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What is machine learning?

Machine learning is basically learning patterns from data, i.e. curve fitting.
By taking a collection of pressure and temperature measurements of
gasses in different volumes we can fit a surface to the data and discover
the ideal gas law.
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What is machine learning? Supervised learning

Machine learning is basically learning patterns from data, i.e. curve fitting.

Data is a labeled list of numbers - the pixel values of each pixel in the
image. The label for each list is Dog(=0) or Cat(=1).

Goal: train a machine to give 0/1 for an unseen image.

There is probably no elegant law for what it means to be a cat or a dog.
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What is machine learning? Unsupervised learning

Machine learning is basically learning patterns from data, i.e. curve fitting.

Data is an unlabeled a list of numbers - the pixel values of each pixel in an
image.

Goal: train a machine to learn patterns in the data. (Construct a best
guess for a probability distribution which describes the data set.)

With unsupervised learning you might try to

Fill in missing patches of an image.

Make new recommendations for a user, given their past history.

Used for anomaly detection in forensic accounting (credit card fraud)
or to detect hacking attempts.
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Deep Learning

Each layer performs a transformation on its inputs to produce its outputs.
Training means setting the dials so that the network classifies the data
correctly. There is a “dial tuning algorithm”.
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The “dial tuning algorithm”
Training usually proceeds using gradient descent

θn+1 = θn − η∇l(θ)

to minimize some loss function l(θ) =
∑

(desired label - net output)2n.
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Generalization

Train network on a training dataset. Training data sets may vary from
thousands or tens of thousands to hundreds of thousands of data points.

Training is performed in epochs. Train using entire data set = an epoch.
Data set is reused for second and subsequent epochs. Training may take
several thousand epochs. Training sets the weights in the network.
Training is terminated when training error is no longer decreasing.

Important parameter specifying performance of a network is the
generalization error, = difference in error achieved on training data and
error achieved on unseen data. If generalization error is small, we say the
network generalizes. An important question in machine learning is:

When do we expect networks to generalize?
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Intuition from curve fitting
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The generalization puzzle: Why do deep nets generalize?

For deep nets typically ∼ 20 000 000 parameters and ∼ 50 000 samples.
Deep networks should not generalize! But they do! Why don’t we over
fit the data?
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Approaches to the generalization puzzle: Loss Function

Early attempts (Hinton and Van Camp, 1993) suggested deep networks
with flat minima in training loss generalize well.

Intuitively: a potential flat in a direction is independent of that coordinate.
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Approaches to the generalization puzzle: Loss Function

Early attempts (Hinton and Van Camp, 1993) suggested deep networks
with flat minima in training loss generalize well.

Intuitively: a potential flat in a direction is independent of that coordinate.

Hope: Flat potentials may have so few effective network parameters that
the generalization puzzle is solved.

Numerical studies ⇒ sharp minima lead to higher generalization errors.

“Flatness” can be quantified by stability of network’s output, under
addition of noise to network’s parameters (Langford and Caruana, 2002).

Resulting bounds do not resolve the puzzle.
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Approaches to generalization puzzle: Weight Matrix

Another notion of noise stability: network’s ability to reject noise injected
at input or internal nodes of the network (Morcos et. al. 2018).

Using this (Arora et. al. 2018) proved bounds closer to solving the puzzle.

Consider fully connected layer (each input neuron is connected to each
output neuron). SVD of trained weight matrix shows many singular values
are small, and can be set to zero.

Large number of parameters reduces to smaller number of effective
parameters. (Reduces number of parameters by a factor ∼ 10.)

But this reduction is still nowhere near enough!

Robert de Mello Koch (ECT* workshop: Machine Learning for High Energy Physics, on and off the Lattice, Sep 27 - Oct 1 Huzhou University, Zhejiang, China University of the Witwatersrand, Johannesburg, South Africa)Why Unsupervised Deep Networks Generalize October 1, 2021 13 / 44



Our approach to generalization puzzle

The basic observation of (Arora et. al. 2018) is that a small number of
singular values of the trained weight matrix are non-zero.

