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What is Persistent Homology?

* A tool from the emerging field of Topological Data Analysis (TDA)

e A way to quantitatively summarise the topological / structural
features of data

 Essentially just counting and tracking connected components and
holes (of various dimension) via linear algebra

Data —1

"Filtration" (sequence of geometric complexes) —1

Persistence "barcode"



What is Persistent Homology?

Figure reproduced from: Ghrist, R.. “Barcodes: The persistent topology of data.” Bulletin of the American Mathematical Society 45 (2007): 61-75.



What is Persistent Homology?

* We will often represent the barcode as a persistence diagram
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* For many choices of filtration, the barcode/diagram is stable with respect
to small changes in the input data

Figure reproduced from:Wadhwa, Raoul & Williamson, Drew & Dhawan, Andrew & Scott, Jacob. (2018). TDAstats: R pipeline for
computing persistent homology in topological data analysis. Journal of Open Source Software. 3. 860. 10.21105/joss.00860.



Persistent Homology and Statistical Physics

 Two paradigms:

* Persistent homology of configuration space:
* Look for a topological change in energy sublevel sets of the (very large) space of configurations

I o

* Donato, I. et al. “Persistent homology analysis of phase transitions.” Physical review. E 93 5(2016): 052138

Persistent homology as an observable:

* Given a single configuration, compute persistence to reduce the degrees of freedom and capture
the important features

* T Hirakida, K. Kashiwa, J. Sugano, J. Takahashi, H. Kouno, and M. Yahiro, Persistent homology analysis of
deconfinement transition in effective polyakov-line model (2018)

. (Q H. ';'ran, M. Chen, and Y. Hasegawa, Topological persistence machine of phase transitions, Phys. Rev. E 103,052127
2021

* B. Olsthoorn, J. Hellsvik, and A. V. Balatsky, Finding hidden order in spin models with persistent homology,
Phys. Rev. Research 2, 043308 (2020)

* A. Cole, G. J. Loges, and G. Shiu, Quantitative and interpretable order parameters for phase transitions from
persistent homology (2020)



Why Persistent Homology as M :\‘;
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Our Filtration - /, .

* Given a configuration of a two-dimensional B N
XY model we want to obtain a sequence of : / :
cubical complexes

* We construct our filtration as
increasing subcomplexes of "filled in" lattice

* Encode defects as 1-dimensional holes Fry = Pl cl)
* Only need to look at 1-dimensional persistence

* Higher dimensional defects may require higher f i) = o
homology groups f(=—=)= |8~ 6; |

* Easy to show stability
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Models

e Classical XY

H(0)=—J)» cos(0; —6;)
)
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* Vortex-antivortex pairs




Models

e Constrained XY

H(6) — {O if 5-160; — 0, <6 for all (¢, )

00 otherwise.

* Vortices suppressed for
low delta
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* Nematic XY -
H(0) = — Z [A cos(8; — 6;)
W 4 (1= A) cos(2(6; . .

* Two phase transitions:
* Magnetic-Nematic transition in Ising class
* Nematic-Paramagnetic BKT transition
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* Vortices stretch out into pairs of half-
vortices connected by domain walls
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Analysis

* Classify phases with logistic regression and k-nearest neighbours

* Train on either side of the transition

* Histogram reweight to obtain point of most uncertainty

Logistic Regression
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Analysis

* Look for finite-size scaling behaviour to extrapolate critical

temperatures
* Bootstrap for error estimates

Logistic Regression _
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Analysis

* Determine critical exponent of correlation length via curve collapse
approach
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Findings

* For each phase transition we obtained an accurate determination of
the critical temperature and exponent of correlation length using the
k-nearest neighbours approach

* The previously proposed logistic regression approach fails in general
to latch onto the phase transition

* However, the logistic regression does allow us to interpret which
features are important in distinguishing phases



Logistic Regression Coefficients
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Current/Future Work

* This work is summarised in arXiv:2109.10960
e Extend to more complex models: e.g. lattice gauge theories

* Investigate what other TDA machinery can tell us:
* Vineyards
* Representative (co)cycles
* Directed Persistence

* Persistent homology as a feature engineering preprocessing step for
deep learning approaches



