Microscopic studies of fission dynamics based on energy density functionals

Dario Vretenar University of Zagreb

Operativni program KONKURENTNOST I KOHEZIJA 1) NUCLEAR ENERGY DENSITY FUNCTIONALS

2) Spontaneous Fission - Approximations to the collective inertia

3) Spontaneous Fission - Coupling between shape and pairing degrees of

FREEDOM

4) INDUCED FISSION WITH THE TIME-DEPENDENT GCM+GOA

Nuclear Energy Density Functional Framework

 ...description of universal collective phenomena that reflect the organisation of nucleonic matter in finite nuclei - universal theory framework that can be applied to different mass regions.

✔ NEDFs provide a global and accurate microscopic approach to nuclear structure that can be extended from relatively light systems to superheavy nuclei, and from the valley of βstability to the particle drip-lines.

✓ NEDF-based structure models that take into account collective correlations → microscopic description of low-energy observables related to shell evolution with deformation, angular momentum, and number of nucleons.

Time-dependent NEDF in large amplitude collective motion, fission dynamics

DD - PCI

... starts from microscopic nucleon selfenergies in nuclear matter.

... parameters adjusted in self-consistent mean-field calculations of masses of 64 axially deformed nuclei in the mass regions A ~ 150-180 and A ~ 230-250.

T. Nikšić, D. Vretenar, and P. Ring Phys. Rev. C **78**, 034318

⇒ relative accuracy of the description of experimental masses.

S. E. Agbemava, A. V. Afanasjev, D. Ray, and P. Ring Phys. Rev. C **89**, 054320

Experimental and theoretical charge radii

Charge quadrupole deformations β_2

S. E. Agbemava, A. V. Afanasjev, D. Ray, and P. Ring, Phys. Rev. C 89, 054320

PC - PKI

P. W. Zhao (赵鹏巍), Z. P. Li (李志攀), J. M. Yao (尧江 明), and J. Meng (孟杰) Phys. Rev. C 82, 054319

... parameters adjusted to observables of 60 selected spherical nuclei: binding energies, charge radii, and empirical pairing gaps.

