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Shotaro Funai’s research theme:

What is the “feature” of data 

which AI (machine learning) digitizes?

I want to understand it, hopefully using

some concepts of physics!

If we can regard AI as a toy model of brain or consciousness,

we might create “physics of consciousness”…?

https://www.tibco.com/
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Research 1: Can AI appreciate Japanese tankas (very short poems)?

(at I-URIC, Inter-University Research Institute Corporation)

We analyze the BERT vectors 

(“features”) of tankas.

We measure human brain activities 

when they read tankas, and 

compare them with the BERT vectors.

https://youtu.be/wP0RAWF6_h0



Research 2: New mechanism of money with AI

(at Keio University, SFC research institute)

Japan has suffered from deflation for over 20 years! 

Inflation targeting or helicopter money can solve it...?

With a new mechanism of money (PMC, personal 

money creation), let us make a wealthier society. 

松田政策研究所での対談・鼎談

作家さとうみつろうさんとの対談



Research 3: Text generation for e-commerce (at Hitobito Inc.)

Goal for CEO (Ishikawa-san) is…

We develop such a system using BERT and GPT,

and their vectors (“features”).      [Patent Pending]

We want to develop an AI system 

which gets close to each user and 

generates messages so that 

the users can buy goods pleasantly.



Then, what is the “feature”…?

Research 4: Feature extraction of Ising model configurations

• We can discuss the “feature” using concepts of physics! (especially, renormalization)

• Ising model Hamilitonian:                                                                                            
(in 1d or 2d square lattice)

• Spin configurations at various temperatures (with 𝐽 = 1, 𝐻 = 0; white: 𝑠𝑖 = 1, black: 𝑠𝑖 = −1)

This talk

phase transition at 𝑇 = 𝑇𝑐 = 2.27



➢ Input data (which may be peculiar…)

• Spin configurations generated with Metropolis Monte Carlo simulation.

• Data includes the same number of configs at various temperatures (or external fields 𝐻) 

with constant interval, for example, 𝑇 = 0, 0.1, 0.2, … , 9.9 (100 temps).

• This choice may be unnatural in physical systems, but we chose them                                      

so that input data include various image patterns.

• Then, anyway, we can define and calculate                                                                  the 

probability distribution of configs (as images) in input data.

➢ We use the Restricted Boltzmann Machine (RBM)

• This type of a neural network is trained so that it outputs the configs                              

with the same probability distribution as input data. 

• In the training process, the RBM extracts “features” of input data.

[Iso-SSF-Yokoo, ’18] [SSF-Giataganas, ’18]



• The probability of output configs is defined, using the “energy” function

by Boltzmann distribution

• We train the RBM (= optimize weights and bias)                                    

so that the KL divergence approaches a local minimum.

weights 𝑤𝑖𝑎, bias 𝑏𝑎 , 𝑐𝑖

visible
hidden

Loss function:



• KL divergence is a “distance” between two probability distributions:

prob of an input image = 𝑣𝑖 /  prob of an output image = 𝑣𝑖

• In our experiment, the inputs are the spin configs 𝑣𝑖 = ±1.                                                           

The values of the hidden neurons are also binary: ℎ𝑎 = ±1.

• Then the expectation values of neurons are, using Boltzmann distribution,

• The output (reconstructed) configs ෤𝑣𝑖 = ±1 are obtained                                            

by replacing an expectation value ෤𝑣𝑖 with a probability (1 ± ෤𝑣𝑖 )/2.
To keep the same EV



• After the training finished, the probability distribution of input configs 𝑞 𝑣𝑖
and that of output configs ෤𝑝({𝑣𝑖}) are similar but slightly different

(since the KL divergence is practically not zero).

• If we input again the output configs, we obtain another                                                  

probability distribution ෨෤𝑝 𝑣𝑖 of reconstructed configs. 

• Doing this iteratively, we get the flow of prob distribution of                                       

spin configs:  𝑞 𝑣𝑖 → ෤𝑝({𝑣𝑖}) → ෨෤𝑝( 𝑣𝑖 ) → …

➢ Naïve questions: 

1. Does this “RBM flow” correspond to the RG flow

(renormalization group flow) of Ising model?

2. Does it have the fixed points describing the features?                                   

(The features should be emphasized along the RBM flow.)



Overview of our results

➢ The RBM flow has its fixed points in the 𝑇,𝐻 space.

• No fixed points of spin configurations exist;                                                                          

it is useful to generate new configs at the specific 𝑇, 𝐻 .

• To estimate (𝑇, 𝐻) of the output configs, we use the following two ways:

1. We train another neural network to output correct (𝑇, 𝐻) of input configs. 

(supervised learning)

2. For only the 𝐻 = 0 configs, we can estimate 𝑇

by calculating their energy.                                                                      

(We obtained the consistent results with method 1.)

[Iso-SSF-Yokoo, ’18]

[SSF-Giataganas, ’18]

e
a
c
h
 p

ix
e
l 
o
f 
c
o
n
fi
g
s

p
h
y
s
ic

a
l 
q

u
a
n
ti
ti
e
s

parameters of MMC simulation



➢ The RBM flow behaves differently from the RG flow!

 The RBM flow approaches the phase transition point 𝑇 = 𝑇𝑐 ~ 2.27,          

while goes away from 𝑇 = 0,∞. It’s the opposite direction to the RG flow!

 Data: configs in 10x10 lattice, 1000 configs at each T=0, 0.25, …, 6, H=0.                                        

(Same results when T=0, 0.25, …, 10 / T=0, 0.25,…, 2 and 4, 4.25,…, 6.)

 RBM hyperparameters: 𝑛𝑣 = 100, 𝑛ℎ ≤ 𝑛𝑣, learning rate = 0.1, epoch = 5000

Reconstruction of T=0 configs Reconstruction of T=6 configs

[Iso-SSF-Yokoo, ’18]
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➢ For 1d and 2d Ising configs including 𝐻 ≠ 0 region: 

• The RBM flow approaches the points with maximal heat capacity in (𝑇, 𝐻) space. 

But the flow (and its fixed points) is different from the RG flow. 

• Data: configs in 100 (1d) or 10x10 (2d) lattice, 1000 configs at each (T,H),                           

where T=0, 0.5, …, 9.5 and H=0, 0.5, …, 4.5.

• RBM hyperparameters: 𝑛𝑣 = 100, 𝑛ℎ ≤ 16, learning rate = 0.001, epoch = 10000

[SSF-Giataganas, ’18]

1d 2d

𝑇 𝑇𝐻 𝐻
𝑛ℎ = 9

Includes 

𝑇 = 𝑇𝑐 , 𝐻 = 0



This seems an interesting result, but…

• The reason is not clear: is it related to the scale invariance?

• The condition is also not clear: we need to study the parameter dependence.

Why and when is the RBM fixed point at 𝑇 = 𝑇𝑐 (if 𝐻 = 0) ?



Why? : Evidence for scale invariance

➢ Let us compare the two kinds of RBM by analyzing the RBM flows

and their weights.

• One is the RBM trained by configs at only low temps.

• The other is the RBM learning various temps 𝑇 = 0, 0.25,… , 6.

RBM learning T=0, …, 6RBM learning only T=0

low temp

high temp

[Iso-SSF-Yokoo, ’18]

With large scale 

2d, H=0



➢ Eigenvalues of weights σ𝑎𝑤𝑖𝑎𝑤𝑗𝑎

• If the RBM learns configs at only low temps,                                                     

only a few (~5) eigenvalues are especially large.

• If the RBM learns configs at 𝑇 = 0, 0.25,… , 6 (including high temp),                                     

all the eigenvalues have similar values.                                                        

Many hidden neurons are needed to learn configs at various temps (=various scales).

log |𝜆𝑎|

RBM: only T=0 RBM: T=0,…,6

𝑛ℎ

log |𝜆𝑎|

𝑛ℎ

independent from basis of hidden neurons 



➢Eigenvectors of 𝑤𝑤𝑇

• RBM learning only low temps (𝑇 = 0,… , 2, 𝑛ℎ = 16)

• RBM learning various temps (𝑇 = 0,… , 6, 𝑛ℎ = 16)

Configs with large scale 

have large eigenvalues.

Configs with various scales 

have similar eigenvalues!

Scale invariance?

All of them appears in 

reconstructed images.



