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Shotaro Funal’s research theme:
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What is the “feature” of data Koji Hashimoto * S8 m;

which Al (machine learning) digitizes?
| want to understand it, hopefully using
some concepts of physics!
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If we can regard Al as a toy model of brain or consciousness,
we might create “physics of consciousness”...?




Research 1: Can Al appreciate Japanese tankas (very short poems)?

(at I-URIC, Inter-University Research Institute Corporation)

Our database (from NINJAL) picked out 150 tankas + 150 nonverse sentences
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at deeper layers of BERT correspond to brain area correlated with
It (poetic or not) but found only weak correspondence.




Research 2: New mechanism of money with Al

(at Keio University, SFC research institute) , HREH BRI SEATC DO ¢ - SRk
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Japan has suffered from deflation for over 20 years!
Inflation targeting or helicopter money can solve it...?
With a new mechanism of money (PMC, personal
\money creation), let us make a wealthier society.
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Research 3: Text generation for e-commerce (at Hitobito Inc.)
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Goal for CEO (Ishikawa-san) is... 2

We want to develop an Al system
which gets close to each user and
generates messages so that
the users can buy goods pleasantly.

We develop such a system using BERT and GPT,
and their vectors (“features”).  [Patent Pending]
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Then, what Is the “feature”...?

) This talk |

« We can discuss the “feature” using concepts of physics! (especially, renormalization)

Research 4: Feature extraction of Ising model configurations

* |Ising model Hamilitonian:
(in 1d or 2d square lattice) 1Y — — ;Z g HZ
— . : l"'-‘j Sj
(i7) i

e Spin configurations at various temperatures (with j = 1, H = 0; white: s; = 1, black: s; = —1)

T=0.0 2.0 4.0 6.0 8.0

phase transitionatT =T, = 2.27 1




_ _ [Iso-SSF-Yokoo, 18] [SSF-Giataganas, 18]
» Input data (which may be peculiar...)

« Spin configurations generated with Metropolis Monte Carlo simulation.

« Data includes the same number of configs at various temperatures (or external fields H)
with constant interval, for example, T = 0,0.1, 0.2, ...,9.9 (100 temps).

» This choice may be unnatural in physical systems, but we chose them

so that input data include various image patterns. Fiddan nenrens
- Then, anyway, we can define and calculate o W\ B
probability distribution of configs (as images) in input data. / ?Pt'”‘:'»z'/”g W'Q.

visible neurons

]

« This type of a neural network is trained so that it outputs the configs .

» We use the Restricted Boltzmann Machine (RBM)

with the same probabillity distribution as input data.

* In the training process, the RBM extracts “features” of input data.
Input Monte-Carlo data



* The probability of output configs is defined, using the “energy” function

E({v;},{he}) = quzwwh —I—Zb ha —I—Zc@fuZ

\[ weights w;,, bias b, c; ]

by Boltzmann distribution
e_E({U’i}a{hG})

p({ha}) = visible |
1

o e~ E{vi}{ha}) h
o) =3 .
{ha}

« We train the RBM (= optimize weights and bias)
so that the KL divergence approaches a local minimum.

q({vi})
p({vi})

Loss function: Z q({v;}) log




KL divergence is a “distance” between two probability distributions:

q({vi})
Zq{/yg log —+—< 5o
AN

prob of an input image =v; / prob of an output image = v;

In our experiment, the inputs are the spin configs v; = +1.
The values of the hidden neurons are also binary: h, = +1.

Then the expectation values of neurons are, using Boltzmann distribution,

(hq) = tanh (Z ViWig + ba)
)
(0;) = tanh (Z hawg; + cz-)

The output (reconstructed) configs #; = +1 are obtained 4[ To keep the same EVJ
by replacing an expectation value (7;) with a probability (1 + (7;))/2.




« After the training finished, the probability distribution of input configs g({v;})

and that of output configs p({v;}) are similar but slightly different
(since the KL divergence is practically not zero).

* |f we input again the output configs, we obtain another Output reconstructed data
probability distribution p({v;}) of reconstructed configs.

» Doing this iteratively, we get the flow of prob distribution of W@d
|

terative

Spin configs: Q({vi}) - ﬁ({vl}) - ﬁ({vl}) AEEE % <\reconstructlons

» Nalve questions:

Same RBM after learning

1. Does this “RBM flow” correspond to the RG flow 1
(renormalization group flow) of Ising model? .
2. Does it have the fixed points describing the features?

(The features should be emphasized along the RBM flow.) Input Monte-Carlo data



Overview of our results [Is0-SSF-Yokoo, 18]

[SSF-Giataganas, 18]
» The RBM flow has its fixed points in the (T, H) space.

* No fixed points of spin configurations exist;
It is useful to generate new configs at the specific (T, H).

« To estimate (T, H) of the output configs, we use the following two ways:

1. We train another neural network to output correct (T, H) of input configs.
(supervised learning) [ parameters of MMm

2. Foronly the H = 0 configs, we can estimate T

by calculating their energy.
(We obtained the consistent results with method 1.)

physical quantities

each pixel of configs



» The RBM flow behaves differently from the RG flow! [IS0-SSF-Yokoo, 18]

« The RBM flow approaches the phase transition point T =T, ~ 2.27,
while goes away from T = 0, 0. It's the opposite direction to the RG flow!

original 0.16
| 2d, H=0 | " -
b 0-125 : itr =10 .
E 0.100 A o
C(S ) 0.08
Q 0.075 A
e 0.06
Q. o050 0.04
e T T
n, = 81 Reconstruction of T=0 configs Reconstruction of T=6 configs

» Data: configs in 10x10 lattice, 1000 configs at each T=0, 0.25, ..., 6, H=0.
(Same results when T=0, 0.25, ..., 10/ T=0, 0.25,..., 2 and 4, 4.25,..., 6.)

