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1)NUCLEAR ENERGY DENSITY FUNCTIONALS  

2)SPONTANEOUS FISSION ➠ APPROXIMATIONS TO THE COLLECTIVE INERTIA 

3)SPONTANEOUS FISSION ➠ COUPLING BETWEEN SHAPE AND PAIRING DEGREES OF 

FREEDOM 

4)INDUCED FISSION WITH THE TIME-DEPENDENT GCM+GOA 



✔ NEDFs provide a global and accurate microscopic approach to nuclear structure that 
can be extended from relatively light systems to superheavy nuclei, and from the valley of β-
stability to the particle drip-lines.  

Nuclear Energy Density Functional Framework

✔ NEDF-based structure models that take into account collective correlations ➠ 
microscopic description of low-energy observables related to shell evolution with 
deformation, angular momentum, and number of nucleons. 

✔ …description of universal collective phenomena that reflect the organisation of 
nucleonic matter in finite nuclei ➠ universal theory framework that can be applied to 
different mass regions. 

✔ Time-dependent NEDF ➠ large amplitude collective motion, fission dynamics



DD - PC1

... starts from microscopic nucleon self-
energies in nuclear matter.

... parameters adjusted in self-consistent 
mean-field calculations of masses of 64  
axially deformed nuclei in the mass 
regions A ~ 150-180 and A ~ 230-250.

⇒ relative accuracy of the description 
 of experimental masses.

T. Nikšić, D. Vretenar, and P. Ring 
Phys. Rev. C 78, 034318

S. E. Agbemava, A. V. Afanasjev, D. Ray, and P. Ring 
Phys. Rev. C 89, 054320



Experimental and theoretical charge radii

Charge quadrupole deformations β2 S. E. Agbemava, A. V. Afanasjev, D. Ray, and P. Ring, Phys. Rev. C 89, 054320



PC - PK1

… parameters 
adjusted to 
observables of 60 
selected spherical 
nuclei: binding 
energies, charge 
radii, and empirical 
pairing gaps.

P. W. Zhao (赵鹏巍), Z. P. Li 
(李志攀), J. M. Yao (尧江
明), and J. Meng (孟杰) 
Phys. Rev. C 82, 054319

Charge radii



Extrapolation to heavy and superheavy nuclei

EDFs and the corresponding structure models are applied to a region far from those in 
which their parameters are determined by data ➠ large uncertainty in model predictions? 

Much higher density of single-particle states close to the Fermi energy ➠ the evolution of 
deformed shells with nucleon number will have a more pronounced effect on energy 
gaps, separation energies, Qα-values, band-heads in odd-A nuclei, K-isomers …

Much stronger competition between the attractive short-range nuclear interaction and 
the long-range electrostatic repulsion ➠ impact on the Coulomb, surface and isovector 
energies!
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Self-consistent RHB triaxial energy maps of 254No and 256Rf isotopes in the β–γ plane (0 ≤ γ ≤ 60◦). 
DD-PC1 energy density functional and a separable pairing force of finite range. 
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Axially deformed nuclei      ➠      two-quasiparticle K-isomers

Two-quasiparticle isomers
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High-K isomers in transactinide nuclei close to N = 162
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We extend our recent study of shape evolution, collective excitation spectra, and decay properties of
transactinide nuclei [V. Prassa, T. Nikšić, and D. Vretenar, Phys. Rev. C 88, 044324 (2013)], based on the
microscopic framework of relativistic energy density functionals, to two-quasiparticle (2qp) excitations in the
axially deformed Rf, Sg, Hs, and Ds isotopes, with neutron number N = 160–166. The evolution of high-K
isomers is analyzed in a self-consistent axially symmetric relativistic Hartree-Bogoliubov calculation using the
blocking approximation with time-reversal symmetry breaking. The occurrence of a series of low-energy high-K
isomers is predicted, in particular the 9−

ν in the N = 160 and N = 166 isotopes, and the 12−
ν in the N = 164

nuclei. The effect of the N = 162 deformed-shell closure on the excitation of 2qp states is discussed. In the
N = 162 isotones we find a relatively low density of 2qp states, with no two-neutron states below 1.6 MeV
excitation energy and two-proton states at ≈0.5 MeV higher energy than the lowest 2qp states in neighboring
isotopes. This is an interesting result that can be used to characterise the occurrence of deformed shell gaps in
very heavy nuclei.

DOI: 10.1103/PhysRevC.91.034324 PACS number(s): 21.60.Jz, 21.10.Gv, 21.10.Hw, 27.90.+b

I. INTRODUCTION

Relatively long-lived elements beyond the actinides owe
their existence to the underlying single-nucleon shell structure.
Nuclei in this region often display axially deformed equilib-
rium shapes and intruder single-nucleon states with high-"
values (projection of the single-particle angular momentum
onto the symmetry axis of the nucleus) appear close to
the Fermi level. The unpaired quasiparticle excitations form
isomeric states with high values of total K = #i"i [2].
Because they can only decay by K-forbidden transitions,
these states have lifetimes that are significantly longer than
most of the neighboring states. The decay of isomeric states
provides information on the nuclear wave function, single-
nucleon states, pairing gaps, and residual interactions [3].
Systematic experimental efforts in the region of very heavy
nuclei have produced detailed spectroscopic data in nuclei
around 254No [4–8]. In addition to the detection of α and γ
decays, recent studies have made use of conversion electrons
(CE) to investigate possible K-isomeric states in heavy high-Z
nuclei such as, for instance, 256Rf, in which internal conversion
becomes the preferred decay mode [9,10]. The heaviest
nuclei for which characteristic high-K isomeric decays have
been investigated are 270Ds and its α-decay daughter 266Hs
[11,12].

Theoretical studies of quasiparticle excitations in the region
of transactinide nuclei have been based on the microscopic-
macroscopic approach [13–24], self-consistent models with
Skyrme functionals [25–30], the Gogny force [31–33], and
relativistic energy density functionals [1,34–38].

In the study of Ref. [1] we used a microscopic theoretical
framework based on relativistic energy density functionals
(REDFs) to analyze shape evolution, collective excitation
spectra, and decay properties of transactinide nuclei. Axially

symmetric and triaxial relativistic Hartree-Bogoliubov (RHB)
calculations [36,39], based on the functional DD-PC1 [40]
and with a separable pairing force of finite range [41,42],
were carried out for the even-even isotopic chains between
Fm and Fl. The occurrence of a deformed shell gap at neutron
number N = 162 and its role on the stability of nuclei in
the region around Z = 108 was investigated. A quadrupole
collective Hamiltonian, with parameters determined by self-
consistent constrained triaxial RHB calculations, was used to
examine low-energy spectra of No, Rf, Sg, Hs, and Ds with
neutron number in the interval 158 ! N ! 170. In particular,
we explored the isotopic dependence of several observables
that characterize the transitions between axially symmetric
rotors, γ -soft rotors, and spherical vibrators. The ratio R4/2
of excitation energies of the yrast states 4+

1 and 2+
1 , the

ratio of reduced transition probabilities R = B(E2; 4+
1 →

2+
1 )/B(E2; 2+

1 → 0+
1 ), B(E2) values for transitions within the

ground-state band, and the level of K-mixing as reflected in
the energy staggering between odd- and even-spin states in
the (quasi-)γ bands, clearly show that all five isotopic chains
display minimal variation from the axial rigid-rotor limit in the
interval N = 158–166. For neutron numbers N " 168 their
potential energy surfaces become more γ -soft. This is also
reflected in the characteristic observables of rotational spectra.

As an illustration, in Fig. 1 we plot the self-consistent
triaxial RHB energy surfaces in the β-γ plane (0◦ ! γ ! 60◦)
for 268,270,272,274Hs (Z = 108). For each nucleus energies
are normalized with respect to the binding energy of the
equilibrium deformation. The color code refers to the energy
at each point on the surface relative to the minimum. Details of
the calculation and the choice of effective interactions in the
particle-hole (DD-PC1 [40]) and particle-particle (a pairing
force separable in momentum space [41,42]) channels, are
given in Refs. [1,35]. The energy surfaces of Hs isotopes,

0556-2813/2015/91(3)/034324(6) 034324-1 ©2015 American Physical Society

Kmin = |⌦i � ⌦j |

Kmax = ⌦i + ⌦j

K-forbidden transitions ➠ information on the single-nucleon states, pairing gaps, and residual interactions.



DD-PC1: fission barriers of actinides
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PC-PK1: fission barriers of actinides

Bing-Nan Lu (吕炳楠), En-Guang Zhao (赵恩⼴), and  
Shan-Gui Zhou (周善贵), Phys. Rev. C 85, 011301(R)



Spontaneous fission 
APPROXIMATIONS TO THE COLLECTIVE INERTIA

… penetration probability:

MULTIDIMENSIONALLY-CONSTRAINED RELATIVISTIC . . . PHYSICAL REVIEW C 93, 044315 (2016)

The action integral along the one-dimensional fission path
L is calculated using the expression

S(L) =
∫ sout

sin

1
!
√

2Meff(s)[Veff(s) − E0] ds , (5)

where Meff(s) and Veff(s) are the effective collective inertia
and potential along the path L(s), respectively. E0 is the collec-
tive ground state energy, and the integration limits correspond
to the classical inner (sin) and outer (sout) turning points defined
by Veff(s) = E0. The fission path L(s) is determined in the
multidimensional collective space by minimizing the action
integral of Eq. (5) [2,3]. The spontaneous fission half-life
is calculated as T1/2 = ln 2/(nP ), where n is the number
of assaults on the fission barrier per unit time [9,21,37,38],
and P is the barrier penetration probability in the WKB
approximation

P = 1
1 + exp[2S(L)]

. (6)

The action integral Eq. (5) and, therefore, the fission half-life
is essentially determined by the effective collective inertia and
potential. The effective inertia is defined in terms of the mul-
tidimensional collective inertia tensor M [2,9,10,21,37,38]

Meff(s) =
∑

ij

Mij

dqi

ds

dqj

ds
, (7)

where qi(s) denotes the collective variable as function of the
path’s length.

In the present study the inertia tensor is computed using the
ATDHFB method in the nonperturbative cranking approxima-
tion [8]

MC
ij = !2

2q̇i q̇j

∑

αβ

F i∗
αβF

j
αβ + F i

αβF
j∗
αβ

Eα + Eβ

, (8)

where

F i

q̇i

= U † ∂ρ

∂qi

V ∗ + U † ∂κ

∂qi

U ∗ − V † ∂ρ
∗

∂qi

U ∗ − V † ∂κ∗

∂qi

V ∗ .

(9)

U and V are the self-consistent Bogoliubov matrices, and ρ
and κ are the corresponding particle and pairing density matri-
ces, respectively. The derivatives of the densities are calculated
using the Lagrange three-point formula for unequally spaced
points [39,40].

The collective potential Veff is obtained by subtracting
the vibrational zero-point energy (ZPE) from the total RMF
constrained energy surface [9,10,21,41,42]. The fission path
is determined in a multidimensional collective space using
both the dynamic programming (DPM) [38] and Ritz [37]
(RM) methods. For both methods we have considered several
possible values for the turning points sin and sout to verify that
the minimum action path is chosen. Since both methods give
virtually identical results, only those obtained using the DPM
are included in the presentation.

