	-2.58	-3.22
³⁰⁰ 119	⁹² Rb	309.74	-2.19	-3.75
³⁰¹ 119	⁹³ Rb	308.63	-3.68	-3.51
³⁰² 119	⁹⁴ Rb	306.98	-1.60	-5.47
²⁹⁶ 120	⁹⁰ Sr	322.38	-5.71	-0.50
²⁹⁸ 120	⁹⁰ Sr	321.73	-4.86	0.25
³⁰⁴ 120	⁹⁰ Sr	317.33	-4.17	-1.04
³⁰⁶ 120	⁹⁰ Sr	316.16	-7.16	-4.41

A half-life shorter than 1 μ s, like for 306 120, is not measurable.

SPONTANEOUS FISSION HALF-LIVES

Parent	WAR	STA	XU	SAN	REN
²⁹⁵ 119				9.52	9.98
²⁹⁶ 119				12.15	8.93
²⁹⁷ 119					0.79
²⁹⁸ 119					-1.75
²⁹⁹ 119				6.70	-11.38
²⁹² 120	12.15	0.14	16.00	8.65	26.18
²⁹³ 120				11.72	21.49
²⁹⁴ 120	15.82	1.23	16.22		24.45
²⁹⁵ 120					18.31
²⁹⁶ 120	19.57	2.89	15.7	7.99	19.26
²⁹⁷ 120				10.60	11.93
²⁹⁸ 120	24.62	4.28	14.5		10.70

For ²⁹²120 the half-lives may differ by 26 orders of magnitude!

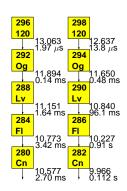
WAR STA XU SAN REN

- M. Warda and J.L. Egido, Phys. Rev. C 86 (2012) 014322.
- A. Staszczak, A. Baran and W. Nazarewicz, Phys. Rev. C 87 (2013) 024320.
 Chang Xu, Zhongzhou Ren and Yanqing Guo, Phys. Rev. C 78 (2008) 044329.
- K.P. Santhosh, R.K. Biju and S. Sahadevan, Nucl. Phys. A 832 (2010) 220-232.
- Zhongzhou Ren and Chang Xu, Nucl. Phys. A 759 (2005) 64-78.

SPONTANEOUS FISSION HALF-LIVES, our results

Parent	Channel	E _b (MeV)	$\log_{10} T_f(s)$
²⁹⁶ 120	$^{138}Ba + ^{158}Gd$	4.83	2.732
²⁹⁶ 120	136 Xe $+^{160}$ Dy	4.76	1.583
²⁹⁶ 120	134 Xe $+^{162}$ Dy	4.97	0.932
²⁹⁸ 120	$^{138}Ba + ^{160}Gd$	7.22	10.76
²⁹⁸ 120	136 Xe $+^{162}$ Dy	7.23	8.581
²⁹⁸ 120	134 Xe $+^{164}$ Dy	5.14	1.250

27 / 31



Dorin, Radu (IFIN-HH)

TWO ALPHA DECAY CHAINS

To identify the superheavy nuclei ^{296,298}120 one can use the decay chains from the figure, with calculated kinetic energy and half-lives

SUMMARY

- Within macroscopic-microscopic method, based on original two center shell model, we used the nuclear shape parametrization with two shape coordinates: R, R₂.
- The symmetrical cranking inertia tensor has three components, with B_{RR} the most important one.
- A dynamical investigation for ²⁸²Cn superheavy nucleus (experimental $\log_{10} T_f^{exp}(s) = -3.086$), leads to the least action along the trajectory with linearly increasing R_2 .
- BREAKING NEWS: we show for the first time that in a spontaneous cold fission process the shell plus pairing corrections calculated with Strutinsky's procedure give a strong argument for preformation of a light fission fragment near the nuclear surface.

SUMMARY 2

- We studied alpha- and cluster decay of superheavy nuclei ^{298,300,301,302}119. and ^{296,298,304,306}120.
 - It make sense to search for cluster decay modes: emission of ⁹⁰Sr from ^{296,298,304}120 with large kinetic energy, Q > 300 MeV and small branching ratio with respect to alpha decay (-0.50, 0.25, and -1.04, respectively).
- Spontaneous fission half-lives are longer, at least with 6 orders of magnitude larger than for α -decay.
- There is a need to improve the accuracy of calculating spontaneous fission half-lives, because one can meet large dicrepancies from model to model, e.g. 26 orders of magnitude!

Dorin, Radu (IFIN-HH)

THANK YOU!

