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What is Persistent Homology?

• A tool from the emerging field of Topological Data Analysis (TDA)

• A way to quantitatively summarise the topological / structural 
features of data

• Essentially just counting and tracking connected components and 
holes (of various dimension) via linear algebra
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Persistence "barcode"



What is Persistent Homology?

Figure reproduced from: Ghrist, R.. “Barcodes: The persistent topology of data.”Bulletin of the American Mathematical Society 45 (2007): 61-75.



What is Persistent Homology?

• We will often represent the barcode as a persistence diagram

• For many choices of filtration, the barcode/diagram is stable with respect 
to small changes in the input data

Figure reproduced from:Wadhwa, Raoul & Williamson, Drew & Dhawan, Andrew & Scott, Jacob. (2018). TDAstats: R pipeline for 
computing persistent homology in topological data analysis. Journal of Open Source Software. 3. 860. 10.21105/joss.00860.



Persistent Homology and Statistical Physics

• Two paradigms:

• Persistent homology of configuration space:
• Look for a topological change in energy sublevel sets of the (very large) space of configurations

• Donato, I. et al. “Persistent homology analysis of phase transitions.” Physical review. E 93 5 (2016): 052138

• Persistent homology as an observable:
• Given a single configuration, compute persistence to reduce the degrees of freedom and capture 

the important features

• T. Hirakida, K. Kashiwa, J. Sugano, J. Takahashi, H. Kouno, and M. Yahiro, Persistent homology analysis of 
deconfinement transition in effective polyakov-line model (2018)

• Q. H. Tran, M. Chen, and Y. Hasegawa, Topological persistence machine of phase transitions, Phys. Rev. E 103,052127 
(2021)

• B. Olsthoorn, J. Hellsvik, and A. V. Balatsky, Finding hidden order in spin models with persistent homology, 
Phys. Rev. Research 2, 043308 (2020) 

• A. Cole, G. J. Loges, and G. Shiu, Quantitative and interpretable order parameters for phase transitions from 
persistent homology (2020)



Why Persistent Homology as 
an Observable?

• Many phase transitions driven by / 
involve topological defects

• Many types of defects in different 
dimensions

• Want to detect these in a robust way

Vortex

Anti-Vortex

Domain Wall

Half-Vortex



Our Filtration

• Given a configuration of a two-dimensional 
XY model we want to obtain a sequence of 
cubical complexes

• We construct our filtration as 
increasing subcomplexes of "filled in" lattice

• Encode defects as 1-dimensional holes
• Only need to look at 1-dimensional persistence

• Higher dimensional defects may require higher 
homology groups

• Easy to show stability



Example



Models

• Classical XY

• Vortex-antivortex pairs



Models

• Constrained XY

• Vortices suppressed for 
low delta



Models

• Nematic XY

• Two phase transitions:
• Magnetic-Nematic transition in Ising class
• Nematic-Paramagnetic BKT transition

• Vortices stretch out into pairs of half-
vortices connected by domain walls



Analysis

• Classify phases with logistic regression and k-nearest neighbours

• Train on either side of the transition

• Histogram reweight to obtain point of most uncertainty



Analysis

• Look for finite-size scaling behaviour to extrapolate critical 
temperatures

• Bootstrap for error estimates



Analysis

• Determine critical exponent of correlation length via curve collapse 
approach



Findings

• For each phase transition we obtained an accurate determination of 
the critical temperature and exponent of correlation length using the 
k-nearest neighbours approach

• The previously proposed logistic regression approach fails in general 
to latch onto the phase transition

• However, the logistic regression does allow us to interpret which 
features are important in distinguishing phases
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Current/Future Work

• This work is summarised in arXiv:2109.10960

• Extend to more complex models: e.g. lattice gauge theories

• Investigate what other TDA machinery can tell us:
• Vineyards

• Representative (co)cycles

• Directed Persistence

• Persistent homology as a feature engineering preprocessing step for 
deep learning approaches