III. SPONTANEOUS FISSION OF 264Fm AND 250Fm:
PAIRING-INDUCED SPEEDUP

To study the effect of dynamic pairing correlations along
fission paths, as in our previous study of SF of Ref. [10], we will
analyze two illustrative examples: the symmetric spontaneous
fission of 264Fm and the asymmetric SF of 250Fm. In addition to
shape variables, here pairing correlations are also considered
as collective coordinates in the study of fission dynamics.
Because of computational restrictions and to simplify the
interpretation of results, the present analysis is restricted
to a three-dimensional (3D) collective space, defined by
either (β20,β22,λ2) (quadrupole triaxial shapes) or (β20,β30,λ2)
(quadrupole and octupole axial shapes), where the coordinate
λ2 represents dynamic pairing fluctuations. The relativistic
energy density functional DD-PC1 [30] is employed in self-
consistent RMF calculations of constrained energy surfaces,
collective inertia tensors, and fission action integrals. The
height of fission barriers is sensitive to the strength of the
pairing interaction [43] and, therefore, a particular choice
of the pairing strength may have a considerable effect on
fission dynamics. As explained above and in Ref. [10], the
parameters of the finite-range separable pairing force were
originally adjusted to reproduce the pairing gap at the Fermi
surface in symmetric nuclear matter as calculated with the
Gogny force D1S. A number of mean-field studies based on
the relativistic Hartree-Bogoliubov (RHB) model have shown
that the pairing strength needs to be fine-tuned in some cases,
especially for heavy nuclei [44,45]. Since in the present study
pairing correlations are treated in the BCS approximation,
we have adjusted the strength parameters to reproduce the
available empirical pairing gaps in Fm isotopes. The resulting
values with respect to the original pairing strength adjusted in
nuclear matter (G0 = −738 MeV fm−3) are Gn/G0 = 1.21
and Gp/G0 = 1.14. As in Refs. [9,21] and our previous work
Ref. [10], we choose E0 = 1 MeV in Eq. (5) for the value
of the collective ground state energy. This value enables a
direct comparison of our results with those reported in previous
studies, especially in Ref. [21]. For the vibrational frequency
!ω0 = 1 MeV the number of assaults on the fission barrier per
unit is 1020.38 s−1 [46].

A. Symmetric fission of 264Fm

The first example in our analysis of the influence of
dynamical fluctuations in shape and pairing degrees of freedom
on fission paths is the nucleus 264Fm, for which theoretical
studies [47,48] predict a symmetric spontaneous fission decay.
The shape degrees of freedom in this case are elongation and
triaxiality and, therefore, calculations of the energy landscape,
inertia tensor, and fission paths are restricted to the 3D
collective space (β20,β22,λ2).

In Fig. 1 we plot the collective potential energy (the vibra-
tional ZPE is subtracted from the constrained self-consistent
mean-field energy) of 264Fm in the (β20,β22) plane for λ2 = 0
[Fig. 1(a)], and in the (β20,λ2) plane for β22 = 0 [Fig. 1(b)].
Therefore, Fig. 1(a) displays the results obtained without
including dynamical pairing correlations, and the potential
can be directly compared to the one shown in Fig. 6(b) of

044315-3

MULTIDIMENSIONALLY-CONSTRAINED RELATIVISTIC . . . PHYSICAL REVIEW C 93, 044315 (2016)

The action integral along the one-dimensional fission path
L is calculated using the expression

S(L) =
∫ sout

sin

1
!
√

2Meff(s)[Veff(s) − E0] ds , (5)

where Meff(s) and Veff(s) are the effective collective inertia
and potential along the path L(s), respectively. E0 is the collec-
tive ground state energy, and the integration limits correspond
to the classical inner (sin) and outer (sout) turning points defined
by Veff(s) = E0. The fission path L(s) is determined in the
multidimensional collective space by minimizing the action
integral of Eq. (5) [2,3]. The spontaneous fission half-life
is calculated as T1/2 = ln 2/(nP ), where n is the number
of assaults on the fission barrier per unit time [9,21,37,38],
and P is the barrier penetration probability in the WKB
approximation

P = 1
1 + exp[2S(L)]

. (6)

The action integral Eq. (5) and, therefore, the fission half-life
is essentially determined by the effective collective inertia and
potential. The effective inertia is defined in terms of the mul-
tidimensional collective inertia tensor M [2,9,10,21,37,38]

Meff(s) =
∑

ij

Mij

dqi

ds

dqj

ds
, (7)

where qi(s) denotes the collective variable as function of the
path’s length.

In the present study the inertia tensor is computed using the
ATDHFB method in the nonperturbative cranking approxima-
tion [8]

MC
ij = !2

2q̇i q̇j

∑

αβ

F i∗
αβF

j
αβ + F i

αβF
j∗
αβ

Eα + Eβ

, (8)

where
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q̇i

= U † ∂ρ

∂qi

V ∗ + U † ∂κ

∂qi

U ∗ − V † ∂ρ
∗

∂qi

U ∗ − V † ∂κ∗

∂qi

V ∗ .

(9)

U and V are the self-consistent Bogoliubov matrices, and ρ
and κ are the corresponding particle and pairing density matri-
ces, respectively. The derivatives of the densities are calculated
using the Lagrange three-point formula for unequally spaced
points [39,40].

The collective potential Veff is obtained by subtracting
the vibrational zero-point energy (ZPE) from the total RMF
constrained energy surface [9,10,21,41,42]. The fission path
is determined in a multidimensional collective space using
both the dynamic programming (DPM) [38] and Ritz [37]
(RM) methods. For both methods we have considered several
possible values for the turning points sin and sout to verify that
the minimum action path is chosen. Since both methods give
virtually identical results, only those obtained using the DPM
are included in the presentation.

III. SPONTANEOUS FISSION OF 264Fm AND 250Fm:
PAIRING-INDUCED SPEEDUP

To study the effect of dynamic pairing correlations along
fission paths, as in our previous study of SF of Ref. [10], we will
analyze two illustrative examples: the symmetric spontaneous
fission of 264Fm and the asymmetric SF of 250Fm. In addition to
shape variables, here pairing correlations are also considered
as collective coordinates in the study of fission dynamics.
Because of computational restrictions and to simplify the
interpretation of results, the present analysis is restricted
to a three-dimensional (3D) collective space, defined by
either (β20,β22,λ2) (quadrupole triaxial shapes) or (β20,β30,λ2)
(quadrupole and octupole axial shapes), where the coordinate
λ2 represents dynamic pairing fluctuations. The relativistic
energy density functional DD-PC1 [30] is employed in self-
consistent RMF calculations of constrained energy surfaces,
collective inertia tensors, and fission action integrals. The
height of fission barriers is sensitive to the strength of the
pairing interaction [43] and, therefore, a particular choice
of the pairing strength may have a considerable effect on
fission dynamics. As explained above and in Ref. [10], the
parameters of the finite-range separable pairing force were
originally adjusted to reproduce the pairing gap at the Fermi
surface in symmetric nuclear matter as calculated with the
Gogny force D1S. A number of mean-field studies based on
the relativistic Hartree-Bogoliubov (RHB) model have shown
that the pairing strength needs to be fine-tuned in some cases,
especially for heavy nuclei [44,45]. Since in the present study
pairing correlations are treated in the BCS approximation,
we have adjusted the strength parameters to reproduce the
available empirical pairing gaps in Fm isotopes. The resulting
values with respect to the original pairing strength adjusted in
nuclear matter (G0 = −738 MeV fm−3) are Gn/G0 = 1.21
and Gp/G0 = 1.14. As in Refs. [9,21] and our previous work
Ref. [10], we choose E0 = 1 MeV in Eq. (5) for the value
of the collective ground state energy. This value enables a
direct comparison of our results with those reported in previous
studies, especially in Ref. [21]. For the vibrational frequency
!ω0 = 1 MeV the number of assaults on the fission barrier per
unit is 1020.38 s−1 [46].

A. Symmetric fission of 264Fm

The first example in our analysis of the influence of
dynamical fluctuations in shape and pairing degrees of freedom
on fission paths is the nucleus 264Fm, for which theoretical
studies [47,48] predict a symmetric spontaneous fission decay.
The shape degrees of freedom in this case are elongation and
triaxiality and, therefore, calculations of the energy landscape,
inertia tensor, and fission paths are restricted to the 3D
collective space (β20,β22,λ2).

In Fig. 1 we plot the collective potential energy (the vibra-
tional ZPE is subtracted from the constrained self-consistent
mean-field energy) of 264Fm in the (β20,β22) plane for λ2 = 0
[Fig. 1(a)], and in the (β20,λ2) plane for β22 = 0 [Fig. 1(b)].
Therefore, Fig. 1(a) displays the results obtained without
including dynamical pairing correlations, and the potential
can be directly compared to the one shown in Fig. 6(b) of
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The action integral along the one-dimensional fission path
L is calculated using the expression

S(L) =
∫ sout

sin

1
!
√

2Meff(s)[Veff(s) − E0] ds , (5)

where Meff(s) and Veff(s) are the effective collective inertia
and potential along the path L(s), respectively. E0 is the collec-
tive ground state energy, and the integration limits correspond
to the classical inner (sin) and outer (sout) turning points defined
by Veff(s) = E0. The fission path L(s) is determined in the
multidimensional collective space by minimizing the action
integral of Eq. (5) [2,3]. The spontaneous fission half-life
is calculated as T1/2 = ln 2/(nP ), where n is the number
of assaults on the fission barrier per unit time [9,21,37,38],
and P is the barrier penetration probability in the WKB
approximation

P = 1
1 + exp[2S(L)]

. (6)

The action integral Eq. (5) and, therefore, the fission half-life
is essentially determined by the effective collective inertia and
potential. The effective inertia is defined in terms of the mul-
tidimensional collective inertia tensor M [2,9,10,21,37,38]

Meff(s) =
∑

ij

Mij

dqi

ds

dqj

ds
, (7)

where qi(s) denotes the collective variable as function of the
path’s length.

In the present study the inertia tensor is computed using the
ATDHFB method in the nonperturbative cranking approxima-
tion [8]

MC
ij = !2

2q̇i q̇j

∑

αβ
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αβF

j
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Eα + Eβ

, (8)

where
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U ∗ − V † ∂ρ
∗
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U ∗ − V † ∂κ∗
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(9)

U and V are the self-consistent Bogoliubov matrices, and ρ
and κ are the corresponding particle and pairing density matri-
ces, respectively. The derivatives of the densities are calculated
using the Lagrange three-point formula for unequally spaced
points [39,40].

The collective potential Veff is obtained by subtracting
the vibrational zero-point energy (ZPE) from the total RMF
constrained energy surface [9,10,21,41,42]. The fission path
is determined in a multidimensional collective space using
both the dynamic programming (DPM) [38] and Ritz [37]
(RM) methods. For both methods we have considered several
possible values for the turning points sin and sout to verify that
the minimum action path is chosen. Since both methods give
virtually identical results, only those obtained using the DPM
are included in the presentation.

III. SPONTANEOUS FISSION OF 264Fm AND 250Fm:
PAIRING-INDUCED SPEEDUP

To study the effect of dynamic pairing correlations along
fission paths, as in our previous study of SF of Ref. [10], we will
analyze two illustrative examples: the symmetric spontaneous
fission of 264Fm and the asymmetric SF of 250Fm. In addition to
shape variables, here pairing correlations are also considered
as collective coordinates in the study of fission dynamics.
Because of computational restrictions and to simplify the
interpretation of results, the present analysis is restricted
to a three-dimensional (3D) collective space, defined by
either (β20,β22,λ2) (quadrupole triaxial shapes) or (β20,β30,λ2)
(quadrupole and octupole axial shapes), where the coordinate
λ2 represents dynamic pairing fluctuations. The relativistic
energy density functional DD-PC1 [30] is employed in self-
consistent RMF calculations of constrained energy surfaces,
collective inertia tensors, and fission action integrals. The
height of fission barriers is sensitive to the strength of the
pairing interaction [43] and, therefore, a particular choice
of the pairing strength may have a considerable effect on
fission dynamics. As explained above and in Ref. [10], the
parameters of the finite-range separable pairing force were
originally adjusted to reproduce the pairing gap at the Fermi
surface in symmetric nuclear matter as calculated with the
Gogny force D1S. A number of mean-field studies based on
the relativistic Hartree-Bogoliubov (RHB) model have shown
that the pairing strength needs to be fine-tuned in some cases,
especially for heavy nuclei [44,45]. Since in the present study
pairing correlations are treated in the BCS approximation,
we have adjusted the strength parameters to reproduce the
available empirical pairing gaps in Fm isotopes. The resulting
values with respect to the original pairing strength adjusted in
nuclear matter (G0 = −738 MeV fm−3) are Gn/G0 = 1.21
and Gp/G0 = 1.14. As in Refs. [9,21] and our previous work
Ref. [10], we choose E0 = 1 MeV in Eq. (5) for the value
of the collective ground state energy. This value enables a
direct comparison of our results with those reported in previous
studies, especially in Ref. [21]. For the vibrational frequency
!ω0 = 1 MeV the number of assaults on the fission barrier per
unit is 1020.38 s−1 [46].