Nuclei	Expt.	PC-PK1	Nuclei		Expt.
¹⁶ O	127.619	127.280	²⁰² Pb	1	1592.187
¹⁸ O	139.806	140.223	²⁰⁴ Pb	1	1607.506
²⁰ O	151.370	151.962	²⁰⁶ Pb	1	1622.324
²² O	162.026	162.285	²⁰⁸ Pb	1	1636.430
¹⁸ Ne	132.143	132.088	²¹⁰ Pb	1	1645.552
²⁰ Mg	134.468	134.563	²¹² Pb	1	1654.514
³⁴ Si	283.429	284.727	²¹⁴ Pb	1	1663.291
³⁶ S	308.714	308.374	²¹⁰ Po	1	1645.212
³⁸ Ar	327.342	327.107	²¹² Rn	1	1652.497
³⁶ Ca	281.360	281.412	²¹⁴ Ra	1	1658.315
³⁸ Ca	313,122	313.230	²¹⁶ Th	1	1662.689
⁴⁰ Ca	342.052	343.060	²¹⁸ U	1	1665.648
⁴² Ca	361.896	363.142	-	-	
⁴⁴ Ca	380,960	381.915			
⁴⁶ Ca	398,769	399.451			
⁴⁸ Ca	415,990	415.492			
⁵⁰ Ca	427,490	426.937			
⁴² Ti	346.905	348.024			
⁵⁰ Ti	437.781	436.445		Ch	arao
⁵⁶ Ni	483.992	483.669		CII	uige
⁵⁸ Ni	506.458	503.636			
⁷² Ni	613,169	614.875			
⁸⁴ Se	727.343	725.732			
⁸⁶ Kr	749.234	747.939			
⁸⁸ Sr	768,468	767.138		Nuclei	Expt.
⁹⁰ Zr	783.892	783.033			
⁹² Mo	796.508	796.148		¹⁶ O	2.737
⁹⁴ Ru	806.848	807.034		⁴⁰ Ca	3.4852
⁹⁸ Cd	821.067	822.765		⁴² Ca	3.5125
¹⁰⁰ Sn	824.794	827.715		⁴⁴ Ca	3.5231
¹⁰⁶ Sn	893.868	892.323		⁴⁶ Ca	3.5022
¹⁰⁸ Sn	914.626	913.179		⁴⁸ Ca	3 4837
¹¹² Sn	953.532	951.831		50Ti	3 5737
116Sn	988.684	987.601		58NG	3.3737
¹²⁰ Sn	1020.546	1020.415		88.0	3.1021
¹²² Sn	1035.529	1035.860		007	4.2036
¹²⁴ Sn	1049.963	1050.715		⁹⁰ Zr	4.2720
¹²⁶ Sn	1063.889	1064.993		⁹² Mo	4.3170
¹²⁸ Sn	1077.346	1078.688		¹¹² Sn	4.5957
¹³⁰ Sn	1090.293	1091.774		116Sn	4.6257
¹³² Sn	1102.851	1104.202		122Sn	4.6633
¹³⁴ Sn	1109.235	1109.253		¹²⁴ Sn	4.6739
¹³⁴ Te	1123.434	1124.205		¹³⁸ Ba	4.8348
¹³⁶ Xe	1141.878	1142.621		¹⁴⁰ Ce	4.8774
¹³⁸ Ba	1158.292	1159.381		¹⁴⁴ Sm	4.9525
¹⁴⁰ Ce	1172.692	1174.054		²⁰² Ph	5,4772
¹⁴² Nd	1185.141	1185.938		204 ph	5 4861
¹⁴⁴ Sm	1195.736	1195.736		206 DL	5 4044
¹⁴⁶ Gd	1204.435	1203.712		208 DL	5.6040
¹⁴⁸ Dy	1210.780	1209.974		214 Dt	5.5046
¹⁵⁰ Er	1215.331	1214.624		214 Pb	5.5622
²⁰⁶ Hg	1621.049	1621.321		-	
²⁰⁰ Pb	1576.354	1574.885			

PC-PK1 1591.172 1607.068 1622.525 1637.438 1645.449 1653.425 1661.397 1646.703 1654.632 1661.172 1666.248 1669.602

radii

Nuclei	Expt.	PC-PK1
¹⁶ O	2.737	2.7677
⁴⁰ Ca	3.4852	3.4815
⁴² Ca	3.5125	3.4805
⁴⁴ Ca	3.5231	3.4826
⁴⁶ Ca	3.5022	3.4865
⁴⁸ Ca	3.4837	3.4890
⁵⁰ Ti	3.5737	3.5558
⁵⁸ Ni	3.7827	3.7372
⁸⁸ Sr	4.2036	4.2247
90Zr	4.2720	4.2695
⁹² Mo	4.3170	4.3125
112Sn	4.5957	4.5801
¹¹⁶ Sn	4.6257	4.6121
122Sn	4.6633	4.6561
¹²⁴ Sn	4.6739	4.6694
¹³⁸ Ba	4.8348	4.8508
¹⁴⁰ Ce	4.8774	4.8879
¹⁴⁴ Sm	4.9525	4.9544
²⁰² Pb	5.4772	5.4908
²⁰⁴ Pb	5.4861	5.5005
²⁰⁶ Pb	5.4946	5.5098
²⁰⁸ Pb	5.5046	5.5185
²¹⁴ Pb	5.5622	5.5798

Extrapolation to heavy and superheavy nuclei

EDFs and the corresponding structure models are applied to a region far from those in which their parameters are determined by data in large uncertainty in model predictions?

Much higher density of single-particle states close to the Fermi energy the evolution of deformed shells with nucleon number will have a more pronounced effect on energy gaps, separation energies, Qa-values, band-heads in odd-A nuclei, K-isomers ...

Much stronger competition between the attractive short-range nuclear interaction and the long-range electrostatic repulsion impact on the Coulomb, surface and isovector energies!

