Gauge Equivariant and Invariant Neural Network for Quantum Lattice Model Simulations

Di Luo

Massachusetts Institute of Technology IAIFI Fellow

Machine Learning & High Energy Physics

Machine learning accelerated simulation

- Denis Boyda, etc., arxiv.2008.05456
- Gurtej Kanwar, etc., arxiv.2003.06413
- M. S. Albergo, etc., arxiv.1904.12072
- Kim A. Nicoli, etc., arxiv.2007.07115
- Akio Tomiya, etc., arxiv.2103.11965
- Sam Foreman, etc., arxiv.2105.12767

- Yuki Nagai, etc., arxiv.2010.11900
- Matteo Favoni, etc. arxiv.2012.12901
- Gurtej Kanwar, etc. arxiv.2103.02602
- Andrei Alexandru, etc. arxiv.1709.01971
- Boram Yoon, etc, arxiv.1807.05971
-

(a) Normalizing flow between prior and output distributions

arxiv.1904.12072

Quantum many-body physics simulation

Spectrum calculation

$$H|\psi\rangle = E|\psi\rangle$$

Eg. phase diagram, excited states, correlation function

Real time evolution

$$H(t) | \psi(t) \rangle = i\hbar \frac{d}{dt} | \psi(t) \rangle$$

Eg. quantum chaos, quantum circuit simulation, dynamics of gauge theories

Challenges:

- Sign problem: non-positive real number / complex number
- High dimensionality: Hilbert space scales exponentially with particles

<u>Challenges: sign problem + high dimensionality</u>

Neural network: low dimensional representation of high dimensional objects

Neural network representation

SHARE RESEARCH ARTICLES PHYSICS

f

Solving the quantum many-body problem with artificial neural networks

Giuseppe Carleo^{1,*}, Matthias Troyer^{1,2}

Efficient representation of quantum many-body states with deep neural networks

Xun Gao ☑ & Lu-Ming Duan ☑

Nature Communications 8, Article number: 662 (2017) | Cite this article

Quantum Entanglement in Neural Network States

Dong-Ling Deng, Xiaopeng Li, and S. Das Sarma Phys. Rev. X **7**, 021021 – Published 11 May 2017

Neural-network quantum state tomography

Giacomo Torlai, Guglielmo Mazzola, Juan Carrasquilla, Matthias Troyer, Roger Melko & Giuseppe Carleo

☑

Nature Physics 14, 447–450 (2018) | Cite this article

Neural network representation

- Neural network as a compact approximation to high dimensional function
- Symmetric function plays an important role in physics
- Gauge symmetry is crucial for condensed matter physics and high energy physics

Question:

How to incorporate gauge symmetries into neural network constructions?

Gauge equivariant neural network for quantum lattice gauge theories

Di Luo¹, Giuseppe Carleo², Bryan K. Clark¹, and James Stokes³

³ Center for Computational Quantum Physics and Center Computational Mathematics, Flatiron Institute

¹ University of Illinois, Urbana-Champaign

² École Polytechnique Fédérale de Lausanne

Gauge equivariant neural network

Hilbert Space

Consider the $L \times L$ lattice with periodic boundary conditions G = (V, E) be the associated undirected graph with $|V| = L^2$ vertices and $|E| = 2L^2$ edges

Consider the Hilbert space $\mathcal{H} = (\mathbb{C}^2)^{\otimes |E|}$ (where $\mathbb{C}^2 = \operatorname{span}\{|0\rangle, |1\rangle\}$) of qubits located the edges

$$\dim \mathcal{H} = 2^{|E|} = 2^{2L^2}$$

Gauge equivariant neural network

$$W_f \coloneqq \prod_{e \in f} Z_e \quad G_v \coloneqq \prod_{e \ni v} X_e$$
 . Gauge constraint creates subspace

Gauge Constraint $[G_v, \hat{H}] = 0$

$$\mathcal{H}_{\text{gauge}} = \{ |\psi\rangle \in \mathcal{H} : G_v |\psi\rangle = |\psi\rangle \ \forall v \in V \}$$
$$\dim \mathcal{H}_{\text{gauge}} = \frac{2^{|E|}}{2^{|V|-1}} = 2^{L^2+1}$$

- Hilbert space grows exponentially and exhibits curse of dimensionality

Gauge equivariant neural network

Invariant function

$$\psi(T_v x) = \psi(x)$$
 For some T_v as Z₂ transition operator

Equivariant function

$$f(x) = f_L \circ \cdots \circ f_1(x)$$
$$f_i(T_v x) = T_v f_i(x)$$

Gauge equivariant neural network

Quantum States with Neural Network Constructions

Theorem The four-fold degenerate ground states of the \mathbb{Z}_2 toric code are exactly representable with gauge invariant neural network functions.

• $G_v|\psi\rangle = |\psi\rangle$

automatically satisfied by Z2 invariant neural network

• $W_f|\psi\rangle = |\psi\rangle$

Analytic construction:

1 Z₂ invariant layer

input x

Plaquette evaluation

1 x1

Convolution Layer

Sum

Layer

Quantum States with Neural Network Constructions

 $(\mathbb{Z}_d \ model)$ Consider the usual $L \times L$ square periodic lattice where each edge hosts a d-dimensional qudit. The Hamiltonian defined on $\mathcal{H}(\mathbb{C}^d)^{\otimes E}$ is

$$H = -\sum_{v \in V} \sum_{h \in \mathbb{Z}_d} (A_v)^h - \sum_{f \in F} \sum_{h \in \mathbb{Z}_d} (B_f)^h$$

where A_v and B_f are shown in Figure with

$$A_{v} = \frac{X^{\dagger} \mid X}{\mid X \mid} \qquad B_{f} = Z^{\dagger} \boxed{f} Z$$

$$X = \sum_{h \in \mathbb{Z}_d} |h + 1\rangle \langle h| , \qquad Z = \sum_{h \in \mathbb{Z}_d} \omega^h |h\rangle \langle h| , \qquad \omega = e^{i2\pi/d}$$

Theorem The ground states of the \mathbb{Z}_d toric code are exactly representable with gauge invariant neural network functions.