A. Symmetric fission of 264Fm

The first example in our analysis of the influence of
dynamical fluctuations in shape and pairing degrees of freedom
on fission paths is the nucleus 264Fm, for which theoretical
studies [47,48] predict a symmetric spontaneous fission decay.
The shape degrees of freedom in this case are elongation and
triaxiality and, therefore, calculations of the energy landscape,
inertia tensor, and fission paths are restricted to the 3D
collective space (β20,β22,λ2).

In Fig. 1 we plot the collective potential energy (the vibra-
tional ZPE is subtracted from the constrained self-consistent
mean-field energy) of 264Fm in the (β20,β22) plane for λ2 = 0
[Fig. 1(a)], and in the (β20,λ2) plane for β22 = 0 [Fig. 1(b)].
Therefore, Fig. 1(a) displays the results obtained without
including dynamical pairing correlations, and the potential
can be directly compared to the one shown in Fig. 6(b) of
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The action integral along the one-dimensional fission path
L is calculated using the expression

S(L) =
∫ sout

sin

1
!
√

2Meff(s)[Veff(s) − E0] ds , (5)

where Meff(s) and Veff(s) are the effective collective inertia
and potential along the path L(s), respectively. E0 is the collec-
tive ground state energy, and the integration limits correspond
to the classical inner (sin) and outer (sout) turning points defined
by Veff(s) = E0. The fission path L(s) is determined in the
multidimensional collective space by minimizing the action
integral of Eq. (5) [2,3]. The spontaneous fission half-life
is calculated as T1/2 = ln 2/(nP ), where n is the number
of assaults on the fission barrier per unit time [9,21,37,38],
and P is the barrier penetration probability in the WKB
approximation

P = 1
1 + exp[2S(L)]

. (6)

The action integral Eq. (5) and, therefore, the fission half-life
is essentially determined by the effective collective inertia and
potential. The effective inertia is defined in terms of the mul-
tidimensional collective inertia tensor M [2,9,10,21,37,38]

Meff(s) =
∑

ij

Mij

dqi

ds

dqj

ds
, (7)

where qi(s) denotes the collective variable as function of the
path’s length.

In the present study the inertia tensor is computed using the
ATDHFB method in the nonperturbative cranking approxima-
tion [8]
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U and V are the self-consistent Bogoliubov matrices, and ρ
and κ are the corresponding particle and pairing density matri-
ces, respectively. The derivatives of the densities are calculated
using the Lagrange three-point formula for unequally spaced
points [39,40].

The collective potential Veff is obtained by subtracting
the vibrational zero-point energy (ZPE) from the total RMF
constrained energy surface [9,10,21,41,42]. The fission path
is determined in a multidimensional collective space using
both the dynamic programming (DPM) [38] and Ritz [37]
(RM) methods. For both methods we have considered several
possible values for the turning points sin and sout to verify that
the minimum action path is chosen. Since both methods give
virtually identical results, only those obtained using the DPM
are included in the presentation.

III. SPONTANEOUS FISSION OF 264Fm AND 250Fm:
PAIRING-INDUCED SPEEDUP

To study the effect of dynamic pairing correlations along
fission paths, as in our previous study of SF of Ref. [10], we will
analyze two illustrative examples: the symmetric spontaneous
fission of 264Fm and the asymmetric SF of 250Fm. In addition to
shape variables, here pairing correlations are also considered
as collective coordinates in the study of fission dynamics.
Because of computational restrictions and to simplify the
interpretation of results, the present analysis is restricted
to a three-dimensional (3D) collective space, defined by
either (β20,β22,λ2) (quadrupole triaxial shapes) or (β20,β30,λ2)
(quadrupole and octupole axial shapes), where the coordinate
λ2 represents dynamic pairing fluctuations. The relativistic
energy density functional DD-PC1 [30] is employed in self-
consistent RMF calculations of constrained energy surfaces,
collective inertia tensors, and fission action integrals. The
height of fission barriers is sensitive to the strength of the
pairing interaction [43] and, therefore, a particular choice
of the pairing strength may have a considerable effect on
fission dynamics. As explained above and in Ref. [10], the
parameters of the finite-range separable pairing force were
originally adjusted to reproduce the pairing gap at the Fermi
surface in symmetric nuclear matter as calculated with the
Gogny force D1S. A number of mean-field studies based on
the relativistic Hartree-Bogoliubov (RHB) model have shown
that the pairing strength needs to be fine-tuned in some cases,
especially for heavy nuclei [44,45]. Since in the present study
pairing correlations are treated in the BCS approximation,
we have adjusted the strength parameters to reproduce the
available empirical pairing gaps in Fm isotopes. The resulting
values with respect to the original pairing strength adjusted in
nuclear matter (G0 = −738 MeV fm−3) are Gn/G0 = 1.21
and Gp/G0 = 1.14. As in Refs. [9,21] and our previous work
Ref. [10], we choose E0 = 1 MeV in Eq. (5) for the value
of the collective ground state energy. This value enables a
direct comparison of our results with those reported in previous
studies, especially in Ref. [21]. For the vibrational frequency
!ω0 = 1 MeV the number of assaults on the fission barrier per
unit is 1020.38 s−1 [46].

A. Symmetric fission of 264Fm

The first example in our analysis of the influence of
dynamical fluctuations in shape and pairing degrees of freedom
on fission paths is the nucleus 264Fm, for which theoretical
studies [47,48] predict a symmetric spontaneous fission decay.
The shape degrees of freedom in this case are elongation and
triaxiality and, therefore, calculations of the energy landscape,
inertia tensor, and fission paths are restricted to the 3D
collective space (β20,β22,λ2).

In Fig. 1 we plot the collective potential energy (the vibra-
tional ZPE is subtracted from the constrained self-consistent
mean-field energy) of 264Fm in the (β20,β22) plane for λ2 = 0
[Fig. 1(a)], and in the (β20,λ2) plane for β22 = 0 [Fig. 1(b)].
Therefore, Fig. 1(a) displays the results obtained without
including dynamical pairing correlations, and the potential
can be directly compared to the one shown in Fig. 6(b) of
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The action integral along the one-dimensional fission path
L is calculated using the expression

S(L) =
∫ sout

sin

1
!
√

2Meff(s)[Veff(s) − E0] ds , (5)

where Meff(s) and Veff(s) are the effective collective inertia
and potential along the path L(s), respectively. E0 is the collec-
tive ground state energy, and the integration limits correspond
to the classical inner (sin) and outer (sout) turning points defined
by Veff(s) = E0. The fission path L(s) is determined in the
multidimensional collective space by minimizing the action
integral of Eq. (5) [2,3]. The spontaneous fission half-life
is calculated as T1/2 = ln 2/(nP ), where n is the number
of assaults on the fission barrier per unit time [9,21,37,38],
and P is the barrier penetration probability in the WKB
approximation

P = 1
1 + exp[2S(L)]

. (6)

The action integral Eq. (5) and, therefore, the fission half-life
is essentially determined by the effective collective inertia and
potential. The effective inertia is defined in terms of the mul-
tidimensional collective inertia tensor M [2,9,10,21,37,38]

Meff(s) =
∑

ij

Mij

dqi

ds

dqj

ds
, (7)

where qi(s) denotes the collective variable as function of the
path’s length.

In the present study the inertia tensor is computed using the
ATDHFB method in the nonperturbative cranking approxima-
tion [8]
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where
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U and V are the self-consistent Bogoliubov matrices, and ρ
and κ are the corresponding particle and pairing density matri-
ces, respectively. The derivatives of the densities are calculated
using the Lagrange three-point formula for unequally spaced
points [39,40].

The collective potential Veff is obtained by subtracting
the vibrational zero-point energy (ZPE) from the total RMF
constrained energy surface [9,10,21,41,42]. The fission path
is determined in a multidimensional collective space using
both the dynamic programming (DPM) [38] and Ritz [37]
(RM) methods. For both methods we have considered several
possible values for the turning points sin and sout to verify that
the minimum action path is chosen. Since both methods give
virtually identical results, only those obtained using the DPM
are included in the presentation.

III. SPONTANEOUS FISSION OF 264Fm AND 250Fm:
PAIRING-INDUCED SPEEDUP

To study the effect of dynamic pairing correlations along
fission paths, as in our previous study of SF of Ref. [10], we will
analyze two illustrative examples: the symmetric spontaneous
fission of 264Fm and the asymmetric SF of 250Fm. In addition to
shape variables, here pairing correlations are also considered
as collective coordinates in the study of fission dynamics.
Because of computational restrictions and to simplify the
interpretation of results, the present analysis is restricted
to a three-dimensional (3D) collective space, defined by
either (β20,β22,λ2) (quadrupole triaxial shapes) or (β20,β30,λ2)
(quadrupole and octupole axial shapes), where the coordinate
λ2 represents dynamic pairing fluctuations. The relativistic
energy density functional DD-PC1 [30] is employed in self-
consistent RMF calculations of constrained energy surfaces,
collective inertia tensors, and fission action integrals. The
height of fission barriers is sensitive to the strength of the
pairing interaction [43] and, therefore, a particular choice
of the pairing strength may have a considerable effect on
fission dynamics. As explained above and in Ref. [10], the
parameters of the finite-range separable pairing force were
originally adjusted to reproduce the pairing gap at the Fermi
surface in symmetric nuclear matter as calculated with the
Gogny force D1S. A number of mean-field studies based on
the relativistic Hartree-Bogoliubov (RHB) model have shown
that the pairing strength needs to be fine-tuned in some cases,
especially for heavy nuclei [44,45]. Since in the present study
pairing correlations are treated in the BCS approximation,
we have adjusted the strength parameters to reproduce the
available empirical pairing gaps in Fm isotopes. The resulting
values with respect to the original pairing strength adjusted in
nuclear matter (G0 = −738 MeV fm−3) are Gn/G0 = 1.21
and Gp/G0 = 1.14. As in Refs. [9,21] and our previous work
Ref. [10], we choose E0 = 1 MeV in Eq. (5) for the value
of the collective ground state energy. This value enables a
direct comparison of our results with those reported in previous
studies, especially in Ref. [21]. For the vibrational frequency
!ω0 = 1 MeV the number of assaults on the fission barrier per
unit is 1020.38 s−1 [46].

A. Symmetric fission of 264Fm

The first example in our analysis of the influence of
dynamical fluctuations in shape and pairing degrees of freedom
on fission paths is the nucleus 264Fm, for which theoretical
studies [47,48] predict a symmetric spontaneous fission decay.
The shape degrees of freedom in this case are elongation and
triaxiality and, therefore, calculations of the energy landscape,
inertia tensor, and fission paths are restricted to the 3D
collective space (β20,β22,λ2).

In Fig. 1 we plot the collective potential energy (the vibra-
tional ZPE is subtracted from the constrained self-consistent
mean-field energy) of 264Fm in the (β20,β22) plane for λ2 = 0
[Fig. 1(a)], and in the (β20,λ2) plane for β22 = 0 [Fig. 1(b)].
Therefore, Fig. 1(a) displays the results obtained without
including dynamical pairing correlations, and the potential
can be directly compared to the one shown in Fig. 6(b) of
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The action integral along the one-dimensional fission path
L is calculated using the expression

S(L) =
∫ sout

sin

1
!
√

2Meff(s)[Veff(s) − E0] ds , (5)

where Meff(s) and Veff(s) are the effective collective inertia
and potential along the path L(s), respectively. E0 is the collec-
tive ground state energy, and the integration limits correspond
to the classical inner (sin) and outer (sout) turning points defined
by Veff(s) = E0. The fission path L(s) is determined in the
multidimensional collective space by minimizing the action
integral of Eq. (5) [2,3]. The spontaneous fission half-life
is calculated as T1/2 = ln 2/(nP ), where n is the number
of assaults on the fission barrier per unit time [9,21,37,38],
and P is the barrier penetration probability in the WKB
approximation

P = 1
1 + exp[2S(L)]

. (6)

The action integral Eq. (5) and, therefore, the fission half-life
is essentially determined by the effective collective inertia and
potential. The effective inertia is defined in terms of the mul-
tidimensional collective inertia tensor M [2,9,10,21,37,38]

Meff(s) =
∑

ij

Mij

dqi

ds

dqj

ds
, (7)

where qi(s) denotes the collective variable as function of the
path’s length.