Self-consistent RHB triaxial energy maps of 254 No and 256 Rf isotopes in the $\beta-\gamma$ plane ($0 \le \gamma \le 60^{\circ}$). DD-PC1 energy density functional and a separable pairing force of finite range.

Two-quasiparticle isomers

Axially deformed nuclei 💮 two-quasiparticle K-isomers

K-forbidden transitions information on the single-nucleon states, pairing gaps, and residual interactions.

DD-PC1: fission barriers of actinides

PC-PK1: fission barriers of actinides

—— Z, A ———

Spontaneous fission APPROXIMATIONS TO THE COLLECTIVE INERTIA

The effective inertia and collective potential calculated in a SCMF approach based on EDFs.

... penetration probability:
$$P = \frac{1}{1 + \exp[2S(L)]} \qquad T_{1/2} = \ln 2/(nP).$$

$$S(L) = \int_{s_{\rm in}}^{s_{\rm out}} \frac{1}{\hbar} \sqrt{2\mathcal{M}_{\rm eff}(s)[V_{\rm eff}(s) - E_0]} \, ds$$

$$\mathcal{M}_{\rm eff}(s) = \sum_{ij} \mathcal{M}_{ij} \frac{dq_i}{ds} \frac{dq_j}{ds}$$
colective coordinates - functions of the path's length.

(1) The inertia tensor is computed using the ATDHFB method in the nonperturbative cranking approximation:

$$\mathcal{M}_{ij}^{C} = \frac{\hbar^{2}}{2\dot{q}_{i}\dot{q}_{j}}\sum_{\alpha\beta}\frac{F_{\alpha\beta}^{i*}F_{\alpha\beta}^{j} + F_{\alpha\beta}^{i}F_{\alpha\beta}^{j*}}{E_{\alpha} + E_{\beta}} \qquad \frac{F^{i}}{\dot{q}_{i}} = U^{\dagger}\frac{\partial\rho}{\partial q_{i}}V^{*} + U^{\dagger}\frac{\partial\kappa}{\partial q_{i}}U^{*} - V^{\dagger}\frac{\partial\rho^{*}}{\partial q_{i}}U^{*} - V^{\dagger}\frac{\partial\kappa^{*}}{\partial q_{i}}V^{*}$$

or (2) in the perturbative cranking approximation:

$$\mathcal{M}^{Cp} = \hbar^2 M_{(1)}^{-1} M_{(3)} M_{(1)}^{-1} \qquad \left[M_{(k)} \right]_{ij} = \sum_{\alpha\beta} \frac{\left\langle 0 \left| \hat{Q}_i \right| \alpha\beta \right\rangle \left\langle \alpha\beta \left| \hat{Q}_j \right| 0 \right\rangle}{(E_\alpha + E_\beta)^k}$$

The effective collective potential V_{eff} is obtained by subtracting the vibrational zero-point energy (ZPE) from the total deformation energy:

$$E_{\text{ZPE}} = \frac{1}{4} \text{Tr} \left[M_{(2)}^{-1} M_{(1)} \right]$$

Symmetric fission of ²⁶⁴Fm

RHB self-consistent triaxial quadrupole constrained energy surfaces of 264 Fm in the (\$20,\$22) plane.

The M_{11} (β_{20} , β_{20}) component of the inertia tensor (a), the binding energy (b), and the self-consistent deformation parameter β_{40} (c) of 264 Fm as functions of β_{20} .

ZHAO, LU, NIKŠIĆ, AND VRETENAR

PHYSICAL REVIEW C 92, 064315 (2015)

The collective inertia tensor:

$$|\mathcal{M}|^{1/2} = \left(\mathcal{M}_{11}\mathcal{M}_{22} - \mathcal{M}_{12}^2\right)^{1/2} \qquad \begin{array}{c} 1 \to \beta_{20} \\ 2 \to \beta_{22} \end{array}$$

Dynamic paths for spontaneous fission of 264 Fm in the (β_{20} , β_{22}) plane, calculated with the functionals PC-PK1 (a) and DD-PC1 (b).