Quantum States with Neural Network Constructions

(Kitaev D(G) model) The Hamiltonian defined on $\mathcal{H}(G)^{\otimes E}$ where G is a discrete group

$$H = -\sum_{v \in V} A_v - \sum_{f \in F} B_f$$

where $A_v = \frac{1}{|G|} \sum_{g \in G} A_v^g$ is the Gauss' law and the gauge constraint.

$$A_{v}^{g} \xrightarrow{x} \xrightarrow{y} = \underbrace{xg^{-1}}_{v} \underbrace{gy}_{gz}_{v}, \quad B_{f} \xrightarrow{x} z = \delta_{1, uzy^{-1}x^{-1}} \xrightarrow{x} z$$

Theorem The ground states of the Kitaev D(G) model are exactly representable with gauge invariant neural network functions.

Quantum States with Neural Network Constructions

(X-cube fracton model) The Hamiltonian is defined on a cubic lattice by

$$H = -\sum_{v \in V, i} A_v^i - \sum_{c \in C} B_c$$

Theorem The ground states of the X-cube fracton model are exactly representable with gauge invariant neural network functions.

Gauge equivariant neural network

Toric code hamiltonian with transverse field (L=3) $H = -J \sum W_f - h \sum_{e \in E} X_e$

Gauge equivariant neural network requires fewer parameters and has better performance.

Gauge equivariant neural network

Hamiltonian with sign problem (L=3)

$$H = -J \sum W_f - h \sum_{e \in E} X_e - J_y \sum \prod_{\Box} Y_e$$

Gauge equivariant neural network requires fewer parameters and has better performance.

Gauge equivariant neural network

Study Area-law to Perimeter-law transition on

Autoregressive gauge invariant neural network for quantum lattice models

Di Luot, Zhuo Chent, Kaiwen Hu, Zhizhen Zhao, Vera Mikyoung Hur, and Bryan K. Clark

University of Illinois, Urbana-Champaign

Gauge invariant neural network

Autoregressive gauge invariant neural network

$$f(x_1, x_2, ..., x_n) = \prod_{i=1}^{n} f(x_i | x_{i < i})$$

- Exact sampling, which is more efficient than Markov Chain Monte Carlo
- It could be constructed to obey gauge symmetries or other algebraic constraint

Gauge invariant neural network

Quantum Link Model
$$H_{\mathrm{QLM}} = -\sum_{i} \left[\psi_{i}^{\dagger} U_{i,i+1} \psi_{i+1} + \psi_{i+1}^{\dagger} U_{i,i+1}^{\dagger} \psi_{i} \right] \\ + m \sum_{i} (-1)^{i} \psi_{i}^{\dagger} \psi_{i} + \frac{g^{2}}{2} \sum_{i} E_{i,i+1}^{2}$$

$$(1+1-d \ \mathsf{QED})$$

$$\widetilde{G}_{x} = \psi_{x}^{\dagger} \psi_{x} - E_{x,x+1} + E_{x-1,x} + \frac{1}{2} \left[(-1)^{x} - 1 \right]$$

Ground state calculation in gauge sector

Gauge invariant neural network

Quantum Link Model $H_{\text{QLM}} = -\sum_{i} \left[\psi_{i}^{\dagger} U_{i,i+1} \psi_{i+1} + \psi_{i+1}^{\dagger} U_{i,i+1}^{\dagger} \psi_{i} \right] + m \sum_{i} (-1)^{i} \psi_{i}^{\dagger} \psi_{i} + \frac{g^{2}}{2} \sum_{i} E_{i,i+1}^{2}$ (1+1-d QED) $\widetilde{G}_{x} = \psi_{x}^{\dagger} \psi_{x} - E_{x,x+1} + E_{x-1,x} + \frac{1}{2} [(-1)^{x} - 1]$

String inversion of real-time dynamics

Gauge invariant neural network

Applications to 2D, 3D Toric code and X-cube Fracton model

$$H_{\text{fracton}} = -\sum_{v \in V, i} A_v^i - \sum_{c \in C} B_c$$

2D toric code

Applications to 2D, 3D Toric code and X-cube Fracton model

Exact representation of grounds states and excited states for:

- 2D Toric code
- 3D Toric code
- X-cube Fracton

Gauge invariant neural network

SU(2)₃ Fibonacci anyons

$$au\otimes au= au\oplus\mathbb{1},\ au\otimes\mathbb{1}=\mathbb{1}\otimes au= au$$

Extract central charge $S_2 \sim \frac{c}{4} \log(L)$

$$H(\theta) = -\cos\theta \sum_{i} H_i^{(2)} - \sin\theta \sum_{i} H_i^{(3)}$$

Phase Diagram

Summary & Outlook

- Gauge equivariant and gauge invariant neural networks are proposed to study gauge theories
- Applications for studying phase diagrams and excited states of different models with symmetries constraint
- Applications for real time dynamics of gauge theories