In the present study the inertia tensor is computed using the
ATDHFB method in the nonperturbative cranking approxima-
tion [8]
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∑
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where

F i

q̇i

= U † ∂ρ

∂qi

V ∗ + U † ∂κ

∂qi

U ∗ − V † ∂ρ
∗

∂qi

U ∗ − V † ∂κ∗

∂qi

V ∗ .

(9)

U and V are the self-consistent Bogoliubov matrices, and ρ
and κ are the corresponding particle and pairing density matri-
ces, respectively. The derivatives of the densities are calculated
using the Lagrange three-point formula for unequally spaced
points [39,40].

The collective potential Veff is obtained by subtracting
the vibrational zero-point energy (ZPE) from the total RMF
constrained energy surface [9,10,21,41,42]. The fission path
is determined in a multidimensional collective space using
both the dynamic programming (DPM) [38] and Ritz [37]
(RM) methods. For both methods we have considered several
possible values for the turning points sin and sout to verify that
the minimum action path is chosen. Since both methods give
virtually identical results, only those obtained using the DPM
are included in the presentation.

III. SPONTANEOUS FISSION OF 264Fm AND 250Fm:
PAIRING-INDUCED SPEEDUP

To study the effect of dynamic pairing correlations along
fission paths, as in our previous study of SF of Ref. [10], we will
analyze two illustrative examples: the symmetric spontaneous
fission of 264Fm and the asymmetric SF of 250Fm. In addition to
shape variables, here pairing correlations are also considered
as collective coordinates in the study of fission dynamics.
Because of computational restrictions and to simplify the
interpretation of results, the present analysis is restricted
to a three-dimensional (3D) collective space, defined by
either (β20,β22,λ2) (quadrupole triaxial shapes) or (β20,β30,λ2)
(quadrupole and octupole axial shapes), where the coordinate
λ2 represents dynamic pairing fluctuations. The relativistic
energy density functional DD-PC1 [30] is employed in self-
consistent RMF calculations of constrained energy surfaces,
collective inertia tensors, and fission action integrals. The
height of fission barriers is sensitive to the strength of the
pairing interaction [43] and, therefore, a particular choice
of the pairing strength may have a considerable effect on
fission dynamics. As explained above and in Ref. [10], the
parameters of the finite-range separable pairing force were
originally adjusted to reproduce the pairing gap at the Fermi
surface in symmetric nuclear matter as calculated with the
Gogny force D1S. A number of mean-field studies based on
the relativistic Hartree-Bogoliubov (RHB) model have shown
that the pairing strength needs to be fine-tuned in some cases,
especially for heavy nuclei [44,45]. Since in the present study
pairing correlations are treated in the BCS approximation,
we have adjusted the strength parameters to reproduce the
available empirical pairing gaps in Fm isotopes. The resulting
values with respect to the original pairing strength adjusted in
nuclear matter (G0 = −738 MeV fm−3) are Gn/G0 = 1.21
and Gp/G0 = 1.14. As in Refs. [9,21] and our previous work
Ref. [10], we choose E0 = 1 MeV in Eq. (5) for the value
of the collective ground state energy. This value enables a
direct comparison of our results with those reported in previous
studies, especially in Ref. [21]. For the vibrational frequency
!ω0 = 1 MeV the number of assaults on the fission barrier per
unit is 1020.38 s−1 [46].

A. Symmetric fission of 264Fm

The first example in our analysis of the influence of
dynamical fluctuations in shape and pairing degrees of freedom
on fission paths is the nucleus 264Fm, for which theoretical
studies [47,48] predict a symmetric spontaneous fission decay.
The shape degrees of freedom in this case are elongation and
triaxiality and, therefore, calculations of the energy landscape,
inertia tensor, and fission paths are restricted to the 3D
collective space (β20,β22,λ2).

In Fig. 1 we plot the collective potential energy (the vibra-
tional ZPE is subtracted from the constrained self-consistent
mean-field energy) of 264Fm in the (β20,β22) plane for λ2 = 0
[Fig. 1(a)], and in the (β20,λ2) plane for β22 = 0 [Fig. 1(b)].
Therefore, Fig. 1(a) displays the results obtained without
including dynamical pairing correlations, and the potential
can be directly compared to the one shown in Fig. 6(b) of
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The action integral along the one-dimensional fission path
L is calculated using the expression

S(L) =
∫ sout

sin

1
!
√

2Meff(s)[Veff(s) − E0] ds , (5)

where Meff(s) and Veff(s) are the effective collective inertia
and potential along the path L(s), respectively. E0 is the collec-
tive ground state energy, and the integration limits correspond
to the classical inner (sin) and outer (sout) turning points defined
by Veff(s) = E0. The fission path L(s) is determined in the
multidimensional collective space by minimizing the action
integral of Eq. (5) [2,3]. The spontaneous fission half-life
is calculated as T1/2 = ln 2/(nP ), where n is the number
of assaults on the fission barrier per unit time [9,21,37,38],
and P is the barrier penetration probability in the WKB
approximation

P = 1
1 + exp[2S(L)]

. (6)

The action integral Eq. (5) and, therefore, the fission half-life
is essentially determined by the effective collective inertia and
potential. The effective inertia is defined in terms of the mul-
tidimensional collective inertia tensor M [2,9,10,21,37,38]

Meff(s) =
∑

ij

Mij

dqi

ds

dqj

ds
, (7)

where qi(s) denotes the collective variable as function of the
path’s length.

In the present study the inertia tensor is computed using the
ATDHFB method in the nonperturbative cranking approxima-
tion [8]
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U and V are the self-consistent Bogoliubov matrices, and ρ
and κ are the corresponding particle and pairing density matri-
ces, respectively. The derivatives of the densities are calculated
using the Lagrange three-point formula for unequally spaced
points [39,40].

The collective potential Veff is obtained by subtracting
the vibrational zero-point energy (ZPE) from the total RMF
constrained energy surface [9,10,21,41,42]. The fission path
is determined in a multidimensional collective space using
both the dynamic programming (DPM) [38] and Ritz [37]
(RM) methods. For both methods we have considered several
possible values for the turning points sin and sout to verify that
the minimum action path is chosen. Since both methods give
virtually identical results, only those obtained using the DPM
are included in the presentation.

III. SPONTANEOUS FISSION OF 264Fm AND 250Fm:
PAIRING-INDUCED SPEEDUP

To study the effect of dynamic pairing correlations along
fission paths, as in our previous study of SF of Ref. [10], we will
analyze two illustrative examples: the symmetric spontaneous
fission of 264Fm and the asymmetric SF of 250Fm. In addition to
shape variables, here pairing correlations are also considered
as collective coordinates in the study of fission dynamics.
Because of computational restrictions and to simplify the
interpretation of results, the present analysis is restricted
to a three-dimensional (3D) collective space, defined by
either (β20,β22,λ2) (quadrupole triaxial shapes) or (β20,β30,λ2)
(quadrupole and octupole axial shapes), where the coordinate
λ2 represents dynamic pairing fluctuations. The relativistic
energy density functional DD-PC1 [30] is employed in self-
consistent RMF calculations of constrained energy surfaces,
collective inertia tensors, and fission action integrals. The
height of fission barriers is sensitive to the strength of the
pairing interaction [43] and, therefore, a particular choice
of the pairing strength may have a considerable effect on
fission dynamics. As explained above and in Ref. [10], the
parameters of the finite-range separable pairing force were
originally adjusted to reproduce the pairing gap at the Fermi
surface in symmetric nuclear matter as calculated with the
Gogny force D1S. A number of mean-field studies based on
the relativistic Hartree-Bogoliubov (RHB) model have shown
that the pairing strength needs to be fine-tuned in some cases,
especially for heavy nuclei [44,45]. Since in the present study
pairing correlations are treated in the BCS approximation,
we have adjusted the strength parameters to reproduce the
available empirical pairing gaps in Fm isotopes. The resulting
values with respect to the original pairing strength adjusted in
nuclear matter (G0 = −738 MeV fm−3) are Gn/G0 = 1.21
and Gp/G0 = 1.14. As in Refs. [9,21] and our previous work
Ref. [10], we choose E0 = 1 MeV in Eq. (5) for the value
of the collective ground state energy. This value enables a
direct comparison of our results with those reported in previous
studies, especially in Ref. [21]. For the vibrational frequency
!ω0 = 1 MeV the number of assaults on the fission barrier per
unit is 1020.38 s−1 [46].

A. Symmetric fission of 264Fm

The first example in our analysis of the influence of
dynamical fluctuations in shape and pairing degrees of freedom
on fission paths is the nucleus 264Fm, for which theoretical
studies [47,48] predict a symmetric spontaneous fission decay.
The shape degrees of freedom in this case are elongation and
triaxiality and, therefore, calculations of the energy landscape,
inertia tensor, and fission paths are restricted to the 3D
collective space (β20,β22,λ2).

In Fig. 1 we plot the collective potential energy (the vibra-
tional ZPE is subtracted from the constrained self-consistent
mean-field energy) of 264Fm in the (β20,β22) plane for λ2 = 0
[Fig. 1(a)], and in the (β20,λ2) plane for β22 = 0 [Fig. 1(b)].
Therefore, Fig. 1(a) displays the results obtained without
including dynamical pairing correlations, and the potential
can be directly compared to the one shown in Fig. 6(b) of

044315-3

colective coordinates - functions of the  
path’s length. 

(1) The inertia tensor is computed using the ATDHFB method in the nonperturbative cranking approximation: 

or (2) in the perturbative cranking approximation: 

MCp = ~2M�1
(1) M(3)M

�1
(1)

⇥
M(k)

⇤
ij
=

X

↵�

D
0
���Q̂i

���↵�
ED

↵�
���Q̂j

��� 0
E

(E↵ + E�)k

 The effective collective potential Veff  is obtained by subtracting the vibrational zero-point 
energy (ZPE) from the total deformation energy:
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a two-dimensional collective space defined by either (β20,β22)
(quadrupole triaxial) or (β20,β30) (quadrupole and octupole
axial) collective coordinates.

Two relativistic NEDFs, PC-PK1 with nonlinear self-
interaction terms [60], and DD-PC1 functional with density-
dependent couplings [61], are used in the self-consistent RHB
calculations of the deformation energy surfaces, collective
inertia tensors, and fission action integrals. We note that the
height of the fission barriers is rather sensitive to the strength of
the pairing interaction [67]. Thus, the particular choice of the
pairing strength may considerably affect the fission dynamics.
As explained above, the parameters of the finite range sepa-
rable pairing force were originally adjusted to reproduce the
pairing gap at the Fermi surface in symmetric nuclear matter
as calculated with the Gogny D1S force. However, a number
of studies based on the relativistic Hartree-Bogoliubov model
have shown that the pairing strength needs to be fine-tuned
in some cases, especially for heavy nuclei [68,69]. In this
study the pairing strengths are further adjusted to reproduce the
available empirical pairing gaps in Fm isotopes. The resulting
values with respect to the original pairing strength adjusted in
nuclear matter (G0 = −738 MeV fm−3)are Gn/G0 = 1.06,
Gp/G0 = 1.04 for PC-PK1, and Gn/G0 = 1.11, Gp/G0 =
1.08 for DD-PC1. As in Refs. [42,48], we choose E0 = 1 MeV
in Eq. (7) for the value of the collective ground state energy.
Although arbitrary, this choice enables a direct comparison
of our results with those reported in previous studies. For the
vibrational frequency !ω0 = 1 MeV the number of assaults on
the fission barrier per unit is 1020.38 s−1 [46].