Our contribution: Consider the singular vectors. Using the correct basis
these too have very few non-zero components.

Further reduction in the number of parameters by factor ∼ 40. Total
reduction is by a factor ∼ 400 and this resolves the generalization puzzle.

Also we learn what the network is doing: it is doing one step of RG.
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Some details

Our study used unsupervised networks called Restricted Bolztmann
Machines (RBMs). We will review what an RBM is and how it is trained.

First example studied was RBM trained on Ising data. (Iso, Shiba and

Yokoo, 2018; Funai and Giataganas, 2020). This exhibits (i) a close (and
novel) connection to RG and (ii) a dramatic reduction in parameters.

Ising data set is special. Is connection to RG model independent or not?

Using standard image data sets from computer vision, we exhibit (i) close
(and novel) connection to RG and (ii) dramatic reduction in parameters.

Provides clear resolution to generaliation puzzle for this class of networks.
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Restricted Boltzman Machine

Typical application: inputs = 80×80 lattice state. outputs = 40×40 lattice
state. 10 240 000 weights, 6400 input biases and 1600 output biases.

Training data set has 40 000 samples. Training takes ∼ 6000 epochs.
(Takes about 6 hours on a GPU.)

Number of parameters = 256× number of data samples
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Restricted Boltzman Machines
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Training minimizes relative entropy (DKL(q||p)). Gradients used to update
are: (greedy layer wise trained)
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Restricted Boltzman Machines
Given visible vectors v̂ sample the hidden vectors ĥ using

p(ĥa = 1|v̂) =
1
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Given ṽ sample h̃ using (1). Contrastive divergence approximates
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Ising Model

ρ({vi}) = e−βHIsing β =
1

T
HIsing = −

∑
<i , j>

σiσj
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RG for the Ising Model
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Overlapping RG for the Ising Model
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Comparing RG and RBM
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The trained bias is small |b(h)
a | ≈ 0.01 and trained weights large

|Wia| ∼ 10, ⇒ p(ha = 1|v) always close to 0 or 1. Problem is essentially
deterministic.

Ignoring normalization ha is essentially
∑

i Wiavi .
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Comparing RG and RBM

p(ha = 1|v) =
1

2

(
1 + tanh

(∑
i

Wiavi + b
(h)
a

))

|b(h)
a | ≈ 0.01 and |Wia| ∼ 10, ⇒ p(ha = 1|v) always close to 0 or 1.

Ignoring normalization ha =
∑

i Wiavi .

Coarse graining of RG can be written as (this is usual block rule)

hx+ 1
2
,y+ 1

2
=

vx+1,y+1 + vx ,y + vx+1,y + vx ,y+1

4

i.e. ha =
∑

i Aiavi .

Idea: Compare Wia and Aia.
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SVD of the trained weight matrix vs RG: Singular Values
Block spins averaging 16× 16 = 256 blocks, on the 80× 80 lattice.

Robert de Mello Koch (ECT* workshop: Machine Learning for High Energy Physics, on and off the Lattice, Sep 27 - Oct 1 Huzhou University, Zhejiang, China University of the Witwatersrand, Johannesburg, South Africa)Why Unsupervised Deep Networks Generalize October 1, 2021 24 / 44



Close connection between RBM and RG

Close similarity between singular values of Wia from RBM and Aia from RG
suggests we compare their singular vectors. Right singular vectors are 6400
dimensional vectors; left singular vectors are 1600 dimensional vectors.

RG suggests comparing in Fourier space. Long scale features (= large
wavelengths) are kept, short scale features (=small wavelengths) are
discarded.
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SVD of the trained weight matrix vs RG: Singular Vectors
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SVD of the trained weight matrix vs RG: Singular Vectors
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RG

Momentum space RG follows three steps:

1. Split the field into high and low momentum modes.

2. Integrate over the high momentum modes.

3. Rescale the fields, as well as momenta and position co-ordinates.

Close to the free field fixed point, the second step of RG can be simplified
as follows:

2’. Discard the high momentum modes.
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RG

The weight matrix naturally projects out the high momentum components:

W =
∑
I

|Output〉λI 〈Input|
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Generalization analysis

Number of parameters = 10 240 000; number of data samples = 40 000

Keep first 230 of 1600 singular values. Reduces number of effective
parameters by ∼ 1

7 .