When? : The condition of parameters for 𝑇 ~ 𝑇𝑐

[SSF, in progress]

Nv=20^2 (number of visible neurons, configs size)

Nh: number of hidden neurons

Ntemp: input data include configs at 

𝑇 = 0, 0.1, … , 0.1 × (𝑁𝑡𝑒𝑚𝑝 − 1)

Around Nh/Nv = 1/4,

the RBM fixed point is 

at the lowest temperature 

and at 𝑇 ~ 𝑇𝑐 .

2d, H=0



In terms of energy, instead of temperature, we find the result in more detail.

Nh with the minimum energy varies by Ntemp (range of temps).

For large Ntemp, Nh with the minimum energy seems to converge at Nh/Nv = 0.42.

Then, let us see the “minimum”, though we checked only Nh=(integer)2.

Ntemp

Ntemp

Nv=20^2 Nv=20^2



For larger size, the “minimum” energy of RBM fixed point goes up more slowly!

From this plot, we can presume that 

● For Ntemp → ∞ and Nv: fixed,              

the fixed point may be at 𝐸 ~ 0, 𝑇 → ∞.

● For Ntemp: fixed and Nv → ∞,             

the fixed point may be at low energy.

Since at small Ntemp

the fixed point is at 𝐸 ~ − 1.7, 𝑇 ~ 𝑇𝑐
(as shown in the previous studies),   

the fixed point in this limit may be also 

at 𝑇 ~ 𝑇𝑐.

“minimum” energy of RBM fixed point

Nv1/2

Nv: number of visible neurons, configs size

Ntemp: input data include configs at 

𝑇 = 0, 0.1, … , 0.1 × (𝑁𝑡𝑒𝑚𝑝 − 1)

Nh fixed



If we try to fit these points to  Energy = −2 + 𝑎 𝑁𝑡𝑒𝑚𝑝
𝑏 , we obtain…

Plots of factors a and b

Both factors a, b decrease when Nv becomes larger.

It may suggest the plot of Ntemp vs. Energy becomes 

more flat in Nv → ∞, like
(Fitting for the points at 𝑁𝑡𝑒𝑚𝑝 ≥ 100)

Nv1/2

Based on these observations, we can 

conjecture that the RBM fixed point is at 𝑇 ~ 𝑇𝑐
when Nv is large enough (for fixed Ntemp).



Finally, why is the RBM fixed point at smaller energy for larger Nv?

cf. energy of configs at fixed temp

(Nv=20^2)

Averaged energy of input data (look at the error bars!):

It includes less random configs in larger Nv.

→ RBM can learn more patterns from non-random configs!

random

Nv1/2

• It may be because the input data include the less random configurations.

• The less random configs we have, the more patterns RBM can learn!

• If only random configs are input, there is no way to reduce the loss of training RBM…



We can find the patterns that RBM learns in eigenvectors of weight matrix 𝑤𝑤𝑇

(Nv=20^2 and Nh=8^2 are fixed below)

N_temp=200                                                  N_temp=300                                                 N_temp=400

N_temp=500                                                  N_temp=600                                                 N_temp=700

9 of 8^2 eigenvectors show non-random patterns

14%



We can find the patterns that RBM learns in eigenvectors of weight matrix 𝑤𝑤𝑇

(Nv=10^2 and Nh=4^2 are fixed below)

N_temp=200                                                  N_temp=300                                                 N_temp=400

N_temp=500                                                  N_temp=600                                                 N_temp=700

no eigenvectors show non-random patterns

0%



We can find the patterns that RBM learns in eigenvectors of weight matrix 𝑤𝑤𝑇

(Nv=32^2 and Nh=13^2 are fixed below)

N_temp=200                                                  N_temp=300                                                 N_temp=400

N_temp=500                                                  N_temp=600                                                 N_temp=700

48 of 13^2 eigenvectors show non-random patterns

28%



Conclusion

➢ We perform machine learning of RBM to extract features of spin configs 

in Ising model.

➢ We find that the RBM flow of reconstruction has the fixed point (= feature) 

just as the RG flow, but their behaviors are obviously different.

➢ We propose that the feature the RBM grasps may be the scale invariance 

(at phase transition point and maximal heat capacity). 

➢ We also conjecture the condition of parameters (larger size, fixed Ntemp) that 

the RBM fixed point is at phase transition point.