A. Symmetric fission of 264Fm

Previous theoretical studies of 264Fm [19,70] have shown
that one can expect this nucleus to undergo symmetric spon-
taneous fission and, therefore, we do not consider reflection-
asymmetric degrees of freedom and perform the analysis in the
collective space (β20,β22). Figure 1 displays the self-consistent
triaxial quadrupole deformation energy surfaces of 264Fm
in the (β20,β22) plane. The energy surfaces in the upper
(lower) panel are calculated with the density functionals
PC-PK1 (DD-PC1), and the pairing interaction Eq. (2) The
functional PC-PK1 predicts an axially symmetric equilibrium
(ground) state with moderate elongation (β20 ≈ 0.2). The
axially symmetric barrier at β20 ≈ 0.6 is bypassed through
the triaxial region, thus lowering the height of the barrier by
≈2 MeV. With DD-PC1 a similar energy surface is obtained,
however, with a more pronounced influence of the triaxial
degree of freedom on the height of the barrier.

The collective potential is obtained by subtracting the
vibrational ZPE (EZPE) from the total binding energy surface.
In Fig. 2 we plot the vibrational ZPE Eq. (14), normalized with
respect to the mean-field ground state. The two functionals lead
to rather similar results, and the deformation dependence of the
ZPEs is comparable to the results obtained in Ref. [48] using
the Skyrme energy density functional SkM∗ and a density
dependent mixed pairing interaction.

To calculate the fission action integral one has to compute
the collective inertia tensor Mij . Although perturbative crank-
ing mass parameters have been used in numerous studies, the

FIG. 1. (Color online) RHB self-consistent triaxial quadrupole
constrained energy surfaces of 264Fm in the (β20,β22) plane. In each
panel energies are normalized with respect to the binding energy of
the equilibrium minimum, and contours join points on the surface
with the same energy (in MeV). The energy surfaces in (a) [(b)] are
calculated with the density functionals PC-PK1 [60] (DD-PC1 [61]),
and the pairing interaction Eq. (2).

importance of the exact treatment of derivatives of single-
particle and pairing densities in the ATDHFB expressions
for the mass parameters has recently been emphasized [48].
For the two-dimensional space of collective deformation
coordinates three independent components M11, M12, and
M22 determine the inertia tensor and, in this case, the indices 1
and 2 refer to the β20 and β22 degrees of freedom, respectively.
The difference between the perturbative and nonperturbative
cranking approximations is clearly seen in the top panel of
Fig. 3, where we plot theM11 component of the collective iner-
tia tensor as a function of β20 for axial symmetry (β22 = 0). The
solid (red) curve denotes the nonperturbative cranking mass
parameter, whereas the dot-dashed (black) curve corresponds
to the perturbative cranking mass parameter. MCp

11 displays
a smooth dependence on the deformation parameter β20 and,
although one notices some fluctuations, their magnitude is
small. The deformation dependence of the nonperturbative
cranking mass parameter MC

11 follows the perturbative result
MCp

11 , however, several sharp peaks occur at deformations
β20 ≈ 0.4, β20 ≈ 0.6, and β20 ≈ 0.8. To understand better
these results, in Fig. 3 we also plot the binding energy (middle
panel) and the self-consistent value of the β40 deformation
parameter (bottom panel). We notice that the most pronounced
peak, located at β20 ≈ 0.6, actually corresponds to the position
of the fission barrier. In general, the occurrence of sharp
peaks in the collective mass is related to single-particle level
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ZHAO, LU, NIKŠIĆ, AND VRETENAR PHYSICAL REVIEW C 92, 064315 (2015)

a two-dimensional collective space defined by either (β20,β22)
(quadrupole triaxial) or (β20,β30) (quadrupole and octupole
axial) collective coordinates.

Two relativistic NEDFs, PC-PK1 with nonlinear self-
interaction terms [60], and DD-PC1 functional with density-
dependent couplings [61], are used in the self-consistent RHB
calculations of the deformation energy surfaces, collective
inertia tensors, and fission action integrals. We note that the
height of the fission barriers is rather sensitive to the strength of
the pairing interaction [67]. Thus, the particular choice of the
pairing strength may considerably affect the fission dynamics.
As explained above, the parameters of the finite range sepa-
rable pairing force were originally adjusted to reproduce the
pairing gap at the Fermi surface in symmetric nuclear matter
as calculated with the Gogny D1S force. However, a number
of studies based on the relativistic Hartree-Bogoliubov model
have shown that the pairing strength needs to be fine-tuned
in some cases, especially for heavy nuclei [68,69]. In this
study the pairing strengths are further adjusted to reproduce the
available empirical pairing gaps in Fm isotopes. The resulting
values with respect to the original pairing strength adjusted in
nuclear matter (G0 = −738 MeV fm−3)are Gn/G0 = 1.06,
Gp/G0 = 1.04 for PC-PK1, and Gn/G0 = 1.11, Gp/G0 =
1.08 for DD-PC1. As in Refs. [42,48], we choose E0 = 1 MeV
in Eq. (7) for the value of the collective ground state energy.
Although arbitrary, this choice enables a direct comparison
of our results with those reported in previous studies. For the
vibrational frequency !ω0 = 1 MeV the number of assaults on
the fission barrier per unit is 1020.38 s−1 [46].
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triaxial quadrupole deformation energy surfaces of 264Fm
in the (β20,β22) plane. The energy surfaces in the upper
(lower) panel are calculated with the density functionals
PC-PK1 (DD-PC1), and the pairing interaction Eq. (2) The
functional PC-PK1 predicts an axially symmetric equilibrium
(ground) state with moderate elongation (β20 ≈ 0.2). The
axially symmetric barrier at β20 ≈ 0.6 is bypassed through
the triaxial region, thus lowering the height of the barrier by
≈2 MeV. With DD-PC1 a similar energy surface is obtained,
however, with a more pronounced influence of the triaxial
degree of freedom on the height of the barrier.

The collective potential is obtained by subtracting the
vibrational ZPE (EZPE) from the total binding energy surface.
In Fig. 2 we plot the vibrational ZPE Eq. (14), normalized with
respect to the mean-field ground state. The two functionals lead
to rather similar results, and the deformation dependence of the
ZPEs is comparable to the results obtained in Ref. [48] using
the Skyrme energy density functional SkM∗ and a density
dependent mixed pairing interaction.

To calculate the fission action integral one has to compute
the collective inertia tensor Mij . Although perturbative crank-
ing mass parameters have been used in numerous studies, the
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panel energies are normalized with respect to the binding energy of
the equilibrium minimum, and contours join points on the surface
with the same energy (in MeV). The energy surfaces in (a) [(b)] are
calculated with the density functionals PC-PK1 [60] (DD-PC1 [61]),
and the pairing interaction Eq. (2).

importance of the exact treatment of derivatives of single-
particle and pairing densities in the ATDHFB expressions
for the mass parameters has recently been emphasized [48].
For the two-dimensional space of collective deformation
coordinates three independent components M11, M12, and
M22 determine the inertia tensor and, in this case, the indices 1
and 2 refer to the β20 and β22 degrees of freedom, respectively.
The difference between the perturbative and nonperturbative
cranking approximations is clearly seen in the top panel of
Fig. 3, where we plot theM11 component of the collective iner-
tia tensor as a function of β20 for axial symmetry (β22 = 0). The
solid (red) curve denotes the nonperturbative cranking mass
parameter, whereas the dot-dashed (black) curve corresponds
to the perturbative cranking mass parameter. MCp

11 displays
a smooth dependence on the deformation parameter β20 and,
although one notices some fluctuations, their magnitude is
small. The deformation dependence of the nonperturbative
cranking mass parameter MC

11 follows the perturbative result
MCp

11 , however, several sharp peaks occur at deformations
β20 ≈ 0.4, β20 ≈ 0.6, and β20 ≈ 0.8. To understand better
these results, in Fig. 3 we also plot the binding energy (middle
panel) and the self-consistent value of the β40 deformation
parameter (bottom panel). We notice that the most pronounced
peak, located at β20 ≈ 0.6, actually corresponds to the position
of the fission barrier. In general, the occurrence of sharp
peaks in the collective mass is related to single-particle level

064315-4

Symmetric fission of 264Fm 

RHB self-consistent triaxial quadrupole constrained 
energy surfaces of 264 Fm in the (β20 ,β22 ) plane. 

The M11 (β20, β20) component of the inertia tensor (a), the 
binding energy (b), and the self-consistent deformation 
parameter β40 (c) of 264Fm as functions of β20. 
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Dynamic paths for spontaneous fission of 264Fm in the (β20,β22) 
plane, calculated with the functionals PC-PK1 (a) and DD-PC1 (b). 
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TABLE I. Values for the action integral and SF half-lives of 264Fm
that correspond to the paths displayed in Fig. 6. The results obtained
in the present analysis (PC-PK1 and DD-PC1) are compared with
those from Ref. [48].

EDF Path S(L) log10(T1/2/yr)

PC-PK1 Static+MCp 18.52 −11.96
Static+MC 19.69 −10.94
DPM+MCp 14.52 −15.43
RM+MCp 14.49 −15.45
DPM+MC 15.53 −14.55
RM+MC 15.48 −14.59

DD-PC1 Static+MCp 23.71 −7.44
Static+MC 27.07 −4.53
DPM+MCp 17.84 −12.54
RM+MCp 17.81 −12.57
DPM+MC 19.74 −10.89
RM+MC 19.71 −10.91

SkM* [48] Static+MCp 20.8 −10.0
Static+MC 23.4 −7.7
DPM+MCp 16.8 −13.4
RM+MCp 16.8 −13.4
DPM+MC 19.1 −11.4
RM+MC 18.9 −11.6

values of the fission action integral S(L) and, therefore, longer
half-lives.

B. Asymmetric fission of 250Fm

In the next example we explore the influence of the
reflection-asymmetric degree of freedom on the spontaneous
fission process and study the asymmetric spontaneous fission
250Fm [70]. Since the complete calculation in the three-
dimensional collective space (β20, β22, and β30) is com-
putationally too demanding, we simplify the problem by
determining the spontaneous fission dynamic path in two
intervals: i) the path that connects the mean-field ground state
and the isomeric state is calculated in the (β20,β22) plane, and
ii) the path between the isomeric state and the outer turning
point is determined in the (β20,β30) plane. The optimal path is
obtained by combining the paths in the (β20,β22) and (β20,β30)
plane with the isomeric state as the matching point.

In Fig. 7(a) we display the RHB (DD-PC1 plus separable
pairing) deformation energy energy surface of 250Fm in the
(β20,β30) plane. The mean-field equilibrium (ground) state is
predicted at moderate quadrupole deformation β20 ≈ 0.3, and
the isomeric minimum at β20 ≈ 0.95. We note that through
the entire region of quadrupole deformations β20 ! 1.4, the
nucleus remains reflection symmetric, that is, octupole degrees
of freedom need not be included for this range of quadrupole
deformations. The region around the inner fission barrier
is further analyzed in Fig. 7(b), where we plot the energy
surface of 250Fm in the (β20,β22) plane. Note the different
horizontal scales in the two panels. The inclusion of the
triaxial degree of freedom lowers the barrier by ≈2 MeV,
and this effect is similar in magnitude to the case of 264Fm
analyzed in the previous section. Since triaxial shapes have

FIG. 7. (Color online) RHB (DD-PC1 plus separable pairing)
self-consistent constrained energy surfaces of 250Fm in the (β20,β30)
(a) and (β20,β22) (b) planes. In each panel energies are normalized
with respect to the binding energy of the equilibrium minimum, and
contours join points on the surface with the same energy (in MeV).

the largest effect in the region of the first fission barrier, and
reflection-asymmetric degrees of freedom are important for
large quadrupole deformations, dividing the fission path into
two segments provides a reasonable approximation for the
complex multidimensional fission process. The vibrational
zero-point energies of 250Fm isotope in the (β20,β22) plane
(b) and the (β20,β30) plane (a) are shown in Fig. 8. For the
whole deformation range considered in this figure the variation
of EZPE is approximately 2 MeV, and very similar results
are obtained with the functional PC-PK1. Note, however, the
difference of the ZPE in the lower panel with respect to the
quadrupole zero-point energy of 264Fm shown in Fig. 2.