Asymmetric fission of ²⁵⁰Fm

... three-dimensional collective space (β_{20} , β_{22} , and β_{30})

The spontaneous fission dynamic path is determined in two intervals:

- i) the path that connects the mean-field ground state and the isomeric state is calculated in the (β_{20},β_{22}) plane.
- ii) the path between the isomeric state and the outer turning point is determined in the (β₂₀,β₃₀) plane.

The optimal path is obtained by combining the paths in the (β_{20},β_{22}) and (β_{20},β_{30}) plane with the isomeric state $(\beta_{20} \approx 0.95, \beta_{30} = 0, \beta_{22} = 0)$ as matching point.

ZHAO, LU, NIKŠIĆ, AND VRETENAR PHYSICAL REVIEW C **92**, 064315 (2015)

The perturbative cranking collective inertia leads to a path similar to the static (minimum energy) path!

Values for the action integral and SF half-lives of ²⁵⁰Fm that correspond to the triaxial and reflection-symmetric paths from the inner turning point to the isomeric minimum, and axial and reflection-asymmetric from the isomer to the outer turning point.

EDF	Path	S(L)	$\log_{10}(T_{1/2}/\mathrm{yr})$
PC-PK1	$\text{DPM} + \mathcal{M}^{Cp}$	27.19	-4.42
	$\mathrm{RM}+\mathcal{M}^{Cp}$	27.20	-4.41
	$\mathrm{DPM} + \mathcal{M}^C$	31.81	-0.41
	$\mathbf{RM} + \mathcal{M}^{C}$	32.05	-0.20
DD-PC1	$\mathrm{DPM} + \mathcal{M}^{Cp}$	29.67	-2.27
	$\mathrm{RM}+\mathcal{M}^{Cp}$	29.66	-2.28
	$\mathrm{DPM} + \mathcal{M}^C$	34.52	1.95
	$\mathbf{RM} + \mathcal{M}^C$	34.44	1.88

For both functionals S(L) calculated with the nonperturbative cranking collective inertia is larger than that obtained with the perturbative cranking inertia and, consequently, the predicted half-lives are \approx 4 orders of magnitude longer in comparison to the perturbative approach.

Spontaneous fission

COUPLING BETWEEN SHAPE AND PAIRING COLLECTIVE COORDINATES

The effective inertia and collective potential depend on the strength of pairing correlations:

$$\mathcal{M}\sim\Delta^{-2}$$

$$V \sim (\Delta - \Delta_0)^2$$

self-consistent stationary gap

Cubic root determinants of the nonperturbativecranking inertia tensor $|\mathcal{M}^{C}|^{1/3}$ (in 10 × \hbar^{2} MeV⁻¹) of ²⁵⁰Fm in the (β_{20},β_{22}) plane for $\lambda_{2} = 0$ (a), and in the (β_{20},λ_{2}) plane for $\beta_{22} = 0$ (b).

when the gap parameter is treated as a dynamical variable, an enhancement of pairing correlations reduces the effective inertia and thus minimizes the action integral along the fission path.

Dynamical coupling between shape and pairing degrees of freedom

ZHAO, LU, NIKŠIĆ, VRETENAR, AND ZHOU

PHYSICAL REVIEW C 93, 044315 (2016)

To reduce the collective inertia, the fissioning nucleu consistent solution, at the expense of a larger poten corresponding fission action integral is reduced and than in the case without the dynamic pairing degree

Action integrals and SF half-lives of ²⁶⁴Fm and ²⁵⁰Fm

Nucleus	Path	S(L)	$\log_{10}(T_{1/2}/{\rm yr})$
²⁶⁴ Fm	2D	19.58	- 11.03
	3D	14.15	- 15.75
²⁵⁰ Fm	2D	32.09	-0.16
	3D	22.33	- 8.64

ZHAO, LU, NIKŠIĆ, VRETENAR, AND ZHOU

PHYSICAL REVIEW C 93, 044315 (2016)

Induced fission

TDGCM in the Gaussian overlap approximation

Time-dependent Schroedinger-like equation for fission dynamics (axial deformation parameters as collective degrees of freedom):

$$i\hbar\frac{\partial}{\partial t}g(\beta_2,\beta_3,t) = \left[-\frac{\hbar^2}{2}\sum_{kl}\frac{\partial}{\partial\beta_k}B_{kl}(\beta_2,\beta_3)\frac{\partial}{\partial\beta_l} + V(\beta_2,\beta_3)\right]g(\beta_2,\beta_3,t)$$

 \Rightarrow continuity equation for the probability density:

$$\frac{\partial}{\partial t}|g(\beta_2,\beta_3,t)|^2 = -\nabla \cdot \mathbf{J}(\beta_2,\beta_3,t)$$

...the probability current:

$$J_k(\beta_2,\beta_3,t) = \frac{\hbar}{2i} \sum_{l=2}^3 B_{kl}(\beta_2,\beta_3) \left[g^*(\beta_2,\beta_3,t) \frac{\partial g(\beta_2,\beta_3,t)}{\partial \beta_l} - g(\beta_2,\beta_3,t) \frac{\partial g^*(\beta_2,\beta_3,t)}{\partial \beta_l} \right]$$

The flux of the probability current through the scission hyper-surface provides a measure of the probability of observing a given pair of fragments at time t.

$$F(\xi, t) = \int_{t=0}^{t} dt \int_{(\beta_2, \beta_3) \in \xi} \mathbf{J}(\beta_2, \beta_3, t) \cdot d\mathbf{S}$$

The yield for the fission fragment with mass A:

$$Y(A) \propto \sum_{\xi \in \mathcal{A}} \lim_{t \to +\infty} F(\xi, t)$$

D. Regnier, M. Verrière, N. Dubray, and N. Schunck, Comput. Phys. Commun. 200, 350 (2016).

Collective parameters

The mass tensor associated with $q_2 = \langle Q_2 \rangle$ and $q_3 = \langle Q_3 \rangle$ is calculated in the perturbative cranking approximation

$$B_{kl}(q_2, q_3) = \frac{2}{\hbar^2} \left[\mathcal{M}_{(1)} \mathcal{M}_{(3)}^{-1} \mathcal{M}_{(1)} \right]_{kl}$$

$$\mathcal{M}_{(n),kl}(q_2,q_3) = \sum_{i,j} \frac{\langle i | \hat{Q}_k | j \rangle \langle j | \hat{Q}_l | i \rangle}{(E_i + E_j)^n} \left(u_i v_j + v_i u_j \right)^2$$

RMF+BCS quadrupole and octupole constrained deformation energy surface of 226 Th in the β_2 – β_3 plane.

TAO, ZHAO, LI, NIKŠIĆ, AND VRETENAR PHYSICAL REVIEW C **96**, 024319 (2017)

The calculated total kinetic energy of the fission fragments for 226 Th as a function of fragment mass, in comparison to the data:

A_{frag}(U)

Sensitivity of fission dynamics to the choice of pairing strength

The height of the fission barriers (in MeV) with respect to the corresponding ground-state minima:

	B_I	B_{II}^{asy}	B_{III}^{asy}	B_{II}^{sym}	$B_{III}^{\rm sym}$
90% pairing	8.23	9.47	7.74	15.64	6.38
100% pairing	7.10	8.58	7.32	14.21	5.72
110% pairing	5.92	7.78	7.09	12.72	5.17

This work was supported by the QuantiXLie Centre of Excellence, a project co-financed by the Croatian Government and European Union through the European Regional Development Fund - the Competitiveness and Cohesion Operational Program (Grant KK.01.1.1.01.0004).

> For more information: http://bela.phy.hr/quantixlie/hr/ https://strukturnifondovi.hr/

The sole responsibility for the content of this presentation lies with the Faculty of Science, University of Zagreb. It does not necessarily reflect the opinion of the European Union.