 RBM hyperparameters: n, = 100, n, < n,, learning rate = 0.1, epoch = 5000



» For 1d and 2d Ising configs including H # 0 region: [SSF-Giataganas, 18]

 The RBM flow approaches the points with maximal heat capacity in (T, H) space.

But the flow (and its fixed points) is different from the RG flow.

Probability B Probability d

Magnetic Field 5

4
np = 9

« Data: configs in 100 (1d) or 10x10 (2d) lattice, 1000 configs at each (T,H),
where T=0, 0.5, ..., 9.5 and H=0, 0.5, ..., 4.5.

 RBM hyperparameters: n,, = 100,n; < 16, learning rate = 0.001, epoch = 10000



This seems an interesting result, but...

 The reason is not clear: is it related to the scale invariance?

« The condition is also not clear: we need to study the parameter dependence.




Why? . Evidence for scale invariance

» Let us compare the two kinds of RBM by analyzing the RBM flows
and their weights. [IS0-SSF-Yokoo, 18]

» One is the RBM trained by configs at only low temps. <| With large scale |

* The other is the RBM learning various temps T = 0,0.25, ..., 6.
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» Eigenvalues of weights Y, WiaWjq { independent from basis of hidden neurons ]

* |f the RBM learns configs at only low temps, -

. . WW™ Ug = AglUq
only a few (~5) eigenvalues are especially large.

 |f the RBM learns configs at T = 0,0.25, ..., 6 (including high temp),

all the eigenvalues have similar values.
Many hidden neurons are needed to learn configs at various temps (=various scales).
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> Eigenvectors of ww! wwl u, = Mg

« RBM learning only low temps (T =0, ..., 2,n; = 16)

E E] Configs with large scale
have large eigenvalues.

 RBM learning various
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Configs with various scales
have similar eigenvalues!
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All of them appears in
reconstructed images.
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Scale invariance?
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When? : The condition of parameters for T ~ T,

Nv=20"2 (number of visible neurons, configs size)

[SSF, in progress]

10.-T : v T ¥ T ¥ T T T T L T ¥ T T T ¥ T i T
[ o Niemp: input data include configs at
sl T =0,01,..,0.1 X (Neeynp — 1)
g | . 30
E [ x - 70
sl |+ 100 Around Nh/Nv = 1/4,
I . « 200 . . .
- T - = the RBM fixed point is
x =g I - FE = E = & =
[ - il at the lowest temperature
0 S 10 15 20
N2 andatT ~ T, .

[ 2d, H=0 } Nh: number of hidden neurons




In terms of energy, instead of temperature, we find the result in more detail.

Nv=20"2

oo -

Nh with the minimum energy varies by N, (range of temps).
For large N, Nh with the minimum energy seems to converge at Nh/Nv = 0.4,
Then, let us see the “minimum”, though we checked only Nh=(integer)?.

Lh

« 100

e mm wm N A

temp

« 200

300
400

« 500
« 700



For larger size, the "minimum” energy of RBM fixed point goes up more slowly!

) Nh fixed
“minimum” energy of RBM fixed point
o
E I:
N _

M_temp

Niemp: INput data include configs at

_ T =0,0.1,...,0.1 X (Negmp — 1)

Nv: number of visible neurons, configs size

10
20
. 32

From this plot, we can presume that

For Niemp = o0 and Nv: fixed,
the fixed pointmay be at E ~0,T — o.

For Nigmp: fixed and Nv — oo,

the fixed point may be at low energy.

Since at small Ny,

the fixed pointisat E ~—1.7,T ~ T,
(as shown in the previous studies),
the fixed point in this limit may be also
atT ~ T,.




If we try to fit these points to Energy = —2 + a Ny, |, We obtain. ..

Energy
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(Fitting for the points at N, = 100)
more flat in Nv — oo, like

Based on these observations, we can
conjecture that the RBM fixed pointisat 7 ~ T,
when Nv is large enough (for fixed Nigy,n)-

ergy
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Both factors a, b decrease when Nv becomes larger.
It may suggest the plot of Ny, vs. Energy becomes

0.0~




Finally, why is the RBM fixed point at smaller energy for larger Nv?

* It may be because the input data include the less random configurations.
« The less random configs we have, the more patterns RBM can learn!
 If only random configs are input, there is no way to reduce the loss of training RBM...

Averaged energy of input data (look at the error bars!):
It includes less random configs in larger Nv.

— RBM can learn more patterns from non-random configs! _ _
cf. energy of configs at fixed temp
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We can find the patterns that RBM learns in eigenvectors of weight matrix ww’

872 are fixed below)
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We can find the patterns that RBM learns in eigenvectors of weight matrix ww?’
(Nv=1072 and Nh=4"2 are fixed below)
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Conclusion

» We perform machine learning of RBM to extract features of spin configs
In Ising model.

» We find that the RBM flow of reconstruction has the fixed point (= feature)
just as the RG flow, but their behaviors are obviously different.

» We propose that the feature the RBM grasps may be the scale invariance
(at phase transition point and maximal heat capacity).

» We also conjecture the condition of parameters (larger size, fixed N,,,) that
the RBM fixed point is at phase transition point.