The deformation dependence of the collective inertia tensor
is illustrated in Figs. 9 and 10, where we plot the square-root
determinant |M|1/2 = (M11M22 − M2

12)1/2 in the (β20,β30)
and (β20,β22) planes, respectively. The perturbative cranking
inertias |MCp|1/2 are shown in the upper panels, and the lower
panels display the square-root determinants |MC |1/2 of the
nonperturbative cranking inertia tensor. The calculation of
Fig. 9 corresponds to axially symmetric but reflection asym-
metric shapes, that is, the indices 1 and 2 denote the β20 and β30
collective degrees of freedom, respectively. Figure 10 shows
the deformation dependence of the square-root determinants
of collective inertia when the shape is allowed to be triaxial but
reflection symmetry is assumed. In this case the indices 1 and
2 denote the coordinates β20 and β22, respectively. The overall
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a two-dimensional collective space defined by either (β20,β22)
(quadrupole triaxial) or (β20,β30) (quadrupole and octupole
axial) collective coordinates.

Two relativistic NEDFs, PC-PK1 with nonlinear self-
interaction terms [60], and DD-PC1 functional with density-
dependent couplings [61], are used in the self-consistent RHB
calculations of the deformation energy surfaces, collective
inertia tensors, and fission action integrals. We note that the
height of the fission barriers is rather sensitive to the strength of
the pairing interaction [67]. Thus, the particular choice of the
pairing strength may considerably affect the fission dynamics.
As explained above, the parameters of the finite range sepa-
rable pairing force were originally adjusted to reproduce the
pairing gap at the Fermi surface in symmetric nuclear matter
as calculated with the Gogny D1S force. However, a number
of studies based on the relativistic Hartree-Bogoliubov model
have shown that the pairing strength needs to be fine-tuned
in some cases, especially for heavy nuclei [68,69]. In this
study the pairing strengths are further adjusted to reproduce the
available empirical pairing gaps in Fm isotopes. The resulting
values with respect to the original pairing strength adjusted in
nuclear matter (G0 = −738 MeV fm−3)are Gn/G0 = 1.06,
Gp/G0 = 1.04 for PC-PK1, and Gn/G0 = 1.11, Gp/G0 =
1.08 for DD-PC1. As in Refs. [42,48], we choose E0 = 1 MeV
in Eq. (7) for the value of the collective ground state energy.
Although arbitrary, this choice enables a direct comparison
of our results with those reported in previous studies. For the
vibrational frequency !ω0 = 1 MeV the number of assaults on
the fission barrier per unit is 1020.38 s−1 [46].

A. Symmetric fission of 264Fm

Previous theoretical studies of 264Fm [19,70] have shown
that one can expect this nucleus to undergo symmetric spon-
taneous fission and, therefore, we do not consider reflection-
asymmetric degrees of freedom and perform the analysis in the
collective space (β20,β22). Figure 1 displays the self-consistent
triaxial quadrupole deformation energy surfaces of 264Fm
in the (β20,β22) plane. The energy surfaces in the upper
(lower) panel are calculated with the density functionals
PC-PK1 (DD-PC1), and the pairing interaction Eq. (2) The
functional PC-PK1 predicts an axially symmetric equilibrium
(ground) state with moderate elongation (β20 ≈ 0.2). The
axially symmetric barrier at β20 ≈ 0.6 is bypassed through
the triaxial region, thus lowering the height of the barrier by
≈2 MeV. With DD-PC1 a similar energy surface is obtained,
however, with a more pronounced influence of the triaxial
degree of freedom on the height of the barrier.

The collective potential is obtained by subtracting the
vibrational ZPE (EZPE) from the total binding energy surface.
In Fig. 2 we plot the vibrational ZPE Eq. (14), normalized with
respect to the mean-field ground state. The two functionals lead
to rather similar results, and the deformation dependence of the
ZPEs is comparable to the results obtained in Ref. [48] using
the Skyrme energy density functional SkM∗ and a density
dependent mixed pairing interaction.

To calculate the fission action integral one has to compute
the collective inertia tensor Mij . Although perturbative crank-
ing mass parameters have been used in numerous studies, the

FIG. 1. (Color online) RHB self-consistent triaxial quadrupole
constrained energy surfaces of 264Fm in the (β20,β22) plane. In each
panel energies are normalized with respect to the binding energy of
the equilibrium minimum, and contours join points on the surface
with the same energy (in MeV). The energy surfaces in (a) [(b)] are
calculated with the density functionals PC-PK1 [60] (DD-PC1 [61]),
and the pairing interaction Eq. (2).

importance of the exact treatment of derivatives of single-
particle and pairing densities in the ATDHFB expressions
for the mass parameters has recently been emphasized [48].
For the two-dimensional space of collective deformation
coordinates three independent components M11, M12, and
M22 determine the inertia tensor and, in this case, the indices 1
and 2 refer to the β20 and β22 degrees of freedom, respectively.
The difference between the perturbative and nonperturbative
cranking approximations is clearly seen in the top panel of
Fig. 3, where we plot theM11 component of the collective iner-
tia tensor as a function of β20 for axial symmetry (β22 = 0). The
solid (red) curve denotes the nonperturbative cranking mass
parameter, whereas the dot-dashed (black) curve corresponds
to the perturbative cranking mass parameter. MCp

11 displays
a smooth dependence on the deformation parameter β20 and,
although one notices some fluctuations, their magnitude is
small. The deformation dependence of the nonperturbative
cranking mass parameter MC

11 follows the perturbative result
MCp

11 , however, several sharp peaks occur at deformations
β20 ≈ 0.4, β20 ≈ 0.6, and β20 ≈ 0.8. To understand better
these results, in Fig. 3 we also plot the binding energy (middle
panel) and the self-consistent value of the β40 deformation
parameter (bottom panel). We notice that the most pronounced
peak, located at β20 ≈ 0.6, actually corresponds to the position
of the fission barrier. In general, the occurrence of sharp
peaks in the collective mass is related to single-particle level
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a two-dimensional collective space defined by either (β20,β22)
(quadrupole triaxial) or (β20,β30) (quadrupole and octupole
axial) collective coordinates.

Two relativistic NEDFs, PC-PK1 with nonlinear self-
interaction terms [60], and DD-PC1 functional with density-
dependent couplings [61], are used in the self-consistent RHB
calculations of the deformation energy surfaces, collective
inertia tensors, and fission action integrals. We note that the
height of the fission barriers is rather sensitive to the strength of
the pairing interaction [67]. Thus, the particular choice of the
pairing strength may considerably affect the fission dynamics.
As explained above, the parameters of the finite range sepa-
rable pairing force were originally adjusted to reproduce the
pairing gap at the Fermi surface in symmetric nuclear matter
as calculated with the Gogny D1S force. However, a number
of studies based on the relativistic Hartree-Bogoliubov model
have shown that the pairing strength needs to be fine-tuned
in some cases, especially for heavy nuclei [68,69]. In this
study the pairing strengths are further adjusted to reproduce the
available empirical pairing gaps in Fm isotopes. The resulting
values with respect to the original pairing strength adjusted in
nuclear matter (G0 = −738 MeV fm−3)are Gn/G0 = 1.06,
Gp/G0 = 1.04 for PC-PK1, and Gn/G0 = 1.11, Gp/G0 =
1.08 for DD-PC1. As in Refs. [42,48], we choose E0 = 1 MeV
in Eq. (7) for the value of the collective ground state energy.
Although arbitrary, this choice enables a direct comparison
of our results with those reported in previous studies. For the
vibrational frequency !ω0 = 1 MeV the number of assaults on
the fission barrier per unit is 1020.38 s−1 [46].

A. Symmetric fission of 264Fm

Previous theoretical studies of 264Fm [19,70] have shown
that one can expect this nucleus to undergo symmetric spon-
taneous fission and, therefore, we do not consider reflection-
asymmetric degrees of freedom and perform the analysis in the
collective space (β20,β22). Figure 1 displays the self-consistent
triaxial quadrupole deformation energy surfaces of 264Fm
in the (β20,β22) plane. The energy surfaces in the upper
(lower) panel are calculated with the density functionals
PC-PK1 (DD-PC1), and the pairing interaction Eq. (2) The
functional PC-PK1 predicts an axially symmetric equilibrium
(ground) state with moderate elongation (β20 ≈ 0.2). The
axially symmetric barrier at β20 ≈ 0.6 is bypassed through
the triaxial region, thus lowering the height of the barrier by
≈2 MeV. With DD-PC1 a similar energy surface is obtained,
however, with a more pronounced influence of the triaxial
degree of freedom on the height of the barrier.

The collective potential is obtained by subtracting the
vibrational ZPE (EZPE) from the total binding energy surface.
In Fig. 2 we plot the vibrational ZPE Eq. (14), normalized with
respect to the mean-field ground state. The two functionals lead
to rather similar results, and the deformation dependence of the
ZPEs is comparable to the results obtained in Ref. [48] using
the Skyrme energy density functional SkM∗ and a density
dependent mixed pairing interaction.

To calculate the fission action integral one has to compute
the collective inertia tensor Mij . Although perturbative crank-
ing mass parameters have been used in numerous studies, the

FIG. 1. (Color online) RHB self-consistent triaxial quadrupole
constrained energy surfaces of 264Fm in the (β20,β22) plane. In each
panel energies are normalized with respect to the binding energy of
the equilibrium minimum, and contours join points on the surface
with the same energy (in MeV). The energy surfaces in (a) [(b)] are
calculated with the density functionals PC-PK1 [60] (DD-PC1 [61]),
and the pairing interaction Eq. (2).

importance of the exact treatment of derivatives of single-
particle and pairing densities in the ATDHFB expressions
for the mass parameters has recently been emphasized [48].
For the two-dimensional space of collective deformation
coordinates three independent components M11, M12, and
M22 determine the inertia tensor and, in this case, the indices 1
and 2 refer to the β20 and β22 degrees of freedom, respectively.
The difference between the perturbative and nonperturbative
cranking approximations is clearly seen in the top panel of
Fig. 3, where we plot theM11 component of the collective iner-
tia tensor as a function of β20 for axial symmetry (β22 = 0). The
solid (red) curve denotes the nonperturbative cranking mass
parameter, whereas the dot-dashed (black) curve corresponds
to the perturbative cranking mass parameter. MCp

11 displays
a smooth dependence on the deformation parameter β20 and,
although one notices some fluctuations, their magnitude is
small. The deformation dependence of the nonperturbative
cranking mass parameter MC

11 follows the perturbative result
MCp

11 , however, several sharp peaks occur at deformations
β20 ≈ 0.4, β20 ≈ 0.6, and β20 ≈ 0.8. To understand better
these results, in Fig. 3 we also plot the binding energy (middle
panel) and the self-consistent value of the β40 deformation
parameter (bottom panel). We notice that the most pronounced
peak, located at β20 ≈ 0.6, actually corresponds to the position
of the fission barrier. In general, the occurrence of sharp
peaks in the collective mass is related to single-particle level
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 The perturbative cranking collective inertia leads to a path similar to the static (minimum 
energy) path!



Values for the action integral and SF half-lives of 250Fm that correspond to the triaxial and 
reflection-symmetric paths from the inner turning point to the isomeric minimum, and axial and 
reflection-asymmetric from the isomer to the outer turning point.

For both functionals S(L) calculated with the nonperturbative cranking collective inertia is larger 
than that obtained with the perturbative cranking inertia and, consequently, the predicted half-
lives are ≈ 4 orders of magnitude longer in comparison to the perturbative approach.
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In recent studies dynamic fission paths determined with
the least-action principle have been investigated using the
Hartree-Fock-Bogoliubov (HFB) framework based on the
Barcelona-Catania-Paris-Madrid [20], Gogny D1M [20], and
Skyrme SkM∗ [21,22] energy density functionals. The pairing
gap parameter has been included as a dynamical variable in
the collective space. As a result, an enhancement of pairing
correlations along fission paths and the speedup of SF have
been predicted. It has also been noted that pairing fluctuations
can restore axial symmetry in the fissioning system [21,22],
although the triaxial quadrupole degree of freedom is known
to play an important role around the inner and even outer
barriers both along the static fission path for actinide nuclei
(Ref. [23] and references therein), and in the dynamic case
when the influence of pairing fluctuations is not taken into
account [9,10].