Keep first 9 of 56 components of radial Fourier transform of singular
vectors. Reduces number of effective parameters by ∼ 1

36 .

Number of effective parameters = 1
7 ×

1
36 × 10240000 = 40 635.

⇒ Number of effective parameters ∼ number of data samples, explaining
why the network generalizes.
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Comments

Number of parameters kept depends on “noise” we tolerate. ha = output
of network; h′a = output after some parameters set to zero.√∑

a(ha − h′a)2√∑
b h

2
b

< η

Number of parameters dropped fixed by η. We choose η = 0.1. Changing
η changes number of effective parameters, but we’re in ball park: number
of effective parameters ∼ number of data samples.

Factor for singular values ∼ 1
7 . Factor for singular vectors ∼ 1

36 .

But: maybe this is all special to the RBM trained on Ising data?
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MNIST dataset

A greyscale dataset of handwritten images of size 28×28 pixels.

Train RBM with 784=28×28 inputs and 196=14×14 outputs, with
training set of 12 000 images. Training completed in 30 epochs.

Weight matrix initialized with the block spin initial condition.
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MNIST dataset
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MNIST dataset: Singular Values

Robert de Mello Koch (ECT* workshop: Machine Learning for High Energy Physics, on and off the Lattice, Sep 27 - Oct 1 Huzhou University, Zhejiang, China University of the Witwatersrand, Johannesburg, South Africa)Why Unsupervised Deep Networks Generalize October 1, 2021 34 / 44



MNIST dataset: Singular Vectors
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MNIST dataset: Generalization Analysis

The network is trained using 12 000 images. The network has 153 664
parameters.

A fraction of 75
196 singular values are not zero.

A fraction of 64
324 of the Fourier modes of the singular vectors are not zero.

Thus, the number of effective parameters is 11 615, so that this network
will generalize.
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MNIST fashion dataset

Greyscale dataset consisting of images of size 28×28 pixels. Images are
items of clothing forming several categories.

Train RBM with 784=28×28 inputs and 196=14×14 outputs, using
training set of 5000 images. Training completed in 300 epochs.

Weight matrix is initialized with the block spin initial condition.
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MNIST Fashion dataset
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MNIST Fashion dataset: Singular Values
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MNIST Fashion dataset: Singular Vectors
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MNIST Fashion dataset: Generalization Analysis

The network is trained using 5 000 images. The network has 153 664
parameters.

A fraction of 60
196 singular values are not zero.

A fraction of 64
324 of the Fourier modes of the singular vectors are not zero.

Thus, the number of effective parameters is 5 226, explaining why this
network generalizes.
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Conclusions

Deep learning (RBMs) perform a coarse graining: precisely the coarse
graining of momentum space RG near FFFP.

Connection to coarse graining resolves generalization puzzle ⇒ dramatic
reduction in number of parameters.

Another facet of puzzle: break data set into two disjoint subsets, one for
training, one for testing. Nothing suggests results are independent of split.
This independence (present in successful deep networks) is mysterious.

Optimization puzzle: training finds minimum of a function of millions of
parameters. Generically such a function has many local minima. Any
simple learning rule will fail to reach global minimum.
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Conclusions

Tacit assumption: deep learning is curve fitting. We suggest: deep
learning is coarse graining.

System is a container of water. The state of the water specified by
positions and velocities of the water molecules. Microscopic description
uses masses of the water molecules and complicated interaction potentials.

Coarse grained description uses few parameters: density of the fluid, its
viscosity, speed of sound in the fluid. State specified by much smaller list
of quantities: pressure and temperature of the water.

For water at equilibrium, any subregion of the water (training data) will fix
parameters of coarse grained description (trained network). Since the
water is at equilibrium, our results are independent of how training data is
chosen.
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Thanks for your attention!
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