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An exponential challenge
Signal-to-noise 
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FIG. 1: The left plot shows MC ensemble average ground-state energies EQ,0 of U(1) charge sectors Q = 1, . . . , 4 in (0 + 1)D
complex scalar field theory. Analytic results valid in the L ! 1 limit from Eq. (6) are shown as red lines. The right plot
shows the variance in these ground-state energies. The red lines show the theoretically predicted e

2EQ,0t scaling. Error bars
denote 68% confidence intervals determined by bootstrap resampling correlation functions calculated from L source points on
N = 5000 MC field configurations of complex scalar fields with M

2 = 0.00625 and L = 512 generated using the Metropolis
algorithm. This ensemble is denoted C0 below, see Sec. III and Appendix C for more details.

1/
p
N prefactor of Var(G(t)) describes the size of statistical errors at asymptotically large N according to the central

limit theorem but may only provide a rough guide to the error scaling for arbitrary P(') and finite N . It is noteworthy
that G(t) is real by Eq. (10), but individual samples 'i(t)'i

⇤(0) and G(t) at finite N are complex. At large N the
real part of G(t) converges to G(t) as in Eq. (13) and the imaginary part of G(t) converges to zero with similar 1/

p
N

scaling. Ensemble average estimators can similarly be constructed for general correlation functions,
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where O
i
Q,2P is defined by Eq. (8) with ' replaced by 'i and 1/

p
N error scaling follows from the Berry-Esseen and

central limit theorems. Ground-state energies can be determined from the large-t behavior of the e↵ective masses
derived from ensemble average correlation functions,

EQ,2P (t) ⌘ �@t ln
�
GQ,2P (t)

�
⌘ � ln

�
GQ,2P (t+ 1)

�
+ ln

�
GQ,2P (t)

�
. (15)

Following standard Parisi-Lepage arguments [9, 10], the variance of GQ,2P can be described by a linear combination
of correlation functions
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where G�Q,2P = GQ,2P has been used following Eq. (10). The variance of GQ,2P is related to the variance of GQ,2P

by 1/
p
N in the large-N limit by the central limit theorem, giving at large N
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● Empirically observed (e.g. nucleon, nuclei, Wilson loops in lattice QCD)

Nucleon Effective Mass

[Wagman & Savage, PRD96 (2017) 114508]

Full Magnitude only Phase only

(actually, phase)

Noise problem = sign problem
� =

p
Var(O)/N
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• Calculation of observables in QFT using 
Monte-Carlo methods are beset by noise 
 
 
 

• StN problem: decays exponentially in some 
extensive quantity


• 0+1D complex scalar field theory: 
effective energy of charge Q states


• Proton effective mass in QCD


• Exponentially large numbers of MC samples 
required to overcome


• Generic issue hampering many physics  
analyses



• Two point correlation function 

• Variance  
 

• Bosonic theory: first term dominated by 
vacuum state → constant in time  
 
 

• Fermions: slightly improved as fermions are 
integrated out and provide nonlocal 
structure 
 
 
 

Parisi–Lepage
Signal-to-noise 

Listening to Noise David B. Kaplan

The growth of noise in the correlator makes it difficult to extract a signal without a lot of
statistics, and the problem is expected to get worse with increasing baryon number. It would have
been strange if properties of matter at finite baryon density, which are extremely difficult to compute
in the grand canonical ensemble, were easy to compute in a canonical simulation — and indeed this
noise problem exhibited by the correlator at late time is presumably an avatar of the sign problem.
This sign/noise problem does not arise simply because of Fermi statistics; for example, constructing
correlators CA as 3A ⇥ 3A Slater determinants of quark propagators accounts for Fermi statistics
and leads to a computational cost from the determinant only scaling as (3A)3, not the exponential
difficulty seen in the grand canonical computation. Instead, the noise is closely related to the
physical spectrum, as has been quantified by Lepage [4]. For example, in QCD the expectation of
a 3A quark correlator for a nucleus of atomic number A and mass MA is hCAi ⇠ e�MAt , while the
variance in the sample mean CA can be estimated as

s2 =
1

N

⇣
hC†

ACAi�hC†
AihCAi

⌘
⇠ 1

N
e�3Amp t (2.2)

for sample size N . Since CA corresponds to 3A quark propagators and C†
A to 3A anti-quark prop-

agators, the variance is dominated by the state with 3A pions. Thus the signal to noise ratio scales
as ⇠

p
N exp(�3Az t), where z = (MN/3�mp/2) is the same parameter we saw characterizing

the sign problem in the grand canonical case. This reasoning is rather simplistic, as the overlap
between the operators and the nucleon or pion states — which will typically contain volume fac-
tors – has not been included. However, Fig. 2 shows evidence from QCD simulations by NPLQCD
that the Lepage argument is qualitatively correct. The noise and sign problems are therefore pre-
sumably closely related and determined by the physical spectrum of the theory and should not be
thought of as solely a “fermion sign problem"; similar issues can also arise in interacting boson
theories.

In either case the problem arises from the existence of multiparticle states for which the en-
ergy/constituent is lower than for the states one wants to study: in QCD, quarks are in some sense
lighter when they are in a pion than when they are in a nucleon, by the amount z . This is a problem
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Figure 2: A plot of �1/t ln(signal/noise ratio) versus time for p (red) and pp (purple) correlators computed
in lattice QCD; horizontal lines give the expected values for these quantities using the Lepage argument.
Figure supplied by K. Orginos (NPLQCD), annotation by D.K.
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7�+iQ`b �M/ /2+�v +QMbi�Mib (R8dĜR8N)X

kX8Xk LQBb2 �M/ bB;M T`Q#H2Kb
hQ 2ti`�+i +QMi`QHH2/ 2biBK�i2b Q7 T?vbB+�H T`QT2`iB2b Q7 T�`iB+mH�` bi�i2b- Bi Bb BKTQ`@
i�Mi iQ 2Mbm`2 i?�i i?2 b2T�`�iBQM t #2ir22M QT2`�iQ`b Bb H�`;2 2MQm;? iQ bmTT`2bb
ǵ+QMi�KBM�iBQMǶ 7`QK ?B;?2` 2t+Bi2/ bi�i2b �++2bb2/ #v O1 �M/ O2X 6Q` bi`m+im`2 bim/@
B2b BMpQHpBM; j@TQBMi +Q``2H�iBQM 7mM+iBQMb- QM2 Kmbi �HbQ 2Mbm`2 i?�i t0 �M/ t � t0 �`2
bBKBH�`Hv H�`;2X lM7Q`imM�i2Hv- bi�iBbiB+�H MQBb2 BM+`2�b2b 2tTQM2MiB�HHv BM 2t�+iHv i?2b2
HBKBib `2bmHiBM; BM ǵbB;M�H@iQ@MQBb2 T`Q#H2KbǶ- �b r2 /Bb+mbb M2tiX AM T`�+iB+2- QM2 Kmbi
+?QQb2 i?2 QT2`�iQ`b +�`27mHHv �M/ ;2M2`�i2 2MQm;? K2�bm`2K2Mib iQ }M/ � rBM/Qr Q7
b2T�`�iBQMb BM r?B+? 2t+Bi2/ bi�i2 +QMi�KBM�iBQM Bb +QMi`QHH2/ �M/ bi�iBbiB+�H MQBb2 Bb
bmTT`2bb2/X 6Bib iQ 2ti`�+i T?vbB+�H BM7Q`K�iBQM +�M i?2M #2 T2`7Q`K2/ BM i?Bb rBM/QrX

aB;M�H@iQ@MQBb2 T`Q#H2Kb �TT2�` BM K�Mv Q#b2`p�#H2b Q7 BMi2`2bi BM T?2MQK2MQHQ;B@
+�HHv `2H2p�Mi H�iiB+2 }2H/ i?2Q`B2b- BM+Hm/BM; +Q``2H�iBQM 7mM+iBQMb BM H�iiB+2 Z*. (ReyĜ
Rd9)- Mm+H2�` K�Mv@#Q/v i?2Q`B2b (Rd8ĜR3R)- +QM/2Mb2/ K�ii2` i?2Q`B2b (R3kĜR33)- �M/
+QH/ �iQK T?vbB+b (R3N- RNy)X h?2 �BK Q7 i?2 H�ii2` ?�H7 Q7 i?Bb /Bbb2`i�iBQM Bb iQ �/@
/`2bb i?2 ;`QrBM; bi�iBbiB+�H MQBb2 i?�i /2i2`KBM2b i?2 T`2+BbBQM rBi? r?B+? T?vbB+�H
BM7Q`K�iBQM +�M #2 2ti`�+i2/ 7`QK bm+? i?2Q`B2b BM bi�i2@Q7@i?2@�`i H�iiB+2 +�H+mH�iBQMbX

ai�iBbiB+�H MQBb2X JQMi2 *�`HQ 2biBK�i2b Q7 Q#b2`p�#H2b �`2 ;Bp2M �b 7mM+iBQMb Q7
`�M/QK b�KTH2b Q7 }2H/ +QM};m`�iBQMbX 6Hm+im�iBQMb Qp2` TQbbB#H2 `2�HBx�iBQMb Q7 i?2b2
`�M/QK b�KTH2b `2bmHi BM mM+2`i�BMiB2b BM �Mv 2biBK�i2 +QKTmi2/ 7`QK � }MBi2 b2i Q7
b�KTH2bX AM T`�+iB+2 i?2b2 mM+2`i�BMiB2b +�M #2 2biBK�i2/ 2Bi?2` #v 2``Q` T`QT�;�@
iBQM (eN) Q` #QQibi`�T `2b�KTHBM; (RNR)X AM i?Bb /Bbb2`i�iBQM- `2TQ`i2/ mM+2`i�BMiB2b �`2
;Bp2M #v #QQibi`�T `2b�KTHBM; mMH2bb Qi?2`rBb2 BM/B+�i2/X 6Q` [m�MiBiB2b i?�i �`2 /2@
i2`KBM2/ #v i�FBM; i?2 b�KTH2 K2�M Q7 `�M/QK p�`B�i2b- i?2 p�`B�M+2 Q7 i?2 `�M/QK
p�`B�i2b +QMi`QHb i?2 b+�H2 Q7 bi�iBbiB+�H mM+2`i�BMiB2bX lM/2`bi�M/BM; i?2 p�`B�M+2 Q7
JQMi2 *�`HQ 2biBK�iQ`b i?mb BM7Q`Kb QM2 Q7 i?2 T`�+iB+�H /B{+mHiv Q7 /2`BpBM; T`2+Bb2
2biBK�i2bX

h?2 bi`m+im`2 Q7 i?2 ;`QrBM; bi�iBbiB+�H MQBb2 BM irQ@TQBMi +Q``2H�iQ`b +�M #2 mM@
/2`biQQ/ BM i2`Kb Q7 i?2 p�`B�M+2 #v � +QM+Bb2 T?vbB+�H �`;mK2Mi Tmi 7Q`r�`/ #v S�`BbB
�M/ G2T�;2 BM _27bX (RNk- RNj)X � bi�M/�`/ JQMi2 *�`HQ 2biBK�iQ` Q7 i?2 2tT2+i�iBQM
p�Hm2 hO2(t)O1(0)i +QMbBbib Q7 i?2 b�KTH2 K2�M Q7 i?2 +QKTQM2Mib Re[O2(t)O1(0)] �M/
Im[O2(t)O1(0)] mb2/ iQ `2bT2+iBp2Hv 2ti`�+i i?2 `2�H �M/ BK�;BM�`v +QKTQM2MibX h?2
p�`B�M+2 Q7 i?2b2 irQ JQMi2 *�`HQ 2biBK�iQ`b +�M #2 2tT`2bb2/ �b 2tT2+i�iBQM p�Hm2b
rBi? `2bT2+i iQ i?2 b�K2 T�i? BMi2;`�H r2B;?ib,

Var[Re[O2(t)O1(0)]] =
1

2
hO2(t)O

⇤

2(t)O
⇤

1(0)O1(0)i

+
1

2
Re

⌦
O

2
2(t)O

2
1(0)

↵
� hO2(t)O1(0)i

2

Var[Im[O2(t)O1(0)]] =
1

2
hO2(t)O

⇤

2(t)O
⇤

1(0)O1(0)i

�
1

2
Re

⌦
O

2
2(t)O

2
1(0)

↵
� hO2(t)O1(0)i

2 .

UkXj9V

+ . . .
<latexit sha1_base64="r5CeECxdXu4+vVA5IiZfTPANcGg=">AAAB73icbVBNS8NAEN3Ur1q/qh69LBZBEEpSBD0WvXisYD+gDWWz2bRLN7txdyKU0D/hxYMiXv073vw3btoctPXBwOO9GWbmBYngBlz32ymtrW9sbpW3Kzu7e/sH1cOjjlGppqxNlVC6FxDDBJesDRwE6yWakTgQrBtMbnO/+8S04Uo+wDRhfkxGkkecErBS72IgQgWmMqzW3Lo7B14lXkFqqEBrWP0ahIqmMZNABTGm7zUS8DOigVPBZpVBalhC6ISMWN9SSWJm/Gx+7wyfWSXEkdK2JOC5+nsiI7Ex0ziwnTGBsVn2cvE/r59CdO1nXCYpMEkXi6JUYFA4fx6HXDMKYmoJoZrbWzEdE00o2IjyELzll1dJp1H33Lp3f1lr3hRxlNEJOkXnyENXqInuUAu1EUUCPaNX9OY8Oi/Ou/OxaC05xcwx+gPn8wdcj4+D</latexit><latexit sha1_base64="1paA74p8II91Ajc2fYaV7Oc8OiI=">AAACFHicjVDLSgMxFM3UV62vqks3wSIIQpkpgi6Lblwq2Ae0Q8lkMm1oJhmSO0IZ+hMu3PgrbkTcunDn35hpZ6GtCw8EDuecy809QSK4Adf9ckorq2vrG+XNytb2zu5edf+gbVSqKWtRJZTuBsQwwSVrAQfBuolmJA4E6wTj69zvPDBtuJL3MEmYH5Oh5BGnBKzUPeuLUIGpDKo1t+7OgJeJV5AaKvC/+KD62Q8VTWMmgQpiTM9rJOBnRAOngk0r/dSwhNAxGbKepZLEzPjZ7KgpPrFKiCOl7ZOAZ+rPiYzExkziwCZjAiOz6OXiX14vhejSz7hMUmCSzhdFqcCgcN4QDrlmFMTEEkI1t3/FdEQ0oWB7zJvyFg9dJu1G3XPr3t15rXlVdFZGR+gYnSIPXaAmukG3qIUoEugRPaNX58l5cd6c93m05BQzh+gXnI9vF3mW/A==</latexit><latexit sha1_base64="1paA74p8II91Ajc2fYaV7Oc8OiI=">AAACFHicjVDLSgMxFM3UV62vqks3wSIIQpkpgi6Lblwq2Ae0Q8lkMm1oJhmSO0IZ+hMu3PgrbkTcunDn35hpZ6GtCw8EDuecy809QSK4Adf9ckorq2vrG+XNytb2zu5edf+gbVSqKWtRJZTuBsQwwSVrAQfBuolmJA4E6wTj69zvPDBtuJL3MEmYH5Oh5BGnBKzUPeuLUIGpDKo1t+7OgJeJV5AaKvC/+KD62Q8VTWMmgQpiTM9rJOBnRAOngk0r/dSwhNAxGbKepZLEzPjZ7KgpPrFKiCOl7ZOAZ+rPiYzExkziwCZjAiOz6OXiX14vhejSz7hMUmCSzhdFqcCgcN4QDrlmFMTEEkI1t3/FdEQ0oWB7zJvyFg9dJu1G3XPr3t15rXlVdFZGR+gYnSIPXaAmukG3qIUoEugRPaNX58l5cd6c93m05BQzh+gXnI9vF3mW/A==</latexit><latexit sha1_base64="1paA74p8II91Ajc2fYaV7Oc8OiI=">AAACFHicjVDLSgMxFM3UV62vqks3wSIIQpkpgi6Lblwq2Ae0Q8lkMm1oJhmSO0IZ+hMu3PgrbkTcunDn35hpZ6GtCw8EDuecy809QSK4Adf9ckorq2vrG+XNytb2zu5edf+gbVSqKWtRJZTuBsQwwSVrAQfBuolmJA4E6wTj69zvPDBtuJL3MEmYH5Oh5BGnBKzUPeuLUIGpDKo1t+7OgJeJV5AaKvC/+KD62Q8VTWMmgQpiTM9rJOBnRAOngk0r/dSwhNAxGbKepZLEzPjZ7KgpPrFKiCOl7ZOAZ+rPiYzExkziwCZjAiOz6OXiX14vhejSz7hMUmCSzhdFqcCgcN4QDrlmFMTEEkI1t3/FdEQ0oWB7zJvyFg9dJu1G3XPr3t15rXlVdFZGR+gYnSIPXaAmukG3qIUoEugRPaNX58l5cd6c93m05BQzh+gXnI9vF3mW/A==</latexit>

NPLQCD collaboration 2009



• Wagman and Savage noted that the StN growth is due to fluctuations in the phase of a 
quantity (nucleon effective mass)


• Correlation function data for eg deuteron [NPLQCD] are reproduced by product of log-
normal distribution (magnitude) and a wrapped-normal distribution (phase)  
 
 
 
 
 

Wagman–Savage
Phase fluctuations

● Empirically observed (e.g. nucleon, nuclei, Wilson loops in lattice QCD)

Nucleon Effective Mass

[Wagman & Savage, PRD96 (2017) 114508]

Full Magnitude only Phase only

(actually, phase)

Noise problem = sign problem

[Wagman & Savage, PRD96 (2017) 114508]
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FIG. 6. Histograms of the real parts of deuteron correlation functions with m⇡ = 450 MeV from Ref. [303], at three values
of t normalized independently by multiplying by 1/

⌦
Re C

d(t)
↵
. The blue curves show fits to complex log-normal distributions

obtained as in Refs. [380, 381] from a product of a log-normal distribution with mean µR = hrdi and variance �
2
R =

⌦
r
2
d

↵
� µ

2
R

times a wrapped-normal distribution with zero mean and variance �
2
✓ = � ln

�
hcos ✓di

2 + hsin ✓di
2� obtained using sample mean

estimators for µR, �
2
R, and �

2
✓ from LQCD results for Cd = e

rd+i✓d . The distribution of the real part shown is obtained by
marginalizing over the imaginary part of the resulting distribution for the complex variable Cd.

e�3Am⇡t. This analysis has been generalized to higher moments of correlation functions [92, 376], with the result that
even and odd moments scale di↵erently as

⌦
CA(t)2n

↵
! e�3Anm⇡t and

⌦
CA(t)2n+1

↵
! e�AMN te�3Anm⇡t respectively,

where n 2 N. This implies that the distributions of the real and imaginary parts of CA, which is complex evaluated
on a generic background gauge field (even though hCAi is real), become increasingly broad and symmetric for large
values of At. The distributions of the real parts of nucleon correlation functions are observed to be heavy-tailed and
consistent with a Cauchy (Lorentzian) distribution at large source/sink separations [377]. Robust estimators may
therefore prove useful for reliably determining nuclear correlation functions at large source/sink time separations, as
discussed in Ref. [92].

The symmetric, heavy-tailed distributions of baryon correlation functions di↵er from the corresponding distributions
of zero-momentum pion correlation functions, which are approximately log-normally distributed at large t [378, 379].
Log-normal distributions also describe correlation functions in theories of non-relativistic fermions [382–386] and the
real parts of many-hadron correlation functions at small t [387]. For small t, both the log-magnitudes and phases
of baryon correlation functions are approximately normally distributed; however, the width of the phase distribution
grows with t, and for large t the phase distribution approaches a uniform distribution on (�⇡, ⇡] and Re[ei✓h,A ] is
therefore approximately Cauchy distributed. As shown in Fig. 6, a complex log-normal distribution obtained from
the product of a normally distributed Rh,A and a wrapped normal distribution (a sum over 2⇡-periodic images of a
normal distribution) for ✓h,A describes the real parts of multi-baryon correlation functions for a wide range of t [380].

The role of complex-phase fluctuations in StN problems can be clearly seen from expectation values of the magni-
tudes and phase factors of nuclear correlation functions [380]. Ensemble averages of magnitudes of nuclear correlation
functions are observed to scale with t as h|CA(t)|i ! e�

3
2 Am⇡t analogously to even moments of CA, while ensemble-

averaged nuclear correlation-function phase factors are observed to scale with t as
⌦
eiArg[CA(t)]

↵
! e�A(MN �

3
2 m⇡)t [380,

388]. Since |eiArg[CA]| = 1 and Var[eiArg[CA]] is therefore O(1) for all t, this implies that the average phase factor
has an exponential StN problem with the same severity as the full nuclear correlation function. The magnitude and
phase contributions to the e↵ective mass are also seen to plateau much more slowly than the full correlation function.
The region of t in which the correlation function is consistent with ground-state saturation, but the average phase
factor has not yet reached the asymptotic value of A(MN � 3

2
m⇡), corresponds to the golden window in which the

StN degrades slower than predicted by Parisi-Lepage scaling.
The existence of gauge-field–dependent phase fluctuations of CA(t) leads to a “sign problem” in the path integral

in Eq. (18) defining hCA(t)i: the full path integrand is not positive-definite and therefore cannot be interpreted as a
probability distribution [380]. Sign problems notoriously occur for partition functions of theories with complex actions,
such as QCD with non-zero baryon chemical potential or with a CP-violating ✓ term and theories in Minkowski space-
time, and indicate that exponential increases in statistics are needed to achieve polynomial reduction in uncertainty
(see Ref. [389] for a review). Although the occurrence of sign problems in path integrals defining observables does not
obstruct standard Monte Carlo importance sampling strategies, the connection between phase fluctuations and StN
problems suggests that improving one problem should improve the other. Phase reweighting techniques [380, 388]
similar to constrained path methods in nonrelativistic quantum Monte Carlo calculations [390, 391], as well as phase
unwrapping techniques combined with a cumulant expansion [392] analogous to methods applied to QCD with non-zero
baryon chemical potential [393], demonstrate that reducing correlation function phase fluctuations leads to exponen-
tial StN improvement but introduces additional systematic uncertainties. An approach to reducing phase fluctuations



• Observables in QFT defined by path integrals that integrate field 
variables over a specified contour 


• Variances of observables are also defined similarly


• What happens in contour is modified?


• Holomorphic observables are unchanged (Cauchy’s theorem)


• Variance can change


• Look for deformations where variance is reduced


• Use ML technologies to optimise such a contour

Goals
Contour deformation for observables



• Consider Gaussian action for one degree of freedom


• Partition function and observables in Euclidean space  
 

• Average phase observable falls exponentially fast with k


• Variance 


• StN problem if we evaluate via Monte-Caro 
 

A simple example
Oscillatory integrals

Z =

Z
dxe�x2/2 =

p
2⇡
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2 , U8XkV

r?2`2 Z =
R
dx e�SiQv =

p
2⇡X h?Bb �+iBQM /2}M2b � :�mbbB�M T`Q#�#BHBiv K2�bm`2
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x2

2 /Z i?�i +�M #2 b�KTH2/ iQ ;Bp2 JQMi2 *�`HQ 2biBK�i2b Q7 Q#b2`p�#H2bX
J�Mv Q#b2`p�#H2b +�M #2 2z2+iBp2Hv +QKTmi2/ mbBM; i?Bb JQMi2 *�`HQ T`Q+2/m`2-
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• Integrand is holomorphic so by Cauchy’s theorem we can change the contour


• Many possibilities: simple choice


• Rewrite integral 
 
 
 
 
 
 
 
 
 

• No sign problem at all!


• Other contours will be worse 

A simple example
Contour deformation
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• Path integrals in QFT defined by integral over field values at every point 

• With a lattice regulator, reduces to high dimensional integral over variables 
parameterising fields  
 
 
 
(Jacobian present in general)


• Consider three cases


• U(1) gauge theory in 1+1d


• Complex scalar field theory in 0+1d


• SU(N) gauge theory in 1+1d

Path integrals in QFT

FERMILAB-PUB-20-095-T, INT-PUB-20-007, MIT-CTP/5182

Path integral contour deformations for noisy observables

William Detmold,1 Gurtej Kanwar,1 Michael L. Wagman,1, 2 and Neill C. Warrington3

1
Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

2
Fermi National Accelerator Laboratory, Batavia, IL 60510, USA

3
Institute for Nuclear Theory, University of Washington, Seattle, Washington 98195-1550

Monte Carlo studies of many quantum systems face exponentially severe signal-to-noise problems.
We show that noise arising from complex phase fluctuations of observables can be reduced without
introducing bias using path integral contour deformation techniques. A numerical study of contour
deformations for correlation functions in Abelian gauge theory and complex scalar field theory
demonstrates that variance can be reduced by orders of magnitude without modifying Monte Carlo
sampling.

Understanding the dynamics of strongly coupled quan-
tum systems is a fundamental challenge in many con-
texts including nuclear structure and reactions, con-
densed matter and cold atomic physics, and new physics
searches using hadrons and nuclei as probes. Strongly
coupled quantum theories generically cannot be solved
analytically, and Monte Carlo (MC) methods are typi-
cally used to calculate expectation values of observables
in these theories by sampling over high-dimensional con-
figuration spaces.

In lattice quantum field theories (QFTs) it has long
been realized that signal-to-noise (StN) ratios of MC es-
timates of imaginary-time correlation functions are ex-
ponentially small in the separations between the defining
operators [1, 2]. These signal-to-noise problems become
exponentially more severe for systems with increasing
charge and, for example, limit lattice quantum chromo-
dynamics (QCD) calculations of nuclei to systems with
baryon number A  5 [3–15] and obstruct calculations
of quantities needed to interpret experiments seeking to
identify new physics using large nuclei [16–18]. Simi-
lar StN problems obstruct calculations in nuclear many-
body theories [19–21], in spin and isospin asymmetric nu-
clear matter encountered in nuclear astrophysics [22–24],
and in quantum MC studies of non-relativistic fermions
in condensed matter [25–31] and cold atomic physics
[32, 33] contexts.

Correlation functions in imaginary time can be repre-
sented as path integrals of the form

hOi ⌘
1

Z

Z

M
DU e

�S(U)
O(U), (1)

where U is a quantum field, M is the integration mani-
fold describing field configuration space, O is a suitable
product of fields that includes creation and annihilation
operators for the quantum numbers of interest, and the
partition function is Z ⌘

R
M DU e

�S(U)
. The action S

is assumed to be real. For baryon correlation functions
in QCD, it was demonstrated in Ref. [34] that the StN
problem arises from quantum fluctuations of the complex
phase of O. A similar StN problem arises for correlation
functions of charged scalar fields, where averaging over

phase fluctuations is required to project correlation func-
tions to particular charge sectors [35]. These complex
phase fluctuations imply that the integrand of Eq. (1)
is not positive-definite or real and, as in systems with
complex actions, the integral is determined by near can-
cellation of contributions with complex phases resulting
in a sign problem.

In certain cases, methods have been developed to expo-
nentially improve sign and StN problems [36–48]. For ex-
ample, in dual-variable approaches, integrals over phase
fluctuations are computed analytically and sign prob-
lems are completely solved [49–56]. However, it remains
an open challenge to extend these methods to generic
observables in complicated QFTs such as QCD. Other
methods for taming StN problems such as phase unwrap-
ping [35] and multilevel integration for approximately
factorizable correlation functions [57–59] can be applied
to generic observables in complicated QFTs but intro-
duce additional systematic uncertainties.

This letter introduces a general, exact method for im-
proving the StN of noisy observables in theories with real
actions. Noting that StN problems for baryon and other
correlation functions arise from complex phase fluctu-
ations [34], we adapt manifold deformation techniques
that have been used previously to address sign problems
in QFTs with complex actions [60–84] to correlation func-
tion StN problems. Manifold deformation techniques are
based on Cauchy’s integral theorem, which states that
integrals of holomorphic functions are unchanged when
the domain of integration is smoothly deformed. Ap-
plied to path integrals, Cauchy’s theorem implies that
holomorphic observables, including correlation functions,
are unchanged if the integration contour is deformed.
However, the variance of a correlation function is non-
holomorphic when phase fluctuations are present, and
therefore will change. If integration contours with lower
variance can be found, then StN problems for observables
can be reduced without changing their expectation val-
ues. Methods for finding such contours are investigated
in this work.

Deformed observables — Cauchy’s theorem states
that the integral of a holomorphic function is unchanged

ar
X

iv
:2

00
3.

05
91

4v
1 

 [h
ep

-la
t] 

 1
2 

M
ar

 2
02

0

FERMILAB-PUB-20-095-T, INT-PUB-20-007, MIT-CTP/5182

Path integral contour deformations for noisy observables

William Detmold,1 Gurtej Kanwar,1 Michael L. Wagman,1, 2 and Neill C. Warrington3

1
Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

2
Fermi National Accelerator Laboratory, Batavia, IL 60510, USA

3
Institute for Nuclear Theory, University of Washington, Seattle, Washington 98195-1550

Monte Carlo studies of many quantum systems face exponentially severe signal-to-noise problems.
We show that noise arising from complex phase fluctuations of observables can be reduced without
introducing bias using path integral contour deformation techniques. A numerical study of contour
deformations for correlation functions in Abelian gauge theory and complex scalar field theory
demonstrates that variance can be reduced by orders of magnitude without modifying Monte Carlo
sampling.

Understanding the dynamics of strongly coupled quan-
tum systems is a fundamental challenge in many con-
texts including nuclear structure and reactions, con-
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cally used to calculate expectation values of observables
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charge and, for example, limit lattice quantum chromo-
dynamics (QCD) calculations of nuclei to systems with
baryon number A  5 [3–15] and obstruct calculations
of quantities needed to interpret experiments seeking to
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[32, 33] contexts.
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is assumed to be real. For baryon correlation functions
in QCD, it was demonstrated in Ref. [34] that the StN
problem arises from quantum fluctuations of the complex
phase of O. A similar StN problem arises for correlation
functions of charged scalar fields, where averaging over

phase fluctuations is required to project correlation func-
tions to particular charge sectors [35]. These complex
phase fluctuations imply that the integrand of Eq. (1)
is not positive-definite or real and, as in systems with
complex actions, the integral is determined by near can-
cellation of contributions with complex phases resulting
in a sign problem.

In certain cases, methods have been developed to expo-
nentially improve sign and StN problems [36–48]. For ex-
ample, in dual-variable approaches, integrals over phase
fluctuations are computed analytically and sign prob-
lems are completely solved [49–56]. However, it remains
an open challenge to extend these methods to generic
observables in complicated QFTs such as QCD. Other
methods for taming StN problems such as phase unwrap-
ping [35] and multilevel integration for approximately
factorizable correlation functions [57–59] can be applied
to generic observables in complicated QFTs but intro-
duce additional systematic uncertainties.

This letter introduces a general, exact method for im-
proving the StN of noisy observables in theories with real
actions. Noting that StN problems for baryon and other
correlation functions arise from complex phase fluctu-
ations [34], we adapt manifold deformation techniques
that have been used previously to address sign problems
in QFTs with complex actions [60–84] to correlation func-
tion StN problems. Manifold deformation techniques are
based on Cauchy’s integral theorem, which states that
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the domain of integration is smoothly deformed. Ap-
plied to path integrals, Cauchy’s theorem implies that
holomorphic observables, including correlation functions,
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holomorphic when phase fluctuations are present, and
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can be reduced without changing their expectation val-
ues. Methods for finding such contours are investigated
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• Cauchy’s Integral Theorem in pictures


• Extends straightforwardly to higher dimensions: a contour 
deformation from manifold MA to MB leaves the integral value 
unchanged if MA ∪ MB  bounds a region in which the integrand is 
holomorphic


• Non-zero density: see Alexandru et al. 2007.05436 for review


• Real-time evolution [Alexandru, et al. PRL117(081602), 
PRD95(114501); Mou, et al. JHEP11(135), Kanwar & Wagman  
PRD 104(014513)] 

Cauchy Theorem
Contour deformation of path integrals

RjN

6B;m`2 8Xk, a+?2K�iB+ BHHmbi`�iBQM Q7 +QMiQm` /27Q`K�iBQM rBi?BM � `2;BQM D BM r?B+? i?2
BMi2;`�M/ f Bb ?QHQKQ`T?B+X >QHQKQ`T?v BKTHB2b i?�i BMi2;`�iBQM Qp2` � +HQb2/ +QMiQm`
rBi?BM i?Bb `2;BQM ;Bp2b x2`Q- �b b?QrM QM i?2 H27iX �b � `2bmHi- BMi2;`�iBM; QM 2Bi?2` Q7
i?2 irQ +m`p2b 7Q`KBM; i?2 +HQb2 `2;BQM ;Bp2b i?2 b�K2 p�Hm2- �b b?QrM QM i?2 `B;?iX

m�iBQM Q7 i?2 BMi2;`�M/ BM i?2 T�i? BMi2;`�H /2}MBiBQM Q7 i?2 2tT2+i�iBQM p�Hm2
⌦
eikx

↵
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?QHQKQ`T?v Q7 i?2 BMi2;`�M/- r2 �`2 7`22 iQ /27Q`K i?Bb HBM2 BMi2;`�H BMiQ i?2 +QKTH2t
TH�M2X

�M 2z2+iBp2 +?QB+2 Q7 +QMiQm` /27Q`K�iBQM Bb BMbTB`2/ #v +QMbB/2`BM; i?2 7Q`K Q7
i?2 Q#b2`p�#H2 eikxX 6mM/�K2Mi�HHv- i?2 bB;M T`Q#H2K �M/ �bbQ+B�i2/ bB;M�H@iQ@MQBb2
T`Q#H2K #Qi? �`Bb2 #2+�mb2 i?Bb [m�MiBiv ?�b K�;MBim/2 1 7Q` �HH xX JQMi2 *�`HQ
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T?�b2b iQ T`Q/m+2 i?2 2tTQM2MiB�HHv bK�HH 2tT2+i�iBQM p�Hm2 QM �p2`�;2X A7 BMbi2�/
i?2 Q#b2`p�#H2 K2�bm`2/ QM b�KTH2b Q7 x ?�/ K�;MBim/2 �TT`QtBK�i2Hv 2[mBp�H2Mi
iQ i?2 2tT2+i�iBQM p�Hm2- i?2 K2�bm`2K2Mib rQmH/ BMbi2�/ #2 `2[mB`2/ iQ +Q?2`2MiHv
�p2`�;2 iQ;2i?2` #2+�mb2 �Mv �//BiBQM�H +�M+2HH�iBQM #2ir22M i?2 b�KTH2b rQmH/ bTQBH
i?2 2tT2+i�iBQM p�Hm2X h?Bb +�M #2 /B`2+iHv �+?B2p2/ #v /27Q`KBM; x ! x+ ikX

h?2 TQBMib R+ ik ⌘ {x+ ik : x 2 R} +QMbBbi Q7 � p�HB/ +QMiQm` Q7 BMi2;`�iBQM- �M/
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7Q` i?2 +QMiQm` Q7 BMi2;`�iBQMX AM �HH +QMiQm` /27Q`K�iBQMb /Bb+mbb2/ BM i?Bb +?�Ti2`- Bi
rBHH #2 +QMp2MB2Mi iQ mb2 i?2 Q`B;BM�H BMi2;`�iBQM p�`B�#H2 �b i?2 +QQ`/BM�i2 /2b+`BTiBQM
Q7 i?2 +QKTH2t +QMiQm` Q7 BMi2;`�iBQMX AM i?Bb bBKTH2 2t�KTH2- i?Bb +Q``2bTQM/b iQ
r`BiBM;

R
R+ik

dzf(z) =
R
dx f(z(x))- r?2`2 r2 �bbQ+B�i2 2�+? TQBMi BM i?2 +QKTH2t

+QMiQm` Q7 BMi2;`�iBQM rBi? � +QQ`/BM�i2 x #v z(x) = x + ikX h?2 BMi2;`�H Qp2` i?2
/27Q`K2/ +QMiQm` Q7 BMi2;`�iBQM i?2M bBKTHv i�F2b i?2 7Q`K Q7 � bi�M/�`/ BMi2;`�H Qp2`

Just high-dimensional contour deformation...

Deform all variables 
in high-dimensional 
configuration space

Integral value unchanged!

Deforming the path integral

https://arxiv.org/abs/2007.05436


• Most observables we are interested in correspond to holomorphic (or 
even entire) integrands


• Action is  polynomial in field variables so measure is holomorphic


• Observables are also polynomials in field 


• Fermions are integrated analytically giving determinant of Dirac 
operator (an O(V) polynomial of fields)


• The gauge field integration measure is a polynomial (det) x 
exponential


• Quark propagators (inverse of Dirac operator) are O(V) polynomials of 
gauge field

Holomorphic quantities
Contour deformation of path integrals



• Observable 


• After contour deformation 

• Define deformed observable 
 
 
where 

• Satisfies

Observifolds
Contour deformation of path integrals

2

when the manifold of integration M is continuously de-
formed to manifold fM, providedM can be deformed into
fM without crossing non-analyticities of the integrand.
Often the integrand of Eq. (1), e�S

O, may be analyti-
cally continued to a holomorphic function over complex-
ified field space (see e.g. Refs. [76, 85]), and therefore the
domain of integration can be deformed without changing
the path integral result. In this case, a manifold fM sat-
isfying the requirements of Cauchy’s theorem gives iden-
tical expectation values for O:

hOi =
1

Z

Z

fM
D eU e

�S(eU)
O(eU)

=
1

Z

Z

M
DU J(U) e�S(eU(U))

O(eU(U)).
(2)

Here eU : M ! fM is a bijective function of U that maps
base coordinates on M to points on fM, and J(U) =

det @ eU
@U is the corresponding Jacobian. A straightforward

way to evaluate the second line of Eq. (2) is to sample
configurations U from the original probability measure
e
�S(U)

/Z and instead evaluate the deformed observable

Q(U) ⌘ e
�[Seff (U)�S(U)]

O(eU(U)), (3)

where Se↵(U) ⌘ S(eU(U))� log J(U). Cauchy’s theorem
guarantees an identical mean

hO(U)i = hQ(U)i. (4)

Throughout this work, h·i denotes expectation with re-
spect to the original probability density e

�S(U)
/Z. Since

the distribution used for MC sampling is not modified in
the deformed observable approach, integrals over many
possible manifolds can be estimated using a single MC
ensemble; this property is useful for both contour opti-
mization and calculations with deformed observables.

This approach should be expected to work well un-
less the magnitude of the deformed observable fluctuates
severely, which may occur if there is an overlap problem
between Se↵(U) and S(U). In this case, one must sample
from modified weights and use reweighting to compute
Eq. (2); this was done for path integrals with complex
actions in Refs. [67, 68, 71, 72, 74–79, 82]. When many
observables are needed, however, the cost of repeated MC
ensemble generation based on each new manifold will be
high. We therefore only consider contour deformations
with good overlap between Se↵(U) and S(U) and apply
the deformed-observable approach throughout this work.

Optimizing the variance — Though manifold de-
formations leave expectation values unchanged, they
modify the variance of observables with complex phase
fluctuations. We restrict our investigation to observables
with purely real expectation value,1 where it is su�cient
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ifold for which Var(ReQ) ⌧ Var(ReO). If this can be
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will be improved.
The manifold minimizing Var(ReQ) depends on the

properties of the observable, and there is no single con-
tour deformation which optimizes the StN of all observ-
ables. To account for this non-uniqueness, we use the
methods of Refs. [77, 78], minimizing the variance for
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Crucially, the manifold parameters can be iteratively im-
proved without generating new ensembles. This tech-
nique is used to optimize the integration contour in the
second example below.
Abelian gauge theory — We first demonstrate

the method on a two-dimensional U(1) gauge theory
with open boundary conditions. The central values
and variances of observables can be computed analyt-
ically in this theory and are used to validate numeri-
cal results. The Wilson action [86] for U(1) gauge the-
ory in 2D can be expressed in terms of the plaquette
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Eq. (2); this was done for path integrals with complex
actions in Refs. [67, 68, 71, 72, 74–79, 82]. When many
observables are needed, however, the cost of repeated MC
ensemble generation based on each new manifold will be
high. We therefore only consider contour deformations
with good overlap between Se↵(U) and S(U) and apply
the deformed-observable approach throughout this work.
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ables. To account for this non-uniqueness, we use the
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nique is used to optimize the integration contour in the
second example below.
Abelian gauge theory — We first demonstrate

the method on a two-dimensional U(1) gauge theory
with open boundary conditions. The central values
and variances of observables can be computed analyt-
ically in this theory and are used to validate numeri-
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Px = U

1
xU

2
x+1̂

(U1
x+2̂

)†(U2
x)

† where U
µ
x 2 U(1) and a

square lattice xµ 2 {0, . . . , L} for µ 2 {1, 2} is used.
Defining ✓x ⌘ argPx, the action is given by

SG(✓) ⌘ ��

X

x

cos ✓x, (8)

where the sum excludes the sites on the open boundaries,
i.e. xµ 6= L. In this theory, there is a change of variables
with unit Jacobian to ✓x and residual degrees of freedom
that can be trivially integrated out, allowing the partition
function to be analytically evaluated as

Z ⌘

Z Y

x


d✓x

2⇡
e
� cos ✓x

�
= I0(�)

V
, (9)

2
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formed to manifold fM, providedM can be deformed into
fM without crossing non-analyticities of the integrand.
Often the integrand of Eq. (1), e�S
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cally continued to a holomorphic function over complex-
ified field space (see e.g. Refs. [76, 85]), and therefore the
domain of integration can be deformed without changing
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isfying the requirements of Cauchy’s theorem gives iden-
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Here eU : M ! fM is a bijective function of U that maps
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@U is the corresponding Jacobian. A straightforward
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configurations U from the original probability measure
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where Se↵(U) ⌘ S(eU(U))� log J(U). Cauchy’s theorem
guarantees an identical mean

hO(U)i = hQ(U)i. (4)

Throughout this work, h·i denotes expectation with re-
spect to the original probability density e

�S(U)
/Z. Since

the distribution used for MC sampling is not modified in
the deformed observable approach, integrals over many
possible manifolds can be estimated using a single MC
ensemble; this property is useful for both contour opti-
mization and calculations with deformed observables.

This approach should be expected to work well un-
less the magnitude of the deformed observable fluctuates
severely, which may occur if there is an overlap problem
between Se↵(U) and S(U). In this case, one must sample
from modified weights and use reweighting to compute
Eq. (2); this was done for path integrals with complex
actions in Refs. [67, 68, 71, 72, 74–79, 82]. When many
observables are needed, however, the cost of repeated MC
ensemble generation based on each new manifold will be
high. We therefore only consider contour deformations
with good overlap between Se↵(U) and S(U) and apply
the deformed-observable approach throughout this work.

Optimizing the variance — Though manifold de-
formations leave expectation values unchanged, they
modify the variance of observables with complex phase
fluctuations. We restrict our investigation to observables
with purely real expectation value,1 where it is su�cient

1 The general case follows by applying the techniques discussed
here to hRe Qi and analagous techniques to hIm Qi.
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ifold for which Var(ReQ) ⌧ Var(ReO). If this can be
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will be improved.
The manifold minimizing Var(ReQ) depends on the

properties of the observable, and there is no single con-
tour deformation which optimizes the StN of all observ-
ables. To account for this non-uniqueness, we use the
methods of Refs. [77, 78], minimizing the variance for
each observable over a family of manifolds smoothly pa-
rameterized by a vector of real numbers ~!. The choice
of manifold fM(~!), defined by the map eU(U ; ~!), can be
numerically optimized using stochastic gradient descent
based on MC estimates of
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Crucially, the manifold parameters can be iteratively im-
proved without generating new ensembles. This tech-
nique is used to optimize the integration contour in the
second example below.
Abelian gauge theory — We first demonstrate

the method on a two-dimensional U(1) gauge theory
with open boundary conditions. The central values
and variances of observables can be computed analyt-
ically in this theory and are used to validate numeri-
cal results. The Wilson action [86] for U(1) gauge the-
ory in 2D can be expressed in terms of the plaquette
Px = U

1
xU

2
x+1̂

(U1
x+2̂

)†(U2
x)

† where U
µ
x 2 U(1) and a

square lattice xµ 2 {0, . . . , L} for µ 2 {1, 2} is used.
Defining ✓x ⌘ argPx, the action is given by

SG(✓) ⌘ ��

X

x

cos ✓x, (8)
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i.e. xµ 6= L. In this theory, there is a change of variables
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fM without crossing non-analyticities of the integrand.
Often the integrand of Eq. (1), e�S
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cally continued to a holomorphic function over complex-
ified field space (see e.g. Refs. [76, 85]), and therefore the
domain of integration can be deformed without changing
the path integral result. In this case, a manifold fM sat-
isfying the requirements of Cauchy’s theorem gives iden-
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Here eU : M ! fM is a bijective function of U that maps
base coordinates on M to points on fM, and J(U) =
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way to evaluate the second line of Eq. (2) is to sample
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/Z and instead evaluate the deformed observable
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�[Seff (U)�S(U)]

O(eU(U)), (3)

where Se↵(U) ⌘ S(eU(U))� log J(U). Cauchy’s theorem
guarantees an identical mean

hO(U)i = hQ(U)i. (4)

Throughout this work, h·i denotes expectation with re-
spect to the original probability density e

�S(U)
/Z. Since

the distribution used for MC sampling is not modified in
the deformed observable approach, integrals over many
possible manifolds can be estimated using a single MC
ensemble; this property is useful for both contour opti-
mization and calculations with deformed observables.

This approach should be expected to work well un-
less the magnitude of the deformed observable fluctuates
severely, which may occur if there is an overlap problem
between Se↵(U) and S(U). In this case, one must sample
from modified weights and use reweighting to compute
Eq. (2); this was done for path integrals with complex
actions in Refs. [67, 68, 71, 72, 74–79, 82]. When many
observables are needed, however, the cost of repeated MC
ensemble generation based on each new manifold will be
high. We therefore only consider contour deformations
with good overlap between Se↵(U) and S(U) and apply
the deformed-observable approach throughout this work.

Optimizing the variance — Though manifold de-
formations leave expectation values unchanged, they
modify the variance of observables with complex phase
fluctuations. We restrict our investigation to observables
with purely real expectation value,1 where it is su�cient
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ifold for which Var(ReQ) ⌧ Var(ReO). If this can be
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will be improved.
The manifold minimizing Var(ReQ) depends on the

properties of the observable, and there is no single con-
tour deformation which optimizes the StN of all observ-
ables. To account for this non-uniqueness, we use the
methods of Refs. [77, 78], minimizing the variance for
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nique is used to optimize the integration contour in the
second example below.
Abelian gauge theory — We first demonstrate

the method on a two-dimensional U(1) gauge theory
with open boundary conditions. The central values
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ically in this theory and are used to validate numeri-
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second example below.
Abelian gauge theory — We first demonstrate

the method on a two-dimensional U(1) gauge theory
with open boundary conditions. The central values
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Monte Carlo studies of many quantum systems face exponentially severe signal-to-noise problems.
We show that noise arising from complex phase fluctuations of observables can be reduced without
introducing bias using path integral contour deformation techniques. A numerical study of contour
deformations for correlation functions in Abelian gauge theory and complex scalar field theory
demonstrates that variance can be reduced by orders of magnitude without modifying Monte Carlo
sampling.

Understanding the dynamics of strongly coupled quan-
tum systems is a fundamental challenge in many con-
texts including nuclear structure and reactions, con-
densed matter and cold atomic physics, and new physics
searches using hadrons and nuclei as probes. Strongly
coupled quantum theories generically cannot be solved
analytically, and Monte Carlo (MC) methods are typi-
cally used to calculate expectation values of observables
in these theories by sampling over high-dimensional con-
figuration spaces.

In lattice quantum field theories (QFTs) it has long
been realized that signal-to-noise (StN) ratios of MC es-
timates of imaginary-time correlation functions are ex-
ponentially small in the separations between the defining
operators [1, 2]. These signal-to-noise problems become
exponentially more severe for systems with increasing
charge and, for example, limit lattice quantum chromo-
dynamics (QCD) calculations of nuclei to systems with
baryon number A  5 [3–15] and obstruct calculations
of quantities needed to interpret experiments seeking to
identify new physics using large nuclei [16–18]. Simi-
lar StN problems obstruct calculations in nuclear many-
body theories [19–21], in spin and isospin asymmetric nu-
clear matter encountered in nuclear astrophysics [22–24],
and in quantum MC studies of non-relativistic fermions
in condensed matter [25–31] and cold atomic physics
[32, 33] contexts.

Correlation functions in imaginary time can be repre-
sented as path integrals of the form

hOi ⌘
1

Z

Z

M
DU e

�S(U)
O(U), (1)

where U is a quantum field, M is the integration mani-
fold describing field configuration space, O is a suitable
product of fields that includes creation and annihilation
operators for the quantum numbers of interest, and the
partition function is Z ⌘

R
M DU e

�S(U)
. The action S

is assumed to be real. For baryon correlation functions
in QCD, it was demonstrated in Ref. [34] that the StN
problem arises from quantum fluctuations of the complex
phase of O. A similar StN problem arises for correlation
functions of charged scalar fields, where averaging over

phase fluctuations is required to project correlation func-
tions to particular charge sectors [35]. These complex
phase fluctuations imply that the integrand of Eq. (1)
is not positive-definite or real and, as in systems with
complex actions, the integral is determined by near can-
cellation of contributions with complex phases resulting
in a sign problem.

In certain cases, methods have been developed to expo-
nentially improve sign and StN problems [36–48]. For ex-
ample, in dual-variable approaches, integrals over phase
fluctuations are computed analytically and sign prob-
lems are completely solved [49–56]. However, it remains
an open challenge to extend these methods to generic
observables in complicated QFTs such as QCD. Other
methods for taming StN problems such as phase unwrap-
ping [35] and multilevel integration for approximately
factorizable correlation functions [57–59] can be applied
to generic observables in complicated QFTs but intro-
duce additional systematic uncertainties.

This letter introduces a general, exact method for im-
proving the StN of noisy observables in theories with real
actions. Noting that StN problems for baryon and other
correlation functions arise from complex phase fluctu-
ations [34], we adapt manifold deformation techniques
that have been used previously to address sign problems
in QFTs with complex actions [60–84] to correlation func-
tion StN problems. Manifold deformation techniques are
based on Cauchy’s integral theorem, which states that
integrals of holomorphic functions are unchanged when
the domain of integration is smoothly deformed. Ap-
plied to path integrals, Cauchy’s theorem implies that
holomorphic observables, including correlation functions,
are unchanged if the integration contour is deformed.
However, the variance of a correlation function is non-
holomorphic when phase fluctuations are present, and
therefore will change. If integration contours with lower
variance can be found, then StN problems for observables
can be reduced without changing their expectation val-
ues. Methods for finding such contours are investigated
in this work.

Deformed observables — Cauchy’s theorem states
that the integral of a holomorphic function is unchanged

ar
X

iv
:2

00
3.

05
91

4v
1 

 [h
ep

-la
t] 

 1
2 

M
ar

 2
02

0

J(U) = det
@ eU
@U

<latexit sha1_base64="4Ys5GM3AHTVI5rMtal4iXoGSffw=">AAACIHicbZDLSgMxFIYzXmu9jbp0EyxC3ZSZItSNUHQjrio4baFTSiZzpg3NXEgyShnmUdz4Km5cKKI7fRrTC6itPwR+vnNOkvN7CWdSWdansbS8srq2Xtgobm5t7+yae/tNGaeCgkNjHou2RyRwFoGjmOLQTgSQ0OPQ8oaX43rrDoRkcXSrRgl0Q9KPWMAoURr1zNp12Tk5z1wRYh9U7gaC0MxNiFCMcOzeM00Z9yFz8vyHO3nPLFkVayK8aOyZKaGZGj3zw/VjmoYQKcqJlB27mqhuNr6QcsiLbiohIXRI+tDRNiIhyG42WTDHx5r4OIiFPpHCE/p7IiOhlKPQ050hUQM5XxvD/2qdVAVn3YxFSaogotOHgpRjFeNxWthnAqjiI20IFUz/FdMB0RkpnWlRh2DPr7xomtWKbVXsm9NS/WIWRwEdoiNURjaqoTq6Qg3kIIoe0BN6Qa/Go/FsvBnv09YlYzZzgP7I+PoGyTGkAw==</latexit><latexit sha1_base64="lWlh/On+z0aZzwvJwx9xAeKC2jk=">AAACRXicjVC7SgNBFJ31GeMramkzGITYhN0gxEYI2oiVgpsEsiHMzt5Nhsw+mJlVwrKf4tdY2FjZ+RE2IrY6SRbUxMIDA4dzzuXOPW7MmVSm+WIsLC4tr6wW1orrG5tb26Wd3aaMEkHBphGPRNslEjgLwVZMcWjHAkjgcmi5w/Ox37oFIVkU3qhRDN2A9EPmM0qUlnql+mXFPjpNHRFgD1Tm+ILQ1ImJUIxw7NwxrTLuQWpn2bduZ71S2ayaE+B5YuWkjHL8L94rPTteRJMAQkU5kbJj1WLVTcdbKYes6CQSYkKHpA8dTUMSgOymkxYyfKgVD/uR0C9UeKL+nEhJIOUocHUyIGogZ72x+JfXSZR/0k1ZGCcKQjpd5CccqwiPK8UeE0AVH2lCqGD6r5gOiC5S6eKL+nRr9tB50qxVLbNqXR+XG2d5ZwW0jw5QBVmojhroAl0hG1F0jx7QE3ozHo1X4934mEYXjHxmD/2C8fkFOwurfA==</latexit><latexit sha1_base64="lWlh/On+z0aZzwvJwx9xAeKC2jk=">AAACRXicjVC7SgNBFJ31GeMramkzGITYhN0gxEYI2oiVgpsEsiHMzt5Nhsw+mJlVwrKf4tdY2FjZ+RE2IrY6SRbUxMIDA4dzzuXOPW7MmVSm+WIsLC4tr6wW1orrG5tb26Wd3aaMEkHBphGPRNslEjgLwVZMcWjHAkjgcmi5w/Ox37oFIVkU3qhRDN2A9EPmM0qUlnql+mXFPjpNHRFgD1Tm+ILQ1ImJUIxw7NwxrTLuQWpn2bduZ71S2ayaE+B5YuWkjHL8L94rPTteRJMAQkU5kbJj1WLVTcdbKYes6CQSYkKHpA8dTUMSgOymkxYyfKgVD/uR0C9UeKL+nEhJIOUocHUyIGogZ72x+JfXSZR/0k1ZGCcKQjpd5CccqwiPK8UeE0AVH2lCqGD6r5gOiC5S6eKL+nRr9tB50qxVLbNqXR+XG2d5ZwW0jw5QBVmojhroAl0hG1F0jx7QE3ozHo1X4934mEYXjHxmD/2C8fkFOwurfA==</latexit><latexit sha1_base64="lWlh/On+z0aZzwvJwx9xAeKC2jk=">AAACRXicjVC7SgNBFJ31GeMramkzGITYhN0gxEYI2oiVgpsEsiHMzt5Nhsw+mJlVwrKf4tdY2FjZ+RE2IrY6SRbUxMIDA4dzzuXOPW7MmVSm+WIsLC4tr6wW1orrG5tb26Wd3aaMEkHBphGPRNslEjgLwVZMcWjHAkjgcmi5w/Ox37oFIVkU3qhRDN2A9EPmM0qUlnql+mXFPjpNHRFgD1Tm+ILQ1ImJUIxw7NwxrTLuQWpn2bduZ71S2ayaE+B5YuWkjHL8L94rPTteRJMAQkU5kbJj1WLVTcdbKYes6CQSYkKHpA8dTUMSgOymkxYyfKgVD/uR0C9UeKL+nEhJIOUocHUyIGogZ72x+JfXSZR/0k1ZGCcKQjpd5CccqwiPK8UeE0AVH2lCqGD6r5gOiC5S6eKL+nRr9tB50qxVLbNqXR+XG2d5ZwW0jw5QBVmojhroAl0hG1F0jx7QE3ozHo1X4934mEYXjHxmD/2C8fkFOwurfA==</latexit>

Jacobian

bijective map



• Variance of deformed observable is


• First term has non-holomorphic integrand


• Possible that                                             for some deformed manifold 


• In which case StN(Re(Q)) > StN(Re(O))   


• Parameterise manifold and find best parameters via gradient descent 
(no need for new ensemble generation) 
 
 

Observifolds
Contour deformation of path integrals

2

when the manifold of integration M is continuously de-
formed to manifold fM, providedM can be deformed into
fM without crossing non-analyticities of the integrand.
Often the integrand of Eq. (1), e�S

O, may be analyti-
cally continued to a holomorphic function over complex-
ified field space (see e.g. Refs. [76, 85]), and therefore the
domain of integration can be deformed without changing
the path integral result. In this case, a manifold fM sat-
isfying the requirements of Cauchy’s theorem gives iden-
tical expectation values for O:

hOi =
1

Z

Z

fM
D eU e

�S(eU)
O(eU)

=
1

Z

Z

M
DU J(U) e�S(eU(U))

O(eU(U)).
(2)

Here eU : M ! fM is a bijective function of U that maps
base coordinates on M to points on fM, and J(U) =

det @ eU
@U is the corresponding Jacobian. A straightforward

way to evaluate the second line of Eq. (2) is to sample
configurations U from the original probability measure
e
�S(U)

/Z and instead evaluate the deformed observable

Q(U) ⌘ e
�[Seff (U)�S(U)]

O(eU(U)), (3)

where Se↵(U) ⌘ S(eU(U))� log J(U). Cauchy’s theorem
guarantees an identical mean

hO(U)i = hQ(U)i. (4)

Throughout this work, h·i denotes expectation with re-
spect to the original probability density e

�S(U)
/Z. Since

the distribution used for MC sampling is not modified in
the deformed observable approach, integrals over many
possible manifolds can be estimated using a single MC
ensemble; this property is useful for both contour opti-
mization and calculations with deformed observables.

This approach should be expected to work well un-
less the magnitude of the deformed observable fluctuates
severely, which may occur if there is an overlap problem
between Se↵(U) and S(U). In this case, one must sample
from modified weights and use reweighting to compute
Eq. (2); this was done for path integrals with complex
actions in Refs. [67, 68, 71, 72, 74–79, 82]. When many
observables are needed, however, the cost of repeated MC
ensemble generation based on each new manifold will be
high. We therefore only consider contour deformations
with good overlap between Se↵(U) and S(U) and apply
the deformed-observable approach throughout this work.

Optimizing the variance — Though manifold de-
formations leave expectation values unchanged, they
modify the variance of observables with complex phase
fluctuations. We restrict our investigation to observables
with purely real expectation value,1 where it is su�cient

1 The general case follows by applying the techniques discussed
here to hRe Qi and analagous techniques to hIm Qi.

to consider

Var(ReQ) =
⌦
(ReQ)2

↵
� (Re hQi)2 . (5)

While (Re hQi)2 = (Re hOi)2 is una↵ected by the choice
of manifold, the variance is modified because

⌦
(ReQ)2

↵

is not the integral of a holomorphic function. For each
observable O, the task is then to find an optimized man-
ifold for which Var(ReQ) ⌧ Var(ReO). If this can be
achieved, the StN ratio

StN(ReQ) ⌘
|Re hOi |p
Var(ReQ)

(6)

will be improved.
The manifold minimizing Var(ReQ) depends on the

properties of the observable, and there is no single con-
tour deformation which optimizes the StN of all observ-
ables. To account for this non-uniqueness, we use the
methods of Refs. [77, 78], minimizing the variance for
each observable over a family of manifolds smoothly pa-
rameterized by a vector of real numbers ~!. The choice
of manifold fM(~!), defined by the map eU(U ; ~!), can be
numerically optimized using stochastic gradient descent
based on MC estimates of

r~! Var(ReQ) =
⌦
r~!(ReQ)2

↵
= 2 hReQRer~! Qi

= 2

*
(ReQ)Re

 
Q

"
�r~! Se↵ +

r~! O(eU)

O(eU)

#!+
.

(7)
Crucially, the manifold parameters can be iteratively im-
proved without generating new ensembles. This tech-
nique is used to optimize the integration contour in the
second example below.
Abelian gauge theory — We first demonstrate

the method on a two-dimensional U(1) gauge theory
with open boundary conditions. The central values
and variances of observables can be computed analyt-
ically in this theory and are used to validate numeri-
cal results. The Wilson action [86] for U(1) gauge the-
ory in 2D can be expressed in terms of the plaquette
Px = U

1
xU

2
x+1̂

(U1
x+2̂

)†(U2
x)

† where U
µ
x 2 U(1) and a

square lattice xµ 2 {0, . . . , L} for µ 2 {1, 2} is used.
Defining ✓x ⌘ argPx, the action is given by

SG(✓) ⌘ ��

X

x

cos ✓x, (8)

where the sum excludes the sites on the open boundaries,
i.e. xµ 6= L. In this theory, there is a change of variables
with unit Jacobian to ✓x and residual degrees of freedom
that can be trivially integrated out, allowing the partition
function to be analytically evaluated as

Z ⌘

Z Y

x


d✓x

2⇡
e
� cos ✓x

�
= I0(�)

V
, (9)
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fM without crossing non-analyticities of the integrand.
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the deformed-observable approach throughout this work.

Optimizing the variance — Though manifold de-
formations leave expectation values unchanged, they
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ables. To account for this non-uniqueness, we use the
methods of Refs. [77, 78], minimizing the variance for
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rameterized by a vector of real numbers ~!. The choice
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second example below.
Abelian gauge theory — We first demonstrate

the method on a two-dimensional U(1) gauge theory
with open boundary conditions. The central values
and variances of observables can be computed analyt-
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second example below.
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the method on a two-dimensional U(1) gauge theory
with open boundary conditions. The central values
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i.e. xµ 6= L. In this theory, there is a change of variables
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Have assumed 

here <O> is real



• Many possible deformations


• Some guidance from physics


• Simple intuitive deformations such as constant 
vertical shifts in imaginary direction 

• More complex position dependent vertical shifts 


• Arbitrary (Cauchy-preserving) deformations 

• Can not use original coordinate to parameterise

Observifolds in practice
Contour deformation of path integrals
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i?2 7mM+iBQM f /27Q`KBM; 2�+? +QKTQM2Mi Q7 i?2 ;�m;2 }2H/ +�M ;2M2`�HHv /2T2M/ QM
Qi?2` +QKTQM2Mib- �M/ � /2b+`BTiBQM Q7 i?Bb /2T2M/2M+2 �M/ i?2 +QKTmi�iBQM Q7 i?2
C�+Q#B�M �`2 /2b+`B#2/ BM a2+X 8XjXj #2HQrX

8XjXk .27Q`K�iBQMb Q7 SU(N) p�`B�#H2b
S`2pBQmb rQ`Fb ?�p2 T2`7Q`K2/ +QKTH2t +QMiQm` /27Q`K�iBQMb �M/ +�H+mH�iBQMb Q7 G27@
b+?2ix i?BK#H2b 7Q` SU(N) p�`B�#H2b BM (0 + 1). Z*. �M/ Z*. BM i?2 ?2�pv@/2Mb2
HBKBi (98e- 983- 9d8- 93j- 939)X S�`�K2i2`Bx�iBQMb Q7 K�MB7QH/b mb2/ BM i?2b2 rQ`Fb
2Bi?2` `2Hv QM rQ`FBM; BM � /B�;QM�H ;�m;2 Q` H27i@KmHiBTHvBM; #v � +QKTH2tB}2/ ;`QmT
2H2K2Mi i?�i Bb � +QMbi�Mi rBi? `2bT2+i iQ i?2 ;�m;2 p�`B�#H2bX q2 ?2`2 BMi`Q/m+2 �M
�TT`Q�+? iQ /27Q`KBM; SU(N) p�`B�#H2b #�b2/ BMbi2�/ QM �M �M;mH�` T�`�K2i2`Bx�iBQM
Q7 i?2 ;`QmT K�MB7QH/X h?Bb �M;mH�` T�`�K2i2`Bx�iBQM �HHQrb � bBKTH2 /2}MBiBQM Q7 �
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6B;m`2 8X3, o2`iB+�H b?B7i /27Q`K�iBQMb pbX ;2M2`�H +QMiQm` /27Q`K�iBQMbX 6Q` p2`iB+�H
b?B7i +QMiQm` /27Q`K�iBQMb- 2�+? TQBMi QM i?2 Q`B;BM�H +QMiQm` Bb K�TT2/ iQ � TQBMi
rBi? B/2MiB+�H `2�H +QKTQM2Mi- �b b?QrM QM i?2 H27iX h?Bb 2t+Hm/2b bQK2 +?QB+2b Q7 p�HB/
+QMiQm`b- BM+Hm/BM; 7Q` 2t�KTH2 i?2 +QMiQm` b?QrM QM i?2 `B;?iX

QMHv i2`Kb i?�i �`2 T2`BQ/B+ BM i?2 2M/TQBMib-

f(�;�,�) =
⇤X

n=0

�n sin(n�+ �n). U8X9kV

h?2 +miQz ⇤ /2i2`KBM2b i?2 ?B;?2bi KQ/2 BM+Hm/2/ BM i?2 2tT�MbBQM �M/ i?2 `2�H
MmK#2`b � = (�1, . . . ,�⇤) �M/ � = (�1, . . . ,�⇤) T�`�K2i2`Bx2 i?2 b+�HBM; �M/ T?�b2
Qzb2i Q7 i?2 6Qm`B2` KQ/2b BM+Hm/2/X �b ⇤ Bb BM+`2�b2/- i?2 2tT`2bbBpBiv Q7 i?2 7mM+iBQM
f Bb bvbi2K�iB+�HHv BKT`Qp2/ �i i?2 +Qbi Q7 i?2 BM+HmbBQM Q7 �//BiBQM�H i2`Kb BMpQHpBM;
�//BiBQM�H T�`�K2i2`b i?�i Kmbi #2 QTiBKBx2/X

h?2 C�+Q#B�M 7Q` p2`iB+�H b?B7i /27Q`K�iBQMb mbBM; � 6Qm`B2` 2tT�MbBQM +�M #2
bi`�B;?i7Q`r�`/Hv +�H+mH�i2/ 7Q` QM2 U(1) p�`B�#H2- ;BpBM;

ej(U = ei�) = 1 + if 0
(�) = 1 + i

⇤X

n=0

n�n cos(n�+ �n), U8X9jV

r?2`2 r2 mb2 HQr2`+�b2 MQi�iBQM iQ /BbiBM;mBb? bBM;H2@p�`B�#H2 C�+Q#B�Mb 7`QK i?2 7mHH
C�+Q#B�M 7Q` i`�Mb7Q`K�iBQMb BM H�iiB+2 ;�m;2 i?2Q`v #2HQrX 6Q` H�iiB+2 ;�m;2 i?2Q`v-
i?2 7mM+iBQM f /27Q`KBM; 2�+? +QKTQM2Mi Q7 i?2 ;�m;2 }2H/ +�M ;2M2`�HHv /2T2M/ QM
Qi?2` +QKTQM2Mib- �M/ � /2b+`BTiBQM Q7 i?Bb /2T2M/2M+2 �M/ i?2 +QKTmi�iBQM Q7 i?2
C�+Q#B�M �`2 /2b+`B#2/ BM a2+X 8XjXj #2HQrX

8XjXk .27Q`K�iBQMb Q7 SU(N) p�`B�#H2b
S`2pBQmb rQ`Fb ?�p2 T2`7Q`K2/ +QKTH2t +QMiQm` /27Q`K�iBQMb �M/ +�H+mH�iBQMb Q7 G27@
b+?2ix i?BK#H2b 7Q` SU(N) p�`B�#H2b BM (0 + 1). Z*. �M/ Z*. BM i?2 ?2�pv@/2Mb2
HBKBi (98e- 983- 9d8- 93j- 939)X S�`�K2i2`Bx�iBQMb Q7 K�MB7QH/b mb2/ BM i?2b2 rQ`Fb
2Bi?2` `2Hv QM rQ`FBM; BM � /B�;QM�H ;�m;2 Q` H27i@KmHiBTHvBM; #v � +QKTH2tB}2/ ;`QmT
2H2K2Mi i?�i Bb � +QMbi�Mi rBi? `2bT2+i iQ i?2 ;�m;2 p�`B�#H2bX q2 ?2`2 BMi`Q/m+2 �M
�TT`Q�+? iQ /27Q`KBM; SU(N) p�`B�#H2b #�b2/ BMbi2�/ QM �M �M;mH�` T�`�K2i2`Bx�iBQM
Q7 i?2 ;`QmT K�MB7QH/X h?Bb �M;mH�` T�`�K2i2`Bx�iBQM �HHQrb � bBKTH2 /2}MBiBQM Q7 �

constant shift

RjN

6B;m`2 8Xk, a+?2K�iB+ BHHmbi`�iBQM Q7 +QMiQm` /27Q`K�iBQM rBi?BM � `2;BQM D BM r?B+? i?2
BMi2;`�M/ f Bb ?QHQKQ`T?B+X >QHQKQ`T?v BKTHB2b i?�i BMi2;`�iBQM Qp2` � +HQb2/ +QMiQm`
rBi?BM i?Bb `2;BQM ;Bp2b x2`Q- �b b?QrM QM i?2 H27iX �b � `2bmHi- BMi2;`�iBM; QM 2Bi?2` Q7
i?2 irQ +m`p2b 7Q`KBM; i?2 +HQb2 `2;BQM ;Bp2b i?2 b�K2 p�Hm2- �b b?QrM QM i?2 `B;?iX

m�iBQM Q7 i?2 BMi2;`�M/ BM i?2 T�i? BMi2;`�H /2}MBiBQM Q7 i?2 2tT2+i�iBQM p�Hm2
⌦
eikx

↵

;Bp2b i?2 7mM+iBQM eikze�z
2
/2 r?B+? Bb ?QHQKQ`T?B+ 7Q` �HH z 2 CX h?2 Q`B;BM�H BMi2;`�H

+�M #2 +QMbB/2`2/ � HBM2 BMi2;`�H �HQM; i?2 `2�H HBM2 rBi?BM i?2 +QKTH2t /QK�BM Q7 zX "v
?QHQKQ`T?v Q7 i?2 BMi2;`�M/- r2 �`2 7`22 iQ /27Q`K i?Bb HBM2 BMi2;`�H BMiQ i?2 +QKTH2t
TH�M2X

�M 2z2+iBp2 +?QB+2 Q7 +QMiQm` /27Q`K�iBQM Bb BMbTB`2/ #v +QMbB/2`BM; i?2 7Q`K Q7
i?2 Q#b2`p�#H2 eikxX 6mM/�K2Mi�HHv- i?2 bB;M T`Q#H2K �M/ �bbQ+B�i2/ bB;M�H@iQ@MQBb2
T`Q#H2K #Qi? �`Bb2 #2+�mb2 i?Bb [m�MiBiv ?�b K�;MBim/2 1 7Q` �HH xX JQMi2 *�`HQ
b�KTH2b Q7 i?Bb mMBi@MQ`K +QKTH2t p�Hm2 Kmbi i?2M ?�p2 /2HB+�i2Hv +�M+2HBM; +QKTH2t
T?�b2b iQ T`Q/m+2 i?2 2tTQM2MiB�HHv bK�HH 2tT2+i�iBQM p�Hm2 QM �p2`�;2X A7 BMbi2�/
i?2 Q#b2`p�#H2 K2�bm`2/ QM b�KTH2b Q7 x ?�/ K�;MBim/2 �TT`QtBK�i2Hv 2[mBp�H2Mi
iQ i?2 2tT2+i�iBQM p�Hm2- i?2 K2�bm`2K2Mib rQmH/ BMbi2�/ #2 `2[mB`2/ iQ +Q?2`2MiHv
�p2`�;2 iQ;2i?2` #2+�mb2 �Mv �//BiBQM�H +�M+2HH�iBQM #2ir22M i?2 b�KTH2b rQmH/ bTQBH
i?2 2tT2+i�iBQM p�Hm2X h?Bb +�M #2 /B`2+iHv �+?B2p2/ #v /27Q`KBM; x ! x+ ikX

h?2 TQBMib R+ ik ⌘ {x+ ik : x 2 R} +QMbBbi Q7 � p�HB/ +QMiQm` Q7 BMi2;`�iBQM- �M/
?QHQKQ`T?v Q7 i?2 BMi2;`�M/ �HHQrb mb iQ `2r`Bi2 i?2 T�i? BMi2;`�H Qp2` i?Bb /QK�BM
rBi?Qmi �z2+iBM; 2tT2+i�iBQM p�Hm2bX q`Bii2M �b +QKTH2t HBM2 BMi2;`�Hb-

D
eikx

E
=

1

Z

Z

R
dz eikze�

z2

2 =
1

Z

Z

R+ik

dz eikze�
z2

2 . U8X3V

LQi2 i?�i i?Bb Bb [mBi2 /BbiBM+i 7`QK � +?�M;2 Q7 p�`B�#H2b- BM i?�i r2 BMi2;`�i2 Qp2` �M
2MiB`2Hv /BbiBM+i /QK�BM R+ik ⇢ C `�i?2` i?�M `2T�`�K2i2`BxBM; i?2 BMi2;`�iBQM Qp2` RX
hQ +QM+`2i2Hv T2`7Q`K i?2 BMi2;`�iBQM Qp2` R+ik- ?Qr2p2`- +QQ`/BM�i2b Kmbi #2 +?Qb2M
7Q` i?2 +QMiQm` Q7 BMi2;`�iBQMX AM �HH +QMiQm` /27Q`K�iBQMb /Bb+mbb2/ BM i?Bb +?�Ti2`- Bi
rBHH #2 +QMp2MB2Mi iQ mb2 i?2 Q`B;BM�H BMi2;`�iBQM p�`B�#H2 �b i?2 +QQ`/BM�i2 /2b+`BTiBQM
Q7 i?2 +QKTH2t +QMiQm` Q7 BMi2;`�iBQMX AM i?Bb bBKTH2 2t�KTH2- i?Bb +Q``2bTQM/b iQ
r`BiBM;

R
R+ik

dzf(z) =
R
dx f(z(x))- r?2`2 r2 �bbQ+B�i2 2�+? TQBMi BM i?2 +QKTH2t

+QMiQm` Q7 BMi2;`�iBQM rBi? � +QQ`/BM�i2 x #v z(x) = x + ikX h?2 BMi2;`�H Qp2` i?2
/27Q`K2/ +QMiQm` Q7 BMi2;`�iBQM i?2M bBKTHv i�F2b i?2 7Q`K Q7 � bi�M/�`/ BMi2;`�H Qp2`

z(x) = x+ i�(x)
<latexit sha1_base64="qs2hzEDQG6w1E7KTS4A3BMLytu8=">AAAB/XicbVDLSgMxFM3UV62v8bFzEyxCRSgzRdCNUHTjsoJ9QDuUTCbThmYeJHek7VD8FTcuFHHrf7jzb0zbWWjrgQsn59xL7j1uLLgCy/o2ciura+sb+c3C1vbO7p65f9BQUSIpq9NIRLLlEsUED1kdOAjWiiUjgStY0x3cTv3mI5OKR+EDjGLmBKQXcp9TAlrqmkd4XBqe4evhOccdjwkg+tk1i1bZmgEvEzsjRZSh1jW/Ol5Ek4CFQAVRqm1XYnBSIoFTwSaFTqJYTOiA9Fhb05AETDnpbPsJPtWKh/1I6goBz9TfEykJlBoFru4MCPTVojcV//PaCfhXTsrDOAEW0vlHfiIwRHgaBfa4ZBTESBNCJde7YtonklDQgRV0CPbiycukUSnbVtm+vyhWb7I48ugYnaASstElqqI7VEN1RNEYPaNX9GY8GS/Gu/Exb80Z2cwh+gPj8wfh65OQ</latexit><latexit sha1_base64="VkZ4rOc2lhpNBUrRyMEXfUv0MZ0=">AAACInicjVDLSgMxFL1TX7W+xsfOTbAIFaHMFEE3QtGNSwX7gHYomUymDc08SDLSdui/uHDjr7gRdSX4MabtLLR14YHAyTn3kpzjxpxJZVmfRm5peWV1Lb9e2Njc2t4xd/fqMkoEoTUS8Ug0XSwpZyGtKaY4bcaC4sDltOH2ryd+44EKyaLwXg1j6gS4GzKfEay01DEP0Kg0OEGXg1OG2h7lCutrxyxaZWsKtEjsjBQhw//GO+Z724tIEtBQEY6lbNmVWDkpFooRTseFdiJpjEkfd2lL0xAHVDrpNOIYHWvFQ34k9AkVmqo/N1IcSDkMXD0ZYNWT895E/MtrJcq/cFIWxomiIZk95CccqQhN+kIeE5QoPtQEE8H0XxHpYYGJ0q0WdHR7PugiqVfKtlW2786K1ausszwcwhGUwIZzqMIN3EINCIzgEZ7h1XgyXow342M2mjOynX34BePrGyCPmwk=</latexit><latexit sha1_base64="VkZ4rOc2lhpNBUrRyMEXfUv0MZ0=">AAACInicjVDLSgMxFL1TX7W+xsfOTbAIFaHMFEE3QtGNSwX7gHYomUymDc08SDLSdui/uHDjr7gRdSX4MabtLLR14YHAyTn3kpzjxpxJZVmfRm5peWV1Lb9e2Njc2t4xd/fqMkoEoTUS8Ug0XSwpZyGtKaY4bcaC4sDltOH2ryd+44EKyaLwXg1j6gS4GzKfEay01DEP0Kg0OEGXg1OG2h7lCutrxyxaZWsKtEjsjBQhw//GO+Z724tIEtBQEY6lbNmVWDkpFooRTseFdiJpjEkfd2lL0xAHVDrpNOIYHWvFQ34k9AkVmqo/N1IcSDkMXD0ZYNWT895E/MtrJcq/cFIWxomiIZk95CccqQhN+kIeE5QoPtQEE8H0XxHpYYGJ0q0WdHR7PugiqVfKtlW2786K1ausszwcwhGUwIZzqMIN3EINCIzgEZ7h1XgyXow342M2mjOynX34BePrGyCPmwk=</latexit><latexit sha1_base64="VkZ4rOc2lhpNBUrRyMEXfUv0MZ0=">AAACInicjVDLSgMxFL1TX7W+xsfOTbAIFaHMFEE3QtGNSwX7gHYomUymDc08SDLSdui/uHDjr7gRdSX4MabtLLR14YHAyTn3kpzjxpxJZVmfRm5peWV1Lb9e2Njc2t4xd/fqMkoEoTUS8Ug0XSwpZyGtKaY4bcaC4sDltOH2ryd+44EKyaLwXg1j6gS4GzKfEay01DEP0Kg0OEGXg1OG2h7lCutrxyxaZWsKtEjsjBQhw//GO+Z724tIEtBQEY6lbNmVWDkpFooRTseFdiJpjEkfd2lL0xAHVDrpNOIYHWvFQ34k9AkVmqo/N1IcSDkMXD0ZYNWT895E/MtrJcq/cFIWxomiIZk95CccqQhN+kIeE5QoPtQEE8H0XxHpYYGJ0q0WdHR7PugiqVfKtlW2786K1ausszwcwhGUwIZzqMIN3EINCIzgEZ7h1XgyXow342M2mjOynX34BePrGyCPmwk=</latexit>

z(s) = x(s) + iy(s)
<latexit sha1_base64="+K8DWIrPJbZe0aS5EouJR8cIbWs=">AAAB/HicbZDLSgMxFIbP1Futt9Eu3QSLUBHKTBF0IxTduKxgL9AOJZNm2tDMhSQjjkN9FTcuFHHrg7jzbcy0s9DWAwkf/38OOfndiDOpLOvbKKysrq1vFDdLW9s7u3vm/kFbhrEgtEVCHoquiyXlLKAtxRSn3UhQ7LucdtzJdeZ37qmQLAzuVBJRx8ejgHmMYKWlgVl+rMoTdPmQ3aeIoUTDwKxYNWtWaBnsHCqQV3NgfvWHIYl9GijCsZQ9ux4pJ8VCMcLptNSPJY0wmeAR7WkMsE+lk86Wn6JjrQyRFwp9AoVm6u+JFPtSJr6rO32sxnLRy8T/vF6svAsnZUEUKxqQ+UNezJEKUZYEGjJBieKJBkwE07siMsYCE6XzKukQ7MUvL0O7XrOtmn17Vmlc5XEU4RCOoAo2nEMDbqAJLSCQwDO8wpvxZLwY78bHvLVg5DNl+FPG5w8TpJJz</latexit><latexit sha1_base64="ZlsUiu/4Okz4wXYkl/yDYX5GguI=">AAACIXicjVDLSgMxFL1TX7W+Rrt0EyxCRSgzRdCNUHTjUsE+oB1KJs20oZkHSUYch36LCzf+ihuR7sSfMdPOQlsXXkg4nHMuyTluxJlUlvVpFFZW19Y3ipulre2d3T1z/6Alw1gQ2iQhD0XHxZJyFtCmYorTTiQo9l1O2+74OtPbD1RIFgb3Komo4+NhwDxGsNJU3yw/VeUJunzM7lPEUKJB36xYNWs2aBnYOahAPv+z981pbxCS2KeBIhxL2bXrkXJSLBQjnE5KvVjSCJMxHtKuhgH2qXTSWcIJOtbMAHmh0CdQaMb+3EixL2Xiu9rpYzWSi1pG/qV1Y+VdOCkLoljRgMwf8mKOVIiyutCACUoUTzTARDD9V0RGWGCidKklHd1eDLoMWvWabdXsu7NK4yrvrAiHcARVsOEcGnADt9AEAgk8wyu8Gy/Gm/FhTOfWgpHvlOHXGF/fKlWZ7A==</latexit><latexit sha1_base64="ZlsUiu/4Okz4wXYkl/yDYX5GguI=">AAACIXicjVDLSgMxFL1TX7W+Rrt0EyxCRSgzRdCNUHTjUsE+oB1KJs20oZkHSUYch36LCzf+ihuR7sSfMdPOQlsXXkg4nHMuyTluxJlUlvVpFFZW19Y3ipulre2d3T1z/6Alw1gQ2iQhD0XHxZJyFtCmYorTTiQo9l1O2+74OtPbD1RIFgb3Komo4+NhwDxGsNJU3yw/VeUJunzM7lPEUKJB36xYNWs2aBnYOahAPv+z981pbxCS2KeBIhxL2bXrkXJSLBQjnE5KvVjSCJMxHtKuhgH2qXTSWcIJOtbMAHmh0CdQaMb+3EixL2Xiu9rpYzWSi1pG/qV1Y+VdOCkLoljRgMwf8mKOVIiyutCACUoUTzTARDD9V0RGWGCidKklHd1eDLoMWvWabdXsu7NK4yrvrAiHcARVsOEcGnADt9AEAgk8wyu8Gy/Gm/FhTOfWgpHvlOHXGF/fKlWZ7A==</latexit><latexit sha1_base64="ZlsUiu/4Okz4wXYkl/yDYX5GguI=">AAACIXicjVDLSgMxFL1TX7W+Rrt0EyxCRSgzRdCNUHTjUsE+oB1KJs20oZkHSUYch36LCzf+ihuR7sSfMdPOQlsXXkg4nHMuyTluxJlUlvVpFFZW19Y3ipulre2d3T1z/6Alw1gQ2iQhD0XHxZJyFtCmYorTTiQo9l1O2+74OtPbD1RIFgb3Komo4+NhwDxGsNJU3yw/VeUJunzM7lPEUKJB36xYNWs2aBnYOahAPv+z981pbxCS2KeBIhxL2bXrkXJSLBQjnE5KvVjSCJMxHtKuhgH2qXTSWcIJOtbMAHmh0CdQaMb+3EixL2Xiu9rpYzWSi1pG/qV1Y+VdOCkLoljRgMwf8mKOVIiyutCACUoUTzTARDD9V0RGWGCidKklHd1eDLoMWvWabdXsu7NK4yrvrAiHcARVsOEcGnADt9AEAgk8wyu8Gy/Gm/FhTOfWgpHvlOHXGF/fKlWZ7A==</latexit>



1. Generate ensemble of field 
configurations


2. Define parameterisation of integration 
measure


3. Define class of deformations to explore


4. Perform stochastic gradient descent to 
minimise a loss function (variance)


5. Evaluate learned observable on 
ensemble

Observifolds in practice
Contour deformation of path integrals

RE
PE

AT
Future Directions (3)

● Our work so far has only been two-dimensional lattices

● Costs scale up, but no theoretical obstacle to higher dimensions
○ Preliminary results for 𝜙4 indicates 3d easily accessible
○ Need to resolve computational bottleneck for 4d
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6B;m`2 8X3, o2`iB+�H b?B7i /27Q`K�iBQMb pbX ;2M2`�H +QMiQm` /27Q`K�iBQMbX 6Q` p2`iB+�H
b?B7i +QMiQm` /27Q`K�iBQMb- 2�+? TQBMi QM i?2 Q`B;BM�H +QMiQm` Bb K�TT2/ iQ � TQBMi
rBi? B/2MiB+�H `2�H +QKTQM2Mi- �b b?QrM QM i?2 H27iX h?Bb 2t+Hm/2b bQK2 +?QB+2b Q7 p�HB/
+QMiQm`b- BM+Hm/BM; 7Q` 2t�KTH2 i?2 +QMiQm` b?QrM QM i?2 `B;?iX

QMHv i2`Kb i?�i �`2 T2`BQ/B+ BM i?2 2M/TQBMib-

f(�;�,�) =
⇤X

n=0

�n sin(n�+ �n). U8X9kV

h?2 +miQz ⇤ /2i2`KBM2b i?2 ?B;?2bi KQ/2 BM+Hm/2/ BM i?2 2tT�MbBQM �M/ i?2 `2�H
MmK#2`b � = (�1, . . . ,�⇤) �M/ � = (�1, . . . ,�⇤) T�`�K2i2`Bx2 i?2 b+�HBM; �M/ T?�b2
Qzb2i Q7 i?2 6Qm`B2` KQ/2b BM+Hm/2/X �b ⇤ Bb BM+`2�b2/- i?2 2tT`2bbBpBiv Q7 i?2 7mM+iBQM
f Bb bvbi2K�iB+�HHv BKT`Qp2/ �i i?2 +Qbi Q7 i?2 BM+HmbBQM Q7 �//BiBQM�H i2`Kb BMpQHpBM;
�//BiBQM�H T�`�K2i2`b i?�i Kmbi #2 QTiBKBx2/X

h?2 C�+Q#B�M 7Q` p2`iB+�H b?B7i /27Q`K�iBQMb mbBM; � 6Qm`B2` 2tT�MbBQM +�M #2
bi`�B;?i7Q`r�`/Hv +�H+mH�i2/ 7Q` QM2 U(1) p�`B�#H2- ;BpBM;

ej(U = ei�) = 1 + if 0
(�) = 1 + i

⇤X

n=0

n�n cos(n�+ �n), U8X9jV

r?2`2 r2 mb2 HQr2`+�b2 MQi�iBQM iQ /BbiBM;mBb? bBM;H2@p�`B�#H2 C�+Q#B�Mb 7`QK i?2 7mHH
C�+Q#B�M 7Q` i`�Mb7Q`K�iBQMb BM H�iiB+2 ;�m;2 i?2Q`v #2HQrX 6Q` H�iiB+2 ;�m;2 i?2Q`v-
i?2 7mM+iBQM f /27Q`KBM; 2�+? +QKTQM2Mi Q7 i?2 ;�m;2 }2H/ +�M ;2M2`�HHv /2T2M/ QM
Qi?2` +QKTQM2Mib- �M/ � /2b+`BTiBQM Q7 i?Bb /2T2M/2M+2 �M/ i?2 +QKTmi�iBQM Q7 i?2
C�+Q#B�M �`2 /2b+`B#2/ BM a2+X 8XjXj #2HQrX

8XjXk .27Q`K�iBQMb Q7 SU(N) p�`B�#H2b
S`2pBQmb rQ`Fb ?�p2 T2`7Q`K2/ +QKTH2t +QMiQm` /27Q`K�iBQMb �M/ +�H+mH�iBQMb Q7 G27@
b+?2ix i?BK#H2b 7Q` SU(N) p�`B�#H2b BM (0 + 1). Z*. �M/ Z*. BM i?2 ?2�pv@/2Mb2
HBKBi (98e- 983- 9d8- 93j- 939)X S�`�K2i2`Bx�iBQMb Q7 K�MB7QH/b mb2/ BM i?2b2 rQ`Fb
2Bi?2` `2Hv QM rQ`FBM; BM � /B�;QM�H ;�m;2 Q` H27i@KmHiBTHvBM; #v � +QKTH2tB}2/ ;`QmT
2H2K2Mi i?�i Bb � +QMbi�Mi rBi? `2bT2+i iQ i?2 ;�m;2 p�`B�#H2bX q2 ?2`2 BMi`Q/m+2 �M
�TT`Q�+? iQ /27Q`KBM; SU(N) p�`B�#H2b #�b2/ BMbi2�/ QM �M �M;mH�` T�`�K2i2`Bx�iBQM
Q7 i?2 ;`QmT K�MB7QH/X h?Bb �M;mH�` T�`�K2i2`Bx�iBQM �HHQrb � bBKTH2 /2}MBiBQM Q7 �



3

0.0

0.1

0.2

0.3

�e�
Original Deformed Exact � Exact StN

10�1 100 101 102

�A

10�4

10�2

100

102

StN(XA)

FIG. 1. �e↵ and StN(XA) measured using the original in-
tegration contour (� = 0) in blue and the deformed integra-
tion contour (� = 0.2) in orange on an ensemble consisting of
10,000 MC samples with � = 5.555 and L = 64. The exact
string tension � = 0.1 is indicated by the dashed line (upper)
and the exact StN scaling of Eq. (16) by the dot-dashed lines
(lower). The results for the original contour are truncated
where the data become unreliable, at A = L2/32.

where In(�) is a modified Bessel function and V ⌘ L
2.

Expectation values of Wilson loops in this theory follow
area law scaling
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where A is the area of the region A enclosed by the loop
in lattice units, and the string tension � is given by

� = ln
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In Monte Carlo calculations, WA has an exponential StN
problem:
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, (12)

where �
0 = ln [I0(�)/I2(�)].

The Wilson loops WA can also be evaluated using the
deformed observables approach. We consider manifolds
defined by deformed variables

e✓x = ✓x + i�x, (13)

where �x 2 R is a constant for each site x. This contour
deformation has unit Jacobian and is smoothly connected

to the original integration contour for any choice of �x.
Since the integrand WAe

�SG is holomorphic in ✓x, the
deformed observable gives unbiased estimates of the ex-
pectation value hWAi. This is verified in Fig. 1, where the
analytically known string tension �

e↵
⌘ �@A lnWA = �

is reproduced by MC calculations on both the original
and deformed integration manifolds.
Within this set of manifolds, we define a simpler one-

parameter family by �x = � for x 2 A and �x = 0 oth-
erwise. This parameterization is motivated by the limit
of small phase fluctuations, valid at fine lattice spacing,
in which the imaginary component of the action can be
expanded for ✓x ⌧ 1,

ImSG(e✓(✓)) = ��
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x2A
sin(✓x) sinh(�)

= �� sinh(�)arg(WA)[1 +O(✓2)].

(14)

When � is chosen such that � sinh(�) ⇡ 1, ImSG destruc-
tively interferes with the phase of WA. The manifold
deformation simultaneously a↵ects the magnitude of the
deformed observable,

XA ⌘ J(✓)e�[SG(e✓(✓))�SG(✓)]
WA(e✓(✓))

= e
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heuristically replacing delicate cancellations of fluctuat-
ing phases with a reduced magnitude on each sample.
The StN e↵ects of contour deformation can be more

quantitatively understood by direct calculation from the
path integral definition. One finds:
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Maximizing the StN as a function of �, the optimal inte-
gration contour defining XA is found to have little sen-
sitivity to A. For instance, at the finest gauge coupling
used in this work (� = 5.555, corresponding to � = 0.1)
the optimal � is found to vary between � ⇡ 0.204, for
A = 1, to � ⇡ 0.197, for A = 1000. As shown in Fig. 1,
when A � 1/� the StN of XA for a nearly optimal con-
tour (where � = 0.2) is improved by orders of magni-
tude relative to the undeformed case. For example, when
A = 100/�, the StN improves by a factor of 1043.
We have further confirmed that deformed observables

are useful over a range of lattice spacings. Using ensem-
bles of 10,000 samples each with lattice size L = 64, we
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Simple example
Abelian gauge theory in 1+1d

2

when the manifold of integration M is continuously de-
formed to manifold fM, providedM can be deformed into
fM without crossing non-analyticities of the integrand.
Often the integrand of Eq. (1), e�S

O, may be analyti-
cally continued to a holomorphic function over complex-
ified field space (see e.g. Refs. [76, 85]), and therefore the
domain of integration can be deformed without changing
the path integral result. In this case, a manifold fM sat-
isfying the requirements of Cauchy’s theorem gives iden-
tical expectation values for O:

hOi =
1

Z

Z

fM
D eU e

�S(eU)
O(eU)

=
1

Z

Z

M
DU J(U) e�S(eU(U))

O(eU(U)).
(2)

Here eU : M ! fM is a bijective function of U that maps
base coordinates on M to points on fM, and J(U) =

det @ eU
@U is the corresponding Jacobian. A straightforward

way to evaluate the second line of Eq. (2) is to sample
configurations U from the original probability measure
e
�S(U)

/Z and instead evaluate the deformed observable

Q(U) ⌘ e
�[Seff (U)�S(U)]

O(eU(U)), (3)

where Se↵(U) ⌘ S(eU(U))� log J(U). Cauchy’s theorem
guarantees an identical mean

hO(U)i = hQ(U)i. (4)

Throughout this work, h·i denotes expectation with re-
spect to the original probability density e

�S(U)
/Z. Since

the distribution used for MC sampling is not modified in
the deformed observable approach, integrals over many
possible manifolds can be estimated using a single MC
ensemble; this property is useful for both contour opti-
mization and calculations with deformed observables.

This approach should be expected to work well un-
less the magnitude of the deformed observable fluctuates
severely, which may occur if there is an overlap problem
between Se↵(U) and S(U). In this case, one must sample
from modified weights and use reweighting to compute
Eq. (2); this was done for path integrals with complex
actions in Refs. [67, 68, 71, 72, 74–79, 82]. When many
observables are needed, however, the cost of repeated MC
ensemble generation based on each new manifold will be
high. We therefore only consider contour deformations
with good overlap between Se↵(U) and S(U) and apply
the deformed-observable approach throughout this work.

Optimizing the variance — Though manifold de-
formations leave expectation values unchanged, they
modify the variance of observables with complex phase
fluctuations. We restrict our investigation to observables
with purely real expectation value,1 where it is su�cient

1 The general case follows by applying the techniques discussed
here to hRe Qi and analagous techniques to hIm Qi.

to consider

Var(ReQ) =
⌦
(ReQ)2

↵
� (Re hQi)2 . (5)

While (Re hQi)2 = (Re hOi)2 is una↵ected by the choice
of manifold, the variance is modified because

⌦
(ReQ)2

↵

is not the integral of a holomorphic function. For each
observable O, the task is then to find an optimized man-
ifold for which Var(ReQ) ⌧ Var(ReO). If this can be
achieved, the StN ratio

StN(ReQ) ⌘
|Re hOi |p
Var(ReQ)

(6)

will be improved.
The manifold minimizing Var(ReQ) depends on the

properties of the observable, and there is no single con-
tour deformation which optimizes the StN of all observ-
ables. To account for this non-uniqueness, we use the
methods of Refs. [77, 78], minimizing the variance for
each observable over a family of manifolds smoothly pa-
rameterized by a vector of real numbers ~!. The choice
of manifold fM(~!), defined by the map eU(U ; ~!), can be
numerically optimized using stochastic gradient descent
based on MC estimates of

r~! Var(ReQ) =
⌦
r~!(ReQ)2

↵
= 2 hReQRer~! Qi

= 2

*
(ReQ)Re

 
Q

"
�r~! Se↵ +

r~! O(eU)

O(eU)

#!+
.

(7)
Crucially, the manifold parameters can be iteratively im-
proved without generating new ensembles. This tech-
nique is used to optimize the integration contour in the
second example below.
Abelian gauge theory — We first demonstrate

the method on a two-dimensional U(1) gauge theory
with open boundary conditions. The central values
and variances of observables can be computed analyt-
ically in this theory and are used to validate numeri-
cal results. The Wilson action [86] for U(1) gauge the-
ory in 2D can be expressed in terms of the plaquette
Px = U

1
xU

2
x+1̂

(U1
x+2̂

)†(U2
x)

† where U
µ
x 2 U(1) and a

square lattice xµ 2 {0, . . . , L} for µ 2 {1, 2} is used.
Defining ✓x ⌘ argPx, the action is given by

SG(✓) ⌘ ��

X

x

cos ✓x, (8)

where the sum excludes the sites on the open boundaries,
i.e. xµ 6= L. In this theory, there is a change of variables
with unit Jacobian to ✓x and residual degrees of freedom
that can be trivially integrated out, allowing the partition
function to be analytically evaluated as

Z ⌘

Z Y

x


d✓x

2⇡
e
� cos ✓x

�
= I0(�)

V
, (9)
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Eq. (2); this was done for path integrals with complex
actions in Refs. [67, 68, 71, 72, 74–79, 82]. When many
observables are needed, however, the cost of repeated MC
ensemble generation based on each new manifold will be
high. We therefore only consider contour deformations
with good overlap between Se↵(U) and S(U) and apply
the deformed-observable approach throughout this work.

Optimizing the variance — Though manifold de-
formations leave expectation values unchanged, they
modify the variance of observables with complex phase
fluctuations. We restrict our investigation to observables
with purely real expectation value,1 where it is su�cient
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The manifold minimizing Var(ReQ) depends on the

properties of the observable, and there is no single con-
tour deformation which optimizes the StN of all observ-
ables. To account for this non-uniqueness, we use the
methods of Refs. [77, 78], minimizing the variance for
each observable over a family of manifolds smoothly pa-
rameterized by a vector of real numbers ~!. The choice
of manifold fM(~!), defined by the map eU(U ; ~!), can be
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based on MC estimates of
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Crucially, the manifold parameters can be iteratively im-
proved without generating new ensembles. This tech-
nique is used to optimize the integration contour in the
second example below.
Abelian gauge theory — We first demonstrate

the method on a two-dimensional U(1) gauge theory
with open boundary conditions. The central values
and variances of observables can be computed analyt-
ically in this theory and are used to validate numeri-
cal results. The Wilson action [86] for U(1) gauge the-
ory in 2D can be expressed in terms of the plaquette
Px = U
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† where U
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x 2 U(1) and a

square lattice xµ 2 {0, . . . , L} for µ 2 {1, 2} is used.
Defining ✓x ⌘ argPx, the action is given by
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where the sum excludes the sites on the open boundaries,
i.e. xµ 6= L. In this theory, there is a change of variables
with unit Jacobian to ✓x and residual degrees of freedom
that can be trivially integrated out, allowing the partition
function to be analytically evaluated as
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FIG. 1. �e↵ and StN(XA) measured using the original in-
tegration contour (� = 0) in blue and the deformed integra-
tion contour (� = 0.2) in orange on an ensemble consisting of
10,000 MC samples with � = 5.555 and L = 64. The exact
string tension � = 0.1 is indicated by the dashed line (upper)
and the exact StN scaling of Eq. (16) by the dot-dashed lines
(lower). The results for the original contour are truncated
where the data become unreliable, at A = L2/32.

where In(�) is a modified Bessel function and V ⌘ L
2.

Expectation values of Wilson loops in this theory follow
area law scaling

hWAi ⌘

*
Y

x2A
e
i✓x

+
= e

��A
, (10)

where A is the area of the region A enclosed by the loop
in lattice units, and the string tension � is given by

� = ln


I0(�)

I1(�)

�
. (11)

In Monte Carlo calculations, WA has an exponential StN
problem:

StN(WA) =
e
��A

q
1
2 + 1

2e
��0A � e�2�A

, (12)

where �
0 = ln [I0(�)/I2(�)].

The Wilson loops WA can also be evaluated using the
deformed observables approach. We consider manifolds
defined by deformed variables

e✓x = ✓x + i�x, (13)

where �x 2 R is a constant for each site x. This contour
deformation has unit Jacobian and is smoothly connected

to the original integration contour for any choice of �x.
Since the integrand WAe

�SG is holomorphic in ✓x, the
deformed observable gives unbiased estimates of the ex-
pectation value hWAi. This is verified in Fig. 1, where the
analytically known string tension �

e↵
⌘ �@A lnWA = �

is reproduced by MC calculations on both the original
and deformed integration manifolds.
Within this set of manifolds, we define a simpler one-

parameter family by �x = � for x 2 A and �x = 0 oth-
erwise. This parameterization is motivated by the limit
of small phase fluctuations, valid at fine lattice spacing,
in which the imaginary component of the action can be
expanded for ✓x ⌧ 1,

ImSG(e✓(✓)) = ��

X

x2A
sin(✓x) sinh(�)

= �� sinh(�)arg(WA)[1 +O(✓2)].

(14)

When � is chosen such that � sinh(�) ⇡ 1, ImSG destruc-
tively interferes with the phase of WA. The manifold
deformation simultaneously a↵ects the magnitude of the
deformed observable,

XA ⌘ J(✓)e�[SG(e✓(✓))�SG(✓)]
WA(e✓(✓))

= e
�[SG(e✓(✓))�SG(✓)]

e
��A

WA(✓),
(15)

heuristically replacing delicate cancellations of fluctuat-
ing phases with a reduced magnitude on each sample.
The StN e↵ects of contour deformation can be more

quantitatively understood by direct calculation from the
path integral definition. One finds:

StN(XA) =
e
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q
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Maximizing the StN as a function of �, the optimal inte-
gration contour defining XA is found to have little sen-
sitivity to A. For instance, at the finest gauge coupling
used in this work (� = 5.555, corresponding to � = 0.1)
the optimal � is found to vary between � ⇡ 0.204, for
A = 1, to � ⇡ 0.197, for A = 1000. As shown in Fig. 1,
when A � 1/� the StN of XA for a nearly optimal con-
tour (where � = 0.2) is improved by orders of magni-
tude relative to the undeformed case. For example, when
A = 100/�, the StN improves by a factor of 1043.
We have further confirmed that deformed observables

are useful over a range of lattice spacings. Using ensem-
bles of 10,000 samples each with lattice size L = 64, we

3

FIG. 1. �e↵ and StN(XA) measured using the original in-
tegration contour (� = 0) in blue and the deformed integra-
tion contour (� = 0.2) in orange on an ensemble consisting of
10,000 MC samples with � = 5.555 and L = 64. The exact
string tension � = 0.1 is indicated by the dashed line (upper)
and the exact StN scaling of Eq. (16) by the dot-dashed lines
(lower). The results for the original contour are truncated
where the data become unreliable, at A = L2/32.

where In(�) is a modified Bessel function and V ⌘ L
2.
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where �x 2 R is a constant for each site x. This contour
deformation has unit Jacobian and is smoothly connected

to the original integration contour for any choice of �x.
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deformed observable gives unbiased estimates of the ex-
pectation value hWAi. This is verified in Fig. 1, where the
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is reproduced by MC calculations on both the original
and deformed integration manifolds.
Within this set of manifolds, we define a simpler one-

parameter family by �x = � for x 2 A and �x = 0 oth-
erwise. This parameterization is motivated by the limit
of small phase fluctuations, valid at fine lattice spacing,
in which the imaginary component of the action can be
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tively interferes with the phase of WA. The manifold
deformation simultaneously a↵ects the magnitude of the
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XA ⌘ J(✓)e�[SG(e✓(✓))�SG(✓)]
WA(e✓(✓))

= e
�[SG(e✓(✓))�SG(✓)]

e
��A

WA(✓),
(15)
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Maximizing the StN as a function of �, the optimal inte-
gration contour defining XA is found to have little sen-
sitivity to A. For instance, at the finest gauge coupling
used in this work (� = 5.555, corresponding to � = 0.1)
the optimal � is found to vary between � ⇡ 0.204, for
A = 1, to � ⇡ 0.197, for A = 1000. As shown in Fig. 1,
when A � 1/� the StN of XA for a nearly optimal con-
tour (where � = 0.2) is improved by orders of magni-
tude relative to the undeformed case. For example, when
A = 100/�, the StN improves by a factor of 1043.
We have further confirmed that deformed observables

are useful over a range of lattice spacings. Using ensem-
bles of 10,000 samples each with lattice size L = 64, we

3

FIG. 1. �e↵ and StN(XA) measured using the original in-
tegration contour (� = 0) in blue and the deformed integra-
tion contour (� = 0.2) in orange on an ensemble consisting of
10,000 MC samples with � = 5.555 and L = 64. The exact
string tension � = 0.1 is indicated by the dashed line (upper)
and the exact StN scaling of Eq. (16) by the dot-dashed lines
(lower). The results for the original contour are truncated
where the data become unreliable, at A = L2/32.

where In(�) is a modified Bessel function and V ⌘ L
2.

Expectation values of Wilson loops in this theory follow
area law scaling
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where A is the area of the region A enclosed by the loop
in lattice units, and the string tension � is given by
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In Monte Carlo calculations, WA has an exponential StN
problem:
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e
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where �
0 = ln [I0(�)/I2(�)].

The Wilson loops WA can also be evaluated using the
deformed observables approach. We consider manifolds
defined by deformed variables

e✓x = ✓x + i�x, (13)

where �x 2 R is a constant for each site x. This contour
deformation has unit Jacobian and is smoothly connected

to the original integration contour for any choice of �x.
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deformed observable gives unbiased estimates of the ex-
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is reproduced by MC calculations on both the original
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used in this work (� = 5.555, corresponding to � = 0.1)
the optimal � is found to vary between � ⇡ 0.204, for
A = 1, to � ⇡ 0.197, for A = 1000. As shown in Fig. 1,
when A � 1/� the StN of XA for a nearly optimal con-
tour (where � = 0.2) is improved by orders of magni-
tude relative to the undeformed case. For example, when
A = 100/�, the StN improves by a factor of 1043.
We have further confirmed that deformed observables

are useful over a range of lattice spacings. Using ensem-
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Closed loops of links, for  rectangle gives access to 
static quark correlation function, string tension


StN exponentially bad with Wilson loop area

x × t

where

1+1 U(1) plaquettes / loops
Wilson loops



• Action in polar coordinates


• Deform only angles (unit Jacobian) 

• Deformed observable 


• Deform 1: 
 


• Deform 2: full 3L+1 parameter optimisation


• Order of magnitude gain in StN vs undeformed
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FIG. 2. me↵ and StN(Dt) in the complex scalar the-
ory measured using the original integration contour (blue),
a manually-tuned one-parameter contour (orange), and a
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domain in a similar manner to the U(1) case, deforming
the phases as

✓̃t = ✓t + i�
(1)
t + i�

(2)
t fc(RtRt+1)+ i�

(3)
t fc(Rt�1Rt) (19)

while the Rt remain undeformed. Here, �
(i)
t are real

parameters assigned to each lattice site and fc(x) =
c tanh(1/cx) is chosen as a regularization of the function
1/x defined by a single additional parameter c. This form
is motivated by an expansion in small phase fluctuations,
while regularizing the function 1/x avoids overlap prob-
lems. Every manifold in the family defined by Eq. (19)
has unit Jacobian, allowing e�cient computation of the
deformed observable.

The mass of the scalar particle is a key quantity in this
theory and can be extracted from the large-time behavior
of the single-particle propagator, Gt ⌘ h�t�

†
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At large times, Gt has severe phase fluctuations and a
StN problem arising from an exponentially falling signal
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e↵(t) is smaller on the deformed mani-
folds than on the original manifold. In comparison to the
original manifold, the numerically optimized manifold re-
duces the observed exponential rate of StN degradation
by 32%, while one-parameter optimization gives a reduc-
tion of 18%.
We find that the method is robust across several

choices of bare couplings, � = {0, 1, 2, 3} ⇥ 10�3, rang-
ing from the free theory to values well outside the regime
of lattice perturbation theory [72]. Fits to the mass of
the scalar particle in the original and deformed contour
approaches agree to within statistical errors on ensem-
bles consisting of 10,000 samples generated using Hybrid
Monte Carlo [87]. Excited state e↵ects are not signifi-
cant in this toy model; however, excited-state contami-
nation prevents reliable single-exponential fits to corre-
lation functions Gt in more complex theories such as lat-
tice QCD at small separations t. Here, we consider con-
stant fits to m

e↵ for fit ranges beginning at ti = {5, 10}

4

FIG. 2. me↵ and StN(Dt) in the complex scalar the-
ory measured using the original integration contour (blue),
a manually-tuned one-parameter contour (orange), and a
numerically-optimized contour (green) on the ensemble con-
sisting of 10,000 MC samples with the largest bare coupling
considered here (� = 0.003). Dashed exponential fits to
the StN suggest growing improvement in the large-time limit
where the data become unreliable at this finite ensemble size.

investigate string tensions tuned to � = {0.4, 0.3, 0.2, 0.1}
in lattice units by fixing � = {1.843, 2.296, 3.124, 5.555}.
This corresponds to lattice spacing varying by a factor of
two across the ensembles. By choosing a nearly optimal
� for every coupling, constant fits to �

e↵ estimated from
the deformed observable give results for � improved by
5⇥ – 75⇥ in precision. The most benefit was found on
the ensemble with finest lattice spacing (� = 5.555).

Complex scalar field theory — To explore the gen-
erality of the deformed observables approach, we further
apply it to complex scalar field theory in 0 + 1D with a
quartic interaction. Employing polar coordinates for the
scalar field �t = Rte

i✓t , the lattice action reads

S = �2
L�1X

t=0

RtRt+1cos(✓t+1 � ✓t) + V (R), (18)

where V (R) =
P

t (2 +m
2)R2

t + �R
4
t , and periodic

boundary conditions are used, ✓0 ⌘ ✓L and R0 ⌘ RL.
Comparing this action with Eq. (8), it is apparent that
phase di↵erences ✓t+1 � ✓t in this theory have weights in
the action with similar form to plaquettes in the U(1)
gauge theory. We therefore complexify the integration
domain in a similar manner to the U(1) case, deforming
the phases as

✓̃t = ✓t + i�
(1)
t + i�

(2)
t fc(RtRt+1)+ i�

(3)
t fc(Rt�1Rt) (19)

while the Rt remain undeformed. Here, �
(i)
t are real

parameters assigned to each lattice site and fc(x) =
c tanh(1/cx) is chosen as a regularization of the function
1/x defined by a single additional parameter c. This form
is motivated by an expansion in small phase fluctuations,
while regularizing the function 1/x avoids overlap prob-
lems. Every manifold in the family defined by Eq. (19)
has unit Jacobian, allowing e�cient computation of the
deformed observable.

The mass of the scalar particle is a key quantity in this
theory and can be extracted from the large-time behavior
of the single-particle propagator, Gt ⌘ h�t�

†
0i, using a

local estimator m
e↵(t) ⌘ arccosh

⇣
Gt�1+Gt+1

2Gt

⌘
. Written

as a holomorphic function of the chosen variables,

Gt =
⌦
RtR0e

i✓t�i✓0
↵
⌘ hCt(R, ✓)i . (20)

At large times, Gt has severe phase fluctuations and a
StN problem arising from an exponentially falling signal
and O(1) variance [35].
We compare the original estimator based on direct

evaluation of Eq. (20) to the deformed observable defined
by the manifold in Eq. (19),

Dt ⌘ e
�[Seff (✓)�S(✓)]

Ct(R, e✓)

= e
�[Seff (✓)�S(✓)]

RtR0e
ie✓t�ie✓0 .

(21)

We optimize the full (3L+1)-parameter form in Eq. (19)
using the numerical approach based on gradient esti-
mates defined by Eq. (7), and as a comparison optimize
a simpler one-parameter subfamily of deformations de-

fined by c = �
(2)
t0 = �

(3)
t0 = 0, �(1)t0 = t

0
� for |t

0
| < t, and

�
(1)
t0 = t�, which achieves destructive phase interference
for small phase fluctuations. Fig. 2 contrasts the results
of the deformed observables to the original observable on
a representative ensemble defined by bare m

2 = (0.15)2,
� = 3 ⇥ 10�3, and L = 64. For any t, the statistical
uncertainty on m

e↵(t) is smaller on the deformed mani-
folds than on the original manifold. In comparison to the
original manifold, the numerically optimized manifold re-
duces the observed exponential rate of StN degradation
by 32%, while one-parameter optimization gives a reduc-
tion of 18%.
We find that the method is robust across several

choices of bare couplings, � = {0, 1, 2, 3} ⇥ 10�3, rang-
ing from the free theory to values well outside the regime
of lattice perturbation theory [72]. Fits to the mass of
the scalar particle in the original and deformed contour
approaches agree to within statistical errors on ensem-
bles consisting of 10,000 samples generated using Hybrid
Monte Carlo [87]. Excited state e↵ects are not signifi-
cant in this toy model; however, excited-state contami-
nation prevents reliable single-exponential fits to corre-
lation functions Gt in more complex theories such as lat-
tice QCD at small separations t. Here, we consider con-
stant fits to m

e↵ for fit ranges beginning at ti = {5, 10}

4

FIG. 2. me↵ and StN(Dt) in the complex scalar the-
ory measured using the original integration contour (blue),
a manually-tuned one-parameter contour (orange), and a
numerically-optimized contour (green) on the ensemble con-
sisting of 10,000 MC samples with the largest bare coupling
considered here (� = 0.003). Dashed exponential fits to
the StN suggest growing improvement in the large-time limit
where the data become unreliable at this finite ensemble size.

investigate string tensions tuned to � = {0.4, 0.3, 0.2, 0.1}
in lattice units by fixing � = {1.843, 2.296, 3.124, 5.555}.
This corresponds to lattice spacing varying by a factor of
two across the ensembles. By choosing a nearly optimal
� for every coupling, constant fits to �

e↵ estimated from
the deformed observable give results for � improved by
5⇥ – 75⇥ in precision. The most benefit was found on
the ensemble with finest lattice spacing (� = 5.555).

Complex scalar field theory — To explore the gen-
erality of the deformed observables approach, we further
apply it to complex scalar field theory in 0 + 1D with a
quartic interaction. Employing polar coordinates for the
scalar field �t = Rte

i✓t , the lattice action reads

S = �2
L�1X

t=0

RtRt+1cos(✓t+1 � ✓t) + V (R), (18)

where V (R) =
P

t (2 +m
2)R2

t + �R
4
t , and periodic

boundary conditions are used, ✓0 ⌘ ✓L and R0 ⌘ RL.
Comparing this action with Eq. (8), it is apparent that
phase di↵erences ✓t+1 � ✓t in this theory have weights in
the action with similar form to plaquettes in the U(1)
gauge theory. We therefore complexify the integration
domain in a similar manner to the U(1) case, deforming
the phases as

✓̃t = ✓t + i�
(1)
t + i�

(2)
t fc(RtRt+1)+ i�

(3)
t fc(Rt�1Rt) (19)

while the Rt remain undeformed. Here, �
(i)
t are real

parameters assigned to each lattice site and fc(x) =
c tanh(1/cx) is chosen as a regularization of the function
1/x defined by a single additional parameter c. This form
is motivated by an expansion in small phase fluctuations,
while regularizing the function 1/x avoids overlap prob-
lems. Every manifold in the family defined by Eq. (19)
has unit Jacobian, allowing e�cient computation of the
deformed observable.

The mass of the scalar particle is a key quantity in this
theory and can be extracted from the large-time behavior
of the single-particle propagator, Gt ⌘ h�t�

†
0i, using a

local estimator m
e↵(t) ⌘ arccosh

⇣
Gt�1+Gt+1

2Gt

⌘
. Written

as a holomorphic function of the chosen variables,

Gt =
⌦
RtR0e

i✓t�i✓0
↵
⌘ hCt(R, ✓)i . (20)

At large times, Gt has severe phase fluctuations and a
StN problem arising from an exponentially falling signal
and O(1) variance [35].
We compare the original estimator based on direct

evaluation of Eq. (20) to the deformed observable defined
by the manifold in Eq. (19),

Dt ⌘ e
�[Seff (✓)�S(✓)]

Ct(R, e✓)

= e
�[Seff (✓)�S(✓)]

RtR0e
ie✓t�ie✓0 .

(21)

We optimize the full (3L+1)-parameter form in Eq. (19)
using the numerical approach based on gradient esti-
mates defined by Eq. (7), and as a comparison optimize
a simpler one-parameter subfamily of deformations de-

fined by c = �
(2)
t0 = �

(3)
t0 = 0, �(1)t0 = t

0
� for |t

0
| < t, and

�
(1)
t0 = t�, which achieves destructive phase interference
for small phase fluctuations. Fig. 2 contrasts the results
of the deformed observables to the original observable on
a representative ensemble defined by bare m

2 = (0.15)2,
� = 3 ⇥ 10�3, and L = 64. For any t, the statistical
uncertainty on m

e↵(t) is smaller on the deformed mani-
folds than on the original manifold. In comparison to the
original manifold, the numerically optimized manifold re-
duces the observed exponential rate of StN degradation
by 32%, while one-parameter optimization gives a reduc-
tion of 18%.
We find that the method is robust across several

choices of bare couplings, � = {0, 1, 2, 3} ⇥ 10�3, rang-
ing from the free theory to values well outside the regime
of lattice perturbation theory [72]. Fits to the mass of
the scalar particle in the original and deformed contour
approaches agree to within statistical errors on ensem-
bles consisting of 10,000 samples generated using Hybrid
Monte Carlo [87]. Excited state e↵ects are not signifi-
cant in this toy model; however, excited-state contami-
nation prevents reliable single-exponential fits to corre-
lation functions Gt in more complex theories such as lat-
tice QCD at small separations t. Here, we consider con-
stant fits to m

e↵ for fit ranges beginning at ti = {5, 10}

4

FIG. 2. me↵ and StN(Dt) in the complex scalar the-
ory measured using the original integration contour (blue),
a manually-tuned one-parameter contour (orange), and a
numerically-optimized contour (green) on the ensemble con-
sisting of 10,000 MC samples with the largest bare coupling
considered here (� = 0.003). Dashed exponential fits to
the StN suggest growing improvement in the large-time limit
where the data become unreliable at this finite ensemble size.

investigate string tensions tuned to � = {0.4, 0.3, 0.2, 0.1}
in lattice units by fixing � = {1.843, 2.296, 3.124, 5.555}.
This corresponds to lattice spacing varying by a factor of
two across the ensembles. By choosing a nearly optimal
� for every coupling, constant fits to �

e↵ estimated from
the deformed observable give results for � improved by
5⇥ – 75⇥ in precision. The most benefit was found on
the ensemble with finest lattice spacing (� = 5.555).

Complex scalar field theory — To explore the gen-
erality of the deformed observables approach, we further
apply it to complex scalar field theory in 0 + 1D with a
quartic interaction. Employing polar coordinates for the
scalar field �t = Rte

i✓t , the lattice action reads

S = �2
L�1X

t=0

RtRt+1cos(✓t+1 � ✓t) + V (R), (18)

where V (R) =
P

t (2 +m
2)R2

t + �R
4
t , and periodic

boundary conditions are used, ✓0 ⌘ ✓L and R0 ⌘ RL.
Comparing this action with Eq. (8), it is apparent that
phase di↵erences ✓t+1 � ✓t in this theory have weights in
the action with similar form to plaquettes in the U(1)
gauge theory. We therefore complexify the integration
domain in a similar manner to the U(1) case, deforming
the phases as

✓̃t = ✓t + i�
(1)
t + i�

(2)
t fc(RtRt+1)+ i�

(3)
t fc(Rt�1Rt) (19)

while the Rt remain undeformed. Here, �
(i)
t are real

parameters assigned to each lattice site and fc(x) =
c tanh(1/cx) is chosen as a regularization of the function
1/x defined by a single additional parameter c. This form
is motivated by an expansion in small phase fluctuations,
while regularizing the function 1/x avoids overlap prob-
lems. Every manifold in the family defined by Eq. (19)
has unit Jacobian, allowing e�cient computation of the
deformed observable.

The mass of the scalar particle is a key quantity in this
theory and can be extracted from the large-time behavior
of the single-particle propagator, Gt ⌘ h�t�

†
0i, using a

local estimator m
e↵(t) ⌘ arccosh

⇣
Gt�1+Gt+1

2Gt

⌘
. Written

as a holomorphic function of the chosen variables,

Gt =
⌦
RtR0e

i✓t�i✓0
↵
⌘ hCt(R, ✓)i . (20)

At large times, Gt has severe phase fluctuations and a
StN problem arising from an exponentially falling signal
and O(1) variance [35].
We compare the original estimator based on direct

evaluation of Eq. (20) to the deformed observable defined
by the manifold in Eq. (19),

Dt ⌘ e
�[Seff (✓)�S(✓)]

Ct(R, e✓)

= e
�[Seff (✓)�S(✓)]

RtR0e
ie✓t�ie✓0 .

(21)

We optimize the full (3L+1)-parameter form in Eq. (19)
using the numerical approach based on gradient esti-
mates defined by Eq. (7), and as a comparison optimize
a simpler one-parameter subfamily of deformations de-

fined by c = �
(2)
t0 = �

(3)
t0 = 0, �(1)t0 = t

0
� for |t

0
| < t, and

�
(1)
t0 = t�, which achieves destructive phase interference
for small phase fluctuations. Fig. 2 contrasts the results
of the deformed observables to the original observable on
a representative ensemble defined by bare m

2 = (0.15)2,
� = 3 ⇥ 10�3, and L = 64. For any t, the statistical
uncertainty on m

e↵(t) is smaller on the deformed mani-
folds than on the original manifold. In comparison to the
original manifold, the numerically optimized manifold re-
duces the observed exponential rate of StN degradation
by 32%, while one-parameter optimization gives a reduc-
tion of 18%.
We find that the method is robust across several

choices of bare couplings, � = {0, 1, 2, 3} ⇥ 10�3, rang-
ing from the free theory to values well outside the regime
of lattice perturbation theory [72]. Fits to the mass of
the scalar particle in the original and deformed contour
approaches agree to within statistical errors on ensem-
bles consisting of 10,000 samples generated using Hybrid
Monte Carlo [87]. Excited state e↵ects are not signifi-
cant in this toy model; however, excited-state contami-
nation prevents reliable single-exponential fits to corre-
lation functions Gt in more complex theories such as lat-
tice QCD at small separations t. Here, we consider con-
stant fits to m

e↵ for fit ranges beginning at ti = {5, 10}

4

FIG. 2. me↵ and StN(Dt) in the complex scalar the-
ory measured using the original integration contour (blue),
a manually-tuned one-parameter contour (orange), and a
numerically-optimized contour (green) on the ensemble con-
sisting of 10,000 MC samples with the largest bare coupling
considered here (� = 0.003). Dashed exponential fits to
the StN suggest growing improvement in the large-time limit
where the data become unreliable at this finite ensemble size.

investigate string tensions tuned to � = {0.4, 0.3, 0.2, 0.1}
in lattice units by fixing � = {1.843, 2.296, 3.124, 5.555}.
This corresponds to lattice spacing varying by a factor of
two across the ensembles. By choosing a nearly optimal
� for every coupling, constant fits to �

e↵ estimated from
the deformed observable give results for � improved by
5⇥ – 75⇥ in precision. The most benefit was found on
the ensemble with finest lattice spacing (� = 5.555).

Complex scalar field theory — To explore the gen-
erality of the deformed observables approach, we further
apply it to complex scalar field theory in 0 + 1D with a
quartic interaction. Employing polar coordinates for the
scalar field �t = Rte

i✓t , the lattice action reads

S = �2
L�1X

t=0

RtRt+1cos(✓t+1 � ✓t) + V (R), (18)

where V (R) =
P

t (2 +m
2)R2

t + �R
4
t , and periodic

boundary conditions are used, ✓0 ⌘ ✓L and R0 ⌘ RL.
Comparing this action with Eq. (8), it is apparent that
phase di↵erences ✓t+1 � ✓t in this theory have weights in
the action with similar form to plaquettes in the U(1)
gauge theory. We therefore complexify the integration
domain in a similar manner to the U(1) case, deforming
the phases as

✓̃t = ✓t + i�
(1)
t + i�

(2)
t fc(RtRt+1)+ i�

(3)
t fc(Rt�1Rt) (19)

while the Rt remain undeformed. Here, �
(i)
t are real

parameters assigned to each lattice site and fc(x) =
c tanh(1/cx) is chosen as a regularization of the function
1/x defined by a single additional parameter c. This form
is motivated by an expansion in small phase fluctuations,
while regularizing the function 1/x avoids overlap prob-
lems. Every manifold in the family defined by Eq. (19)
has unit Jacobian, allowing e�cient computation of the
deformed observable.

The mass of the scalar particle is a key quantity in this
theory and can be extracted from the large-time behavior
of the single-particle propagator, Gt ⌘ h�t�

†
0i, using a

local estimator m
e↵(t) ⌘ arccosh

⇣
Gt�1+Gt+1

2Gt

⌘
. Written

as a holomorphic function of the chosen variables,

Gt =
⌦
RtR0e

i✓t�i✓0
↵
⌘ hCt(R, ✓)i . (20)

At large times, Gt has severe phase fluctuations and a
StN problem arising from an exponentially falling signal
and O(1) variance [35].
We compare the original estimator based on direct

evaluation of Eq. (20) to the deformed observable defined
by the manifold in Eq. (19),

Dt ⌘ e
�[Seff (✓)�S(✓)]

Ct(R, e✓)

= e
�[Seff (✓)�S(✓)]

RtR0e
ie✓t�ie✓0 .

(21)

We optimize the full (3L+1)-parameter form in Eq. (19)
using the numerical approach based on gradient esti-
mates defined by Eq. (7), and as a comparison optimize
a simpler one-parameter subfamily of deformations de-

fined by c = �
(2)
t0 = �

(3)
t0 = 0, �(1)t0 = t

0
� for |t

0
| < t, and

�
(1)
t0 = t�, which achieves destructive phase interference
for small phase fluctuations. Fig. 2 contrasts the results
of the deformed observables to the original observable on
a representative ensemble defined by bare m

2 = (0.15)2,
� = 3 ⇥ 10�3, and L = 64. For any t, the statistical
uncertainty on m

e↵(t) is smaller on the deformed mani-
folds than on the original manifold. In comparison to the
original manifold, the numerically optimized manifold re-
duces the observed exponential rate of StN degradation
by 32%, while one-parameter optimization gives a reduc-
tion of 18%.
We find that the method is robust across several

choices of bare couplings, � = {0, 1, 2, 3} ⇥ 10�3, rang-
ing from the free theory to values well outside the regime
of lattice perturbation theory [72]. Fits to the mass of
the scalar particle in the original and deformed contour
approaches agree to within statistical errors on ensem-
bles consisting of 10,000 samples generated using Hybrid
Monte Carlo [87]. Excited state e↵ects are not signifi-
cant in this toy model; however, excited-state contami-
nation prevents reliable single-exponential fits to corre-
lation functions Gt in more complex theories such as lat-
tice QCD at small separations t. Here, we consider con-
stant fits to m

e↵ for fit ranges beginning at ti = {5, 10}

fc(x) = c tanh((cx)�1)
<latexit sha1_base64="zFKh3j8vJPrltnaFtYDvo5c36cw=">AAACCXicbVDLSsNAFJ3UV62vqEs3g0VIF5akCLoRim5cVrAPaGKYTCft0MkkzEykJXTrxl9x40IRt/6BO//GaZuFth64cDjnXu69J0gYlcq2v43Cyura+kZxs7S1vbO7Z+4ftGScCkyaOGax6ARIEkY5aSqqGOkkgqAoYKQdDK+nfvuBCEljfqfGCfEi1Oc0pBgpLfkmDH1sjSqXGLowc0UEFeKDiWXhUeU+O3UmFd8s21V7BrhMnJyUQY6Gb365vRinEeEKMyRl16klysuQUBQzMim5qSQJwkPUJ11NOYqI9LLZJxN4opUeDGOhiys4U39PZCiSchwFujNCaiAXvan4n9dNVXjhZZQnqSIczxeFKYMqhtNYYI8KghUba4KwoPpWiAdIIKx0eCUdgrP48jJp1aqOXXVuz8r1qzyOIjgCx8ACDjgHdXADGqAJMHgEz+AVvBlPxovxbnzMWwtGPnMI/sD4/AF+JphJ</latexit><latexit sha1_base64="68ZzjmGfTx+k6l6okXmnS/NOJHk=">AAACLnicjVDLSsNAFJ3UV62vqEs3g0VIF5akCLoRim5cKtgHNDFMppN26GQSZibSErr1a1y48UdcCCLi1s9w2mahrQsPDBzOOZc79wQJo1LZ9ptRWFpeWV0rrpc2Nre2d8zdvaaMU4FJA8csFu0AScIoJw1FFSPtRBAUBYy0gsHlxG/dEyFpzG/VKCFehHqchhQjpSXfhKGPrWHlHEMXZq6IoEK8P7YsPKzcZcfOuOKbZbtqTwEXiZOTMsjxv7hvvrjdGKcR4QozJGXHqSXKy5BQFDMyLrmpJAnCA9QjHU05ioj0sum5Y3iklS4MY6EfV3Cq/pzIUCTlKAp0MkKqL+e9ifiX10lVeOZllCepIhzPFoUpgyqGk+5glwqCFRtpgrCg+q8Q95FAWOmGS/p0Z/7QRdKsVR276tyclOsXeWdFcAAOgQUccArq4ApcgwbA4AE8gmfwbjwZr8aH8TmLFox8Zh/8gvH1DVvrn8I=</latexit><latexit sha1_base64="68ZzjmGfTx+k6l6okXmnS/NOJHk=">AAACLnicjVDLSsNAFJ3UV62vqEs3g0VIF5akCLoRim5cKtgHNDFMppN26GQSZibSErr1a1y48UdcCCLi1s9w2mahrQsPDBzOOZc79wQJo1LZ9ptRWFpeWV0rrpc2Nre2d8zdvaaMU4FJA8csFu0AScIoJw1FFSPtRBAUBYy0gsHlxG/dEyFpzG/VKCFehHqchhQjpSXfhKGPrWHlHEMXZq6IoEK8P7YsPKzcZcfOuOKbZbtqTwEXiZOTMsjxv7hvvrjdGKcR4QozJGXHqSXKy5BQFDMyLrmpJAnCA9QjHU05ioj0sum5Y3iklS4MY6EfV3Cq/pzIUCTlKAp0MkKqL+e9ifiX10lVeOZllCepIhzPFoUpgyqGk+5glwqCFRtpgrCg+q8Q95FAWOmGS/p0Z/7QRdKsVR276tyclOsXeWdFcAAOgQUccArq4ApcgwbA4AE8gmfwbjwZr8aH8TmLFox8Zh/8gvH1DVvrn8I=</latexit><latexit sha1_base64="68ZzjmGfTx+k6l6okXmnS/NOJHk=">AAACLnicjVDLSsNAFJ3UV62vqEs3g0VIF5akCLoRim5cKtgHNDFMppN26GQSZibSErr1a1y48UdcCCLi1s9w2mahrQsPDBzOOZc79wQJo1LZ9ptRWFpeWV0rrpc2Nre2d8zdvaaMU4FJA8csFu0AScIoJw1FFSPtRBAUBYy0gsHlxG/dEyFpzG/VKCFehHqchhQjpSXfhKGPrWHlHEMXZq6IoEK8P7YsPKzcZcfOuOKbZbtqTwEXiZOTMsjxv7hvvrjdGKcR4QozJGXHqSXKy5BQFDMyLrmpJAnCA9QjHU05ioj0sum5Y3iklS4MY6EfV3Cq/pzIUCTlKAp0MkKqL+e9ifiX10lVeOZllCepIhzPFoUpgyqGk+5glwqCFRtpgrCg+q8Q95FAWOmGS/p0Z/7QRdKsVR276tyclOsXeWdFcAAOgQUccArq4ApcgwbA4AE8gmfwbjwZr8aH8TmLFox8Zh/8gvH1DVvrn8I=</latexit>

4

FIG. 2. me↵ and StN(Dt) in the complex scalar the-
ory measured using the original integration contour (blue),
a manually-tuned one-parameter contour (orange), and a
numerically-optimized contour (green) on the ensemble con-
sisting of 10,000 MC samples with the largest bare coupling
considered here (� = 0.003). Dashed exponential fits to
the StN suggest growing improvement in the large-time limit
where the data become unreliable at this finite ensemble size.

investigate string tensions tuned to � = {0.4, 0.3, 0.2, 0.1}
in lattice units by fixing � = {1.843, 2.296, 3.124, 5.555}.
This corresponds to lattice spacing varying by a factor of
two across the ensembles. By choosing a nearly optimal
� for every coupling, constant fits to �

e↵ estimated from
the deformed observable give results for � improved by
5⇥ – 75⇥ in precision. The most benefit was found on
the ensemble with finest lattice spacing (� = 5.555).

Complex scalar field theory — To explore the gen-
erality of the deformed observables approach, we further
apply it to complex scalar field theory in 0 + 1D with a
quartic interaction. Employing polar coordinates for the
scalar field �t = Rte

i✓t , the lattice action reads

S = �2
L�1X

t=0

RtRt+1cos(✓t+1 � ✓t) + V (R), (18)

where V (R) =
P

t (2 +m
2)R2

t + �R
4
t , and periodic

boundary conditions are used, ✓0 ⌘ ✓L and R0 ⌘ RL.
Comparing this action with Eq. (8), it is apparent that
phase di↵erences ✓t+1 � ✓t in this theory have weights in
the action with similar form to plaquettes in the U(1)
gauge theory. We therefore complexify the integration
domain in a similar manner to the U(1) case, deforming
the phases as

✓̃t = ✓t + i�
(1)
t + i�

(2)
t fc(RtRt+1)+ i�

(3)
t fc(Rt�1Rt) (19)

while the Rt remain undeformed. Here, �
(i)
t are real

parameters assigned to each lattice site and fc(x) =
c tanh(1/cx) is chosen as a regularization of the function
1/x defined by a single additional parameter c. This form
is motivated by an expansion in small phase fluctuations,
while regularizing the function 1/x avoids overlap prob-
lems. Every manifold in the family defined by Eq. (19)
has unit Jacobian, allowing e�cient computation of the
deformed observable.

The mass of the scalar particle is a key quantity in this
theory and can be extracted from the large-time behavior
of the single-particle propagator, Gt ⌘ h�t�

†
0i, using a

local estimator m
e↵(t) ⌘ arccosh

⇣
Gt�1+Gt+1

2Gt

⌘
. Written

as a holomorphic function of the chosen variables,

Gt =
⌦
RtR0e

i✓t�i✓0
↵
⌘ hCt(R, ✓)i . (20)

At large times, Gt has severe phase fluctuations and a
StN problem arising from an exponentially falling signal
and O(1) variance [35].
We compare the original estimator based on direct

evaluation of Eq. (20) to the deformed observable defined
by the manifold in Eq. (19),
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We optimize the full (3L+1)-parameter form in Eq. (19)
using the numerical approach based on gradient esti-
mates defined by Eq. (7), and as a comparison optimize
a simpler one-parameter subfamily of deformations de-

fined by c = �
(2)
t0 = �

(3)
t0 = 0, �(1)t0 = t

0
� for |t

0
| < t, and

�
(1)
t0 = t�, which achieves destructive phase interference
for small phase fluctuations. Fig. 2 contrasts the results
of the deformed observables to the original observable on
a representative ensemble defined by bare m

2 = (0.15)2,
� = 3 ⇥ 10�3, and L = 64. For any t, the statistical
uncertainty on m

e↵(t) is smaller on the deformed mani-
folds than on the original manifold. In comparison to the
original manifold, the numerically optimized manifold re-
duces the observed exponential rate of StN degradation
by 32%, while one-parameter optimization gives a reduc-
tion of 18%.
We find that the method is robust across several

choices of bare couplings, � = {0, 1, 2, 3} ⇥ 10�3, rang-
ing from the free theory to values well outside the regime
of lattice perturbation theory [72]. Fits to the mass of
the scalar particle in the original and deformed contour
approaches agree to within statistical errors on ensem-
bles consisting of 10,000 samples generated using Hybrid
Monte Carlo [87]. Excited state e↵ects are not signifi-
cant in this toy model; however, excited-state contami-
nation prevents reliable single-exponential fits to corre-
lation functions Gt in more complex theories such as lat-
tice QCD at small separations t. Here, we consider con-
stant fits to m

e↵ for fit ranges beginning at ti = {5, 10}
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� = 3 ⇥ 10�3, and L = 64. For any t, the statistical
uncertainty on m

e↵(t) is smaller on the deformed mani-
folds than on the original manifold. In comparison to the
original manifold, the numerically optimized manifold re-
duces the observed exponential rate of StN degradation
by 32%, while one-parameter optimization gives a reduc-
tion of 18%.
We find that the method is robust across several

choices of bare couplings, � = {0, 1, 2, 3} ⇥ 10�3, rang-
ing from the free theory to values well outside the regime
of lattice perturbation theory [72]. Fits to the mass of
the scalar particle in the original and deformed contour
approaches agree to within statistical errors on ensem-
bles consisting of 10,000 samples generated using Hybrid
Monte Carlo [87]. Excited state e↵ects are not signifi-
cant in this toy model; however, excited-state contami-
nation prevents reliable single-exponential fits to corre-
lation functions Gt in more complex theories such as lat-
tice QCD at small separations t. Here, we consider con-
stant fits to m

e↵ for fit ranges beginning at ti = {5, 10}

m = 0.15, � = 3⇥ 10�3, L = 64
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son loop, the largest eigenvalue magnitude will set the
typical observable magnitude on generic gauge fields in
the integration domain. While it is possible for stronger
cancellation between eigenvalues to occur on particular
gauge fields, this larger typical magnitude throughout the
majority of the domain of integration suggests that can-
cellations from phase fluctuations with similar severity to
those of the original observable will therefore be required
for such deformed observables to achieve identical expec-
tation values, and significant sign/StN problems may be
expected. If one instead chooses the non-gauge-invariant
integrand e

i�1 to measure the same expectation value,
the determinant constraint does not prevent exponen-
tially decreasing the magnitude throughout the integra-
tion domain using contour deformations. For example,
one can choose the shift

�1 ! e�1 = �1 + if

�2 ! e�2 = �2 � if/2

�3 ! e�3 = �3 � if/2

(27)

which has the e↵ect of reducing the observable magnitude
by e

�f on every gauge field in the integration domain.
Rewriting Wilson loop observables based on eigenval-

ues requires diagonalization, and a more practical al-
ternative is to use the (1, 1) component of the (matrix-
valued) Wilson loop as another non-gauge-invariant func-
tion with the same expectation value as the trace divided
by N . The phase of this (or any other) single color com-
ponent of the Wilson loop is not constrained by the unit
determinant condition and therefore one expects that a
suitable parameterization can be found in which vertical
deformations can be applied to the phase of the (1, 1)
component of the Wilson loop analogously to e

i�. Such
parameterizations are given for SU(2) in Sec. IV and for
SU(3) in Sec. V following Ref. [55] and are used as start-
ing points for defining deformed observables with reduced
variance in calculations of Wilson loop expectation val-
ues. An alternative parameterization of SU(2) in which
the real part of the (1, 1) component of the Wilson loop
is expressed as cos(↵/2) is explored in Appendix B; as
expected, vertical contour deformations do not improve
the variance of unit area Wilson loops and less (though
still significant) variance reduction is found for larger area
Wilson loops with this alternative parameterization.

III. NOISE PROBLEMS IN SU(N) LATTICE
GAUGE THEORY

A simple setting for analyzing SU(N) lattice gauge
theory is obtained by considering (1 + 1)D Euclidean
spacetime with open boundary conditions. In this space-
time geometry, much like in (3 + 1) dimensions, the the-
ory features confinement of static test charges and an
exponentially severe StN problem associated with static
quark correlation functions, which can be identified with
Wilson loops [69]. Numerical calculations of Wilson loop

expectation values can be performed at much lower com-
putational cost in (1 + 1)D than (3 + 1)D, facilitating
a first exploration of path integral contour deformations
applied to non-Abelian gauge theory observables on non-
trivial lattices. Analytic results for (1 + 1)D observables
such as Wilson loops are also known [70, 71] and can be
used to verify the correctness of numerical results. These
results are extended to analytic results for the variances
of (1 + 1)D Wilson loops below, which are then used in
Secs. IV–V to verify the correctness and study the e↵ec-
tiveness of contour deformations applied to Wilson loops.
In particular, analytic results can be used to determine
the StN gains obtained by using deformed observables
even when the corresponding undeformed observables are
too noisy to be determined reliably.

A. SU(N) lattice gauge theory in (1 + 1)D

Lattice gauge theory in (1 + 1)D is defined on a set V
of Euclidean spacetime points x arranged in a discrete
two-dimensional lattice, with vectors 1̂ and 2̂ giving the
displacement in lattice units between neighboring lattice
sites along the two Euclidean spacetime axes. The dis-
cretized gauge field is represented by group-valued vari-
ables on each link of the lattice, with Ux,µ denoting the
variable associated with link (x, x+µ̂). The physical con-
tent of the theory is encoded in the (discretized) action.
We consider the Wilson action for SU(N) lattice gauge
theory [69], given for a (1 + 1)D Euclidean spacetime
volume by

S ⌘ �
1

g2

X

x2V
tr
�
Px + P

�1
x

�
, (28)

where g is the bare gauge coupling and each plaquette
Px 2 SU(N) is defined as

Px ⌘ Ux,1Ux+1̂,2U
�1
x+2̂,1

U
�1
x,2 . (29)

Writing the action and plaquettes using inversion rather
than Hermitian conjugation allows the relevant inte-
grands to be interpreted in the following sections as holo-
morphic functions of integration variables throughout the
complexified domain. For SU(N) elements these opera-
tions are equivalent, but analytically continuing the ac-
tion to SL(N,C) requires the use of the inverse [60–62].
Expectation values of operators O(U) in the lattice

regularized theory are defined by specializing Eq. (9)–
(10) to the particular case of SU(N) lattice gauge theory

hOi =
1

Z

Z
DU O(U) e�S(U)

, (30)

where the Euclidean partition function Z is defined by

Z =

Z
DU e

�S(U) (31)

and DU =
Q

x,µ dUx,µ in terms of the Haar measure
dUx,µ of SU(N).

P�1
x
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son loop, the largest eigenvalue magnitude will set the
typical observable magnitude on generic gauge fields in
the integration domain. While it is possible for stronger
cancellation between eigenvalues to occur on particular
gauge fields, this larger typical magnitude throughout the
majority of the domain of integration suggests that can-
cellations from phase fluctuations with similar severity to
those of the original observable will therefore be required
for such deformed observables to achieve identical expec-
tation values, and significant sign/StN problems may be
expected. If one instead chooses the non-gauge-invariant
integrand e

i�1 to measure the same expectation value,
the determinant constraint does not prevent exponen-
tially decreasing the magnitude throughout the integra-
tion domain using contour deformations. For example,
one can choose the shift

�1 ! e�1 = �1 + if

�2 ! e�2 = �2 � if/2

�3 ! e�3 = �3 � if/2

(27)

which has the e↵ect of reducing the observable magnitude
by e

�f on every gauge field in the integration domain.
Rewriting Wilson loop observables based on eigenval-

ues requires diagonalization, and a more practical al-
ternative is to use the (1, 1) component of the (matrix-
valued) Wilson loop as another non-gauge-invariant func-
tion with the same expectation value as the trace divided
by N . The phase of this (or any other) single color com-
ponent of the Wilson loop is not constrained by the unit
determinant condition and therefore one expects that a
suitable parameterization can be found in which vertical
deformations can be applied to the phase of the (1, 1)
component of the Wilson loop analogously to e

i�. Such
parameterizations are given for SU(2) in Sec. IV and for
SU(3) in Sec. V following Ref. [55] and are used as start-
ing points for defining deformed observables with reduced
variance in calculations of Wilson loop expectation val-
ues. An alternative parameterization of SU(2) in which
the real part of the (1, 1) component of the Wilson loop
is expressed as cos(↵/2) is explored in Appendix B; as
expected, vertical contour deformations do not improve
the variance of unit area Wilson loops and less (though
still significant) variance reduction is found for larger area
Wilson loops with this alternative parameterization.

III. NOISE PROBLEMS IN SU(N) LATTICE
GAUGE THEORY

A simple setting for analyzing SU(N) lattice gauge
theory is obtained by considering (1 + 1)D Euclidean
spacetime with open boundary conditions. In this space-
time geometry, much like in (3 + 1) dimensions, the the-
ory features confinement of static test charges and an
exponentially severe StN problem associated with static
quark correlation functions, which can be identified with
Wilson loops [69]. Numerical calculations of Wilson loop

expectation values can be performed at much lower com-
putational cost in (1 + 1)D than (3 + 1)D, facilitating
a first exploration of path integral contour deformations
applied to non-Abelian gauge theory observables on non-
trivial lattices. Analytic results for (1 + 1)D observables
such as Wilson loops are also known [70, 71] and can be
used to verify the correctness of numerical results. These
results are extended to analytic results for the variances
of (1 + 1)D Wilson loops below, which are then used in
Secs. IV–V to verify the correctness and study the e↵ec