In Ref. [10] we have used the multidimensionally-
constrained relativistic Hartree-Bogoliubov (MDC-RHB) to
analyze effects of triaxial and octupole deformations, as well
as approximations to the collective inertia, on the symmetric
and asymmetric spontaneous fission dynamics. Based on the
framework of relativistic energy density functionals, and using
as examples 264Fm and 250Fm, our analysis has shown that
the action integrals and, consequently, the half-lives crucially
depend on the approximation used to calculate the effective
collective inertia along the fission path. While the perturbative
cranking approach underestimates the effects of structural
changes at the level crossings, the nonperturbative collective
mass is characterized by the occurrence of sharp peaks on
the surface of collective coordinates, which can be related to
single-particle level crossings near the Fermi surface, and this
enhances the effective inertia.

In this work we continue to explore the dynamics of SF of
264Fm and 250Fm but, in addition to shape deformation degrees
of freedom, pairing correlations are included in the space
of collective coordinates. The dynamic (least-action) fission
paths are determined in three-dimensional (3D) collective
spaces, and the corresponding SF half-lives are computed.
Since calculations in the 3D collective space with the MDC-
RHB model are computationally very demanding, here we em-
ploy the MDC-RMF model in which the pairing correlations
are treated in the BCS approximation. The collective inertia
tensor is calculated using the self-consistent relativistic mean-
field (RMF) solutions and applying the ATDHFB expressions
in the nonperturbative cranking approximation. The article
is organized as follows: the method for calculating dynamic
fission paths is described in Sec. II; numerical details of the
calculation, results for the deformation energy landscapes,
collective inertias, minimum-action fission paths, and the
corresponding half-lives are discussed in Sec. III; and Sec. IV
contains a short summary of the main results.

II. METHOD FOR CALCULATING DYNAMIC
FISSION PATHS

RMF-based models present a particular implementation
of the relativistic nuclear energy density functional (EDF)
framework, which has become a standard method for studies of
the structure of medium-heavy and heavy nuclei [24–29]. As in

our previous study of spontaneous fission [10], here we employ
the point-coupling relativistic EDF DD-PC1 [30]. Starting
from microscopic nucleon self-energies in nuclear matter, and
empirical global properties of the nuclear matter equation of
state, the coupling parameters of DD-PC1 were fine-tuned
to the experimental masses of a set of 64 deformed nuclei
in the mass regions A ≈ 150–180 and A ≈ 230–250. The
functional has been further tested in a number of mean-field
and beyond-mean-field calculations in different mass regions.

For a quantitative description of open-shell nuclei it is nec-
essary to consider also pairing correlations. In the MDC-RMF
model, pairing is taken into account in the BCS approximation
and here, as in Ref. [10], we use a separable pairing force of
finite range:

V (r1,r2,r′
1,r

′
2) = G0δ(R − R′)P (r)P (r′) 1

2 (1 − P σ ), (1)

where R = (r1 + r2)/2 and r = r1 − r2 denote the center-of-
mass and the relative coordinates, respectively, and P (r) reads

P (r) = 1
(4πa2)3/2

e−r2/4a2
. (2)

The two parameters G0 = −738 MeV fm−3 and a = 0.644
fm [31] have been adjusted to reproduce the density de-
pendence of the pairing gap in nuclear matter at the Fermi
surface calculated with the D1S parametrization of the Gogny
force [32].

The energy landscape is obtained in a self-consistent
mean-field calculation with constraints on mass multipole
moments Qλµ = rλYλµ, and the particle-number dispersion
operator %N̂2 = N̂2 − ⟨N̂⟩2 [33]. In the present analysis the
Routhian is therefore defined as

E′ = ERMF +
∑

λµ

1
2
CλµQλµ + λ2%N̂2 , (3)

where ERMF denotes the total RMF energy including static
BCS pairing correlations. The amount of dynamic pairing
correlations can be controlled by the Lagrange multipliers
λ2τ (τ = n,p) [21,34,35]. As it has recently been shown in
a similar study of Ref. [21], the isovector pairing degree of
freedom appears to play a far less important role in spontaneous
fission as compared to isoscalar dynamic pairing. Therefore,
the computational task can be greatly reduced by considering
only dynamic pairing with λ2n = λ2p ≡ λ2 as a collective
coordinate.

The nuclear shape is parametrized by the deformation
parameters

βλµ = 4π

3ARλ
⟨Qλµ⟩. (4)

The shape is assumed to be invariant under the exchange
of the x and y axes and all deformations βλµ with even
µ can be included simultaneously. The deformed RMF
equations are solved by an expansion in the axially deformed
harmonic oscillator (ADHO) basis [36]. In the present study
of transactinide nuclei, calculations have been performed in an
ADHO basis truncated to Nf = 16 oscillator shells. For details
of the MDC-RMF model we refer the reader to Ref. [23].
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FIG. 4. Same as Fig. 1, but for the nucleus 250Fm.

FIG. 5. Same as Fig. 2, but for the nucleus 250Fm.

FIG. 6. Projections of the 3D dynamic fission path (solid curves)
of 250Fm on the (β20,β22) plane for λ2 = 0 (a), and the (β20,λ2)
plane for β22 = 0 (b), The dash-dot (red) curve denotes the 2D path
computed without the inclusion of dynamic pairing correlations. The
minimum-action paths connect the inner turning point and the fission
isomer.

The projections of the 3D dynamic path determined in the
(β20,β22,λ2) collective space are shown in Fig. 6 (solid curves).
The minimum-action path connects the inner turning point and
the isomer minimum at β20 ≈ 0.95. The 2D path calculated in
(β20,β22) collective space is also included (dash-dot red curve)
for comparison. Even though the 2D dynamic path does not
extend very far in the triaxial region, the triaxial shape degree
of freedom is important in the calculation of the fission action
integral, similar to the result we obtained with the RHB model
in our previous study of fission dynamics (cf. Fig. 12 of [10]).
However, since triaxiality gains only ≈2 MeV in energy on the
first barrier, the inclusion of dynamic pairing fluctuations fully
restores axial symmetry in the fissioning system [Fig. 6(a)].
Pairing is enhanced with respect to the static solution along the
axially symmetric path and, consequently, the action integral
in the interval between the inner turning point and the isomeric
state decreases from 23.06 (2D dynamic path) to 14.90 along
the 3D fission path.

Since the triaxial shape degree of freedom is suppressed,
that is, it does not contribute to the action integral in the
dynamic case when pairing fluctuations are included, we
can analyze the SF decay of 250Fm in the restricted 3D
collective space with coordinates (β20,β30,λ2). In Fig. 7 we
display the collective potential of 250Fm in the (β20,β30)
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ZHAO, LU, NIKŠIĆ, VRETENAR, AND ZHOU PHYSICAL REVIEW C 93, 044315 (2016)

FIG. 4. Same as Fig. 1, but for the nucleus 250Fm.

FIG. 5. Same as Fig. 2, but for the nucleus 250Fm.

FIG. 6. Projections of the 3D dynamic fission path (solid curves)
of 250Fm on the (β20,β22) plane for λ2 = 0 (a), and the (β20,λ2)
plane for β22 = 0 (b), The dash-dot (red) curve denotes the 2D path
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The minimum-action path connects the inner turning point and
the isomer minimum at β20 ≈ 0.95. The 2D path calculated in
(β20,β22) collective space is also included (dash-dot red curve)
for comparison. Even though the 2D dynamic path does not
extend very far in the triaxial region, the triaxial shape degree
of freedom is important in the calculation of the fission action
integral, similar to the result we obtained with the RHB model
in our previous study of fission dynamics (cf. Fig. 12 of [10]).
However, since triaxiality gains only ≈2 MeV in energy on the
first barrier, the inclusion of dynamic pairing fluctuations fully
restores axial symmetry in the fissioning system [Fig. 6(a)].
Pairing is enhanced with respect to the static solution along the
axially symmetric path and, consequently, the action integral
in the interval between the inner turning point and the isomeric
state decreases from 23.06 (2D dynamic path) to 14.90 along
the 3D fission path.

Since the triaxial shape degree of freedom is suppressed,
that is, it does not contribute to the action integral in the
dynamic case when pairing fluctuations are included, we
can analyze the SF decay of 250Fm in the restricted 3D
collective space with coordinates (β20,β30,λ2). In Fig. 7 we
display the collective potential of 250Fm in the (β20,β30)
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Spontaneous fission 
COUPLING BETWEEN SHAPE AND PAIRING COLLECTIVE COORDINATES



Dynamical coupling between shape and pairing degrees of freedom 

The effective inertia and collective potential depend on the strength of pairing correlations: 

M ⇠ ��2 V ⇠ (���0)
2

self-consistent stationary gap

Cubic root determinants of the nonperturbative-
cranking inertia tensor |ℳ C|1/3 (in 10 ×  ħ2 MeV−1) 
of 250Fm in the (β20,β22) plane for λ2 = 0 (a), and in 
the (β20,λ2) plane for β22 = 0 (b).

 ➠ when the gap parameter is treated as a 
dynamical variable, an enhancement of pairing 
correlations reduces the effective inertia and thus  
minimizes the action integral along the fission path.



To reduce the collective inertia, the fissioning nucleus favours an increase in pairing over the static self-
consistent solution, at the expense of a larger potential energy. Because of pairing fluctuations, the 
corresponding fission action integral is reduced and, consequently, the half-life is orders of magnitude shorter 
than in the case without the dynamic pairing degree of freedom. 

Dynamical coupling between shape and pairing degrees of freedom 
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plane for β22 = 0 (b), The dash-dot (red) curve denotes the 2D path
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The minimum-action path connects the inner turning point and
the isomer minimum at β20 ≈ 0.95. The 2D path calculated in
(β20,β22) collective space is also included (dash-dot red curve)
for comparison. Even though the 2D dynamic path does not
extend very far in the triaxial region, the triaxial shape degree
of freedom is important in the calculation of the fission action
integral, similar to the result we obtained with the RHB model
in our previous study of fission dynamics (cf. Fig. 12 of [10]).
However, since triaxiality gains only ≈2 MeV in energy on the
first barrier, the inclusion of dynamic pairing fluctuations fully
restores axial symmetry in the fissioning system [Fig. 6(a)].
Pairing is enhanced with respect to the static solution along the
axially symmetric path and, consequently, the action integral
in the interval between the inner turning point and the isomeric
state decreases from 23.06 (2D dynamic path) to 14.90 along
the 3D fission path.

Since the triaxial shape degree of freedom is suppressed,
that is, it does not contribute to the action integral in the
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collective space with coordinates (β20,β30,λ2). In Fig. 7 we
display the collective potential of 250Fm in the (β20,β30)
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The minimum-action path connects the inner turning point and
the isomer minimum at β20 ≈ 0.95. The 2D path calculated in
(β20,β22) collective space is also included (dash-dot red curve)
for comparison. Even though the 2D dynamic path does not
extend very far in the triaxial region, the triaxial shape degree
of freedom is important in the calculation of the fission action
integral, similar to the result we obtained with the RHB model
in our previous study of fission dynamics (cf. Fig. 12 of [10]).
However, since triaxiality gains only ≈2 MeV in energy on the
first barrier, the inclusion of dynamic pairing fluctuations fully
restores axial symmetry in the fissioning system [Fig. 6(a)].
Pairing is enhanced with respect to the static solution along the
axially symmetric path and, consequently, the action integral
in the interval between the inner turning point and the isomeric
state decreases from 23.06 (2D dynamic path) to 14.90 along
the 3D fission path.

Since the triaxial shape degree of freedom is suppressed,
that is, it does not contribute to the action integral in the
dynamic case when pairing fluctuations are included, we
can analyze the SF decay of 250Fm in the restricted 3D
collective space with coordinates (β20,β30,λ2). In Fig. 7 we
display the collective potential of 250Fm in the (β20,β30)
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FIG. 3. Projections of the 3D dynamic path (solid curves) for the
spontaneous fission of 264Fm on the (β20,β22) plane for λ2 = 0 (a),
and the (β20,λ2) plane for β22 = 0 (b), calculated using the dynamic
programming method. The dash-dot-dot curve denotes the 2D path
computed without the inclusion of dynamic pairing correlations.

because of the enhancement of pairing, the effective collective
inertia is reduced ∝ #−2. These two effects determine the
minimum-action path in Eq. (5). The projections of the 3D
spontaneous fission path of 264Fm on the (β20,β22) plane and on
the (β20,λ2) plane are shown in Figs. 3(a) and 3(b), respectively
(solid curves). The two-dimensional (2D) path calculated
without pairing fluctuations (λ2 = 0) is also included for
comparison (dash-dot curve). It is very interesting to note that
while the 2D dynamic path detours the axial barrier through
the triaxial region, the extension of the collective space by the
pairing degree of freedom fully restores the axial symmetry
of the fissioning system. The evolution of the pairing strength
along the axially symmetric fission path is shown in Fig. 3(b).
One notices how, in order to reduce the collective inertia, the
fissioning nucleus favors an increase in pairing over the static
self-consistent solution, at the expense of a larger potential
energy. Because of pairing fluctuations, the corresponding
fission action integral is reduced by about 5 units with respect
to the 2D path and, consequently, the predicted half-life is
almost five orders of magnitude shorter than the 2D case
without the dynamic pairing degree of freedom (see Table I).
This result can directly be compared to the one obtained
using the the Skyrme energy density functional SkM* and a
density-dependent pairing interaction (see Fig. 3 of Ref. [21]).
In the latter case triaxiality is reduced along the 3D fission

TABLE I. Action integrals and SF half-lives of 264Fm and 250Fm
that correspond to the fission paths displayed in Figs. 3 and 8.

Nucleus Path S(L) log10(T1/2/yr)

264Fm 2D 19.58 − 11.03
3D 14.15 − 15.75

250Fm 2D 32.09 − 0.16
3D 22.33 − 8.64

path because of dynamic pairing fluctuations, but the full axial
symmetry is not restored. This is probably because in the 2D
calculation with the Skyrme functional the triaxial coordinate
reduces the fission barrier height by more than 4 MeV (less
than 3 MeV in the present calculation with DD-PC1). A
combination of a higher axially symmetric fission barrier
and/or possibly weaker pairing, prevents the full restoration of
axial symmetry along the 3D fission path of 264Fm. In the case
of 240Pu, on the other hand, for which the Skyrme functional
SkM* predicts an energy gain on the first barrier resulting from
triaxiality of only 2 MeV, the inclusion of pairing fluctuations
leads to a full restoration of axial symmetry along the 3D
fission path between the equilibrium ground state and the
superdeformed fission isomer (see Fig. 5 of Ref. [21]).

B. Asymmetric fission of 250Fm

In the second example we explore the interplay between
reflection-asymmetric shapes and pairing degrees of freedom,
and analyze the asymmetric spontaneous fission of 250Fm [48].
Since the triaxial degree of freedom is particularly important
around the inner fission barrier, and the complete calculation
in the four-dimensional collective space (β20, β22, β30, λ2) is
computationally too demanding, we first analyze the path that
connects the mean-field equilibrium (ground) state and the
isomeric fission state calculated in the (β20,β22,λ2) collective
space. The collective potential energy surfaces of 250Fm in the
(β20,β22) plane for λ2 = 0 and in the (β20,λ2) plane for β22 = 0
are plotted in Figs. 4(a) and 4(b), respectively. The inclusion of
the triaxial degree of freedom reduces the inner fission barrier
height by ≈2 MeV, and this effect is similar in magnitude to
the case of 264Fm considered in the previous section. The lower
panel displays the projection of the potential energy calculated
in the 3D collective space on the (β20,λ2) plane and we notice
that for β22 = 0, the energy increases monotonically with λ2
at each value of the axial deformation parameter β20, with a
pronounced fission barrier around β20 ≈ 0.55.

The deformation dependence of the nonperturbative collec-
tive inertia tensor is displayed in Fig. 5, where we plot the cubic
root determinants |MC |1/3 in the (β20,β22) and (β20,λ2) planes.
The global deformation dependence of |MC |1/3 is similar to
the one calculated for 264Fm and shown in Fig. 2, that is,
|MC |1/3 displays strong variations in the (β20,β22) plane for
λ2 = 0, and pronounced peaks generated by single-particle
level crossings near the Fermi surface appear in the region of
the fission barrier. By including the dynamic pairing degree of
freedom, one finds that |MC |1/3 decreases as λ2 increases at
each deformation β20.
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Action integrals and SF half-lives of 264Fm and 250Fm 

The predicted SF path strongly depends on the choice of the collective inertia!

➠calculation of the full ATDHFB inertia tensor! 

➠dynamical effects of the competition between triaxial and reflection asymmetric 

degrees of freedom, and pairing correlations.
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FIG. 4. Same as Fig. 1, but for the nucleus 250Fm.

FIG. 5. Same as Fig. 2, but for the nucleus 250Fm.

FIG. 6. Projections of the 3D dynamic fission path (solid curves)
of 250Fm on the (β20,β22) plane for λ2 = 0 (a), and the (β20,λ2)
plane for β22 = 0 (b), The dash-dot (red) curve denotes the 2D path
computed without the inclusion of dynamic pairing correlations. The
minimum-action paths connect the inner turning point and the fission
isomer.

The projections of the 3D dynamic path determined in the
(β20,β22,λ2) collective space are shown in Fig. 6 (solid curves).
The minimum-action path connects the inner turning point and
the isomer minimum at β20 ≈ 0.95. The 2D path calculated in
(β20,β22) collective space is also included (dash-dot red curve)
for comparison. Even though the 2D dynamic path does not
extend very far in the triaxial region, the triaxial shape degree
of freedom is important in the calculation of the fission action
integral, similar to the result we obtained with the RHB model
in our previous study of fission dynamics (cf. Fig. 12 of [10]).
However, since triaxiality gains only ≈2 MeV in energy on the
first barrier, the inclusion of dynamic pairing fluctuations fully
restores axial symmetry in the fissioning system [Fig. 6(a)].
Pairing is enhanced with respect to the static solution along the
axially symmetric path and, consequently, the action integral
in the interval between the inner turning point and the isomeric
state decreases from 23.06 (2D dynamic path) to 14.90 along
the 3D fission path.

Since the triaxial shape degree of freedom is suppressed,
that is, it does not contribute to the action integral in the
dynamic case when pairing fluctuations are included, we
can analyze the SF decay of 250Fm in the restricted 3D
collective space with coordinates (β20,β30,λ2). In Fig. 7 we
display the collective potential of 250Fm in the (β20,β30)
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Induced fission

Time-dependent Schroedinger-like equation for fission dynamics (axial deformation parameters as 
collective degrees of freedom): 
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The flux of the probability current through the scission hyper-surface provides a measure of the probability of 
observing a given pair of fragments at time t. 

The yield for the fission fragment with mass A: 

Collective parameters 

The mass tensor associated with q2 = ⟨Q2⟩ and q3 = ⟨Q3⟩ is calculated in the perturbative cranking approximation 

D. Regnier, M. Verrière, N. Dubray, and N. Schunck,  
Comput. Phys. Commun. 200, 350 (2016).



RMF+BCS quadrupole and octupole constrained deformation energy surface of 226Th in the β2 − β3 plane. 

PC-PK1 plus δ-force pairing



The collective space is divided into the inner region in 
which the nucleus is whole, and an external region 
that contains the two fission fragments. The set of 
scission configurations defines the hyper-surface that 
separates the two regions. 

➠ static fission path 

A triple-humped fission barrier is predicted along 
the static fission path, and the calculated heights 
are 7.10, 8.58, and 7.32 MeV from the inner to the 
outer barrier. 



The calculated total kinetic energy of the fission fragments for 226Th as a function of fragment mass, 
in comparison to the data: 

takes into account the escape of the collective wave packet in the domain outside the region

of calculation [22] are: the absorption rate r = 20⇥1022 s�1, and the width of the absorption

band w = 1.5.

A. Potential energy surface, scission line, and total kinetic energy

The present RMF+BCS results for the potential energy surface (PES), scission line,

and total kinetic energy of 226Th can be compared to those obtained in Ref. [55] using the

Hartree-Fock-Bogoliubov framework based on the Gogny D1S e↵ective interaction. Figures 1

and 2 display the self-consistent RMF+BCS quadrupole and octupole constrained energy

surfaces, the static fission path, and density distributions for selected deformations along the

fission path of 226Th. The lowest minimum is located at (�2, �3) ⇠ (0.20, 0.17), but is rather

soft against octupole deformation. A triple-humped fission barrier is predicted along the

static fission path, and the calculated heights are 7.10, 8.58, and 7.32 MeV from the inner

to the outer barrier, respectively. At elongations �2 > 1.5 a symmetric valley extends up to

the scission point at �2 ⇠ 5.4. The symmetric and asymmetric fission valleys are separated

by a ridge from (�2, �3) = (1.6, 0.0) to (3.4, 1.0). One notices that the overall topography

of the PES is similar to that calculated with the Gogny D1S interaction [55].

When describing fission in the �2 � �3 collective space, scission is characterized by a

discontinuity between the two domains of pre- and postscissioned configurations. Scission

can be described using the Gaussian neck operator Q̂N = exp [�(z � zN)2/a2N ], where aN = 1

fm and zN is the position of the neck [56]. It is related to the number of particles in the

neck, and here we follow the prescription of Ref. [23] to define the pre-scission domain by

hQ̂Ni > 3 and consider the frontier of this domain as the scission line. In Fig. 3 we plot the

scission profile for 226Th in the �2��3 plane. The curve starts from an elongated symmetric

point at �2 ⇠ 5.4 and evolves to a minimal elongation with �2 ⇠ 3.2 as asymmetry increases.

From that point �3 increases rapidly along the scission line and we also note a more gradual

increase of the quadrupole deformation parameter. The general pattern is similar to the

scission lines for 226Th obtained in Refs. [55, 56].

The total kinetic energy (TKE) for a particular pair of fragments can be evaluated from

ETKE =
e
2
ZHZL

dch
, (15)
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Sensitivity of fission dynamics to the choice of pairing strength

The height of the fission barriers (in MeV) with respect 
to the corresponding ground-state minima:

FIG. 4: (Color online) The calculated total kinetic energy of the nascent fission fragments for
226

Th

as a function of fragment mass, in comparison to the data [53].

TABLE I: The height of the fission barriers (in MeV) with respect to the corresponding ground-

state minima, for di↵erent values of the pairing strengths.

BI Basy
II

Basy
III

Bsym
II

Bsym
III

90% pairing 8.23 9.47 7.74 15.64 6.38

100% pairing 7.10 8.58 7.32 14.21 5.72

110% pairing 5.92 7.78 7.09 12.72 5.17

dynamics, we analyze the characteristics of the fission process for di↵erent strengths of

the pairing interaction. Figure 5 displays the PESs of 226Th for three parametrizations of

pairing force: (Vn, Vp) = (324, 340.2), (360, 378), and (396, 415.8) MeV fm3. These values

correspond to 90%, 100%, and 110%, respectively, of the original pairing strengths that

were determined to reproduce the empirical pairing gaps of 226Th. Even though the general

topography of the PESs does not change significantly as pairing increases, the barriers are

reduced considerably (see Table I). In particular, the ridge between the symmetric and

asymmetric fission valleys is lowered, and this leads to pronounced competition between the

two fission modes (c.f. Fig. 10).

In Fig. 6 we plot the collective masses B�1
22 and B

�1
33 , related to vibrations in �2 and �3,
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Pairing gaps for neutrons and protons  
along the static fission path.

The scission contours for three different  
values of the pairing strength.



Experimental and calculated total kinetic energy of 
fission fragments for 226Th, as functions of the 
fragment mass and pairing strength. 

Pre-neutron emission charge yields for 
photo-induced fission of 226Th. 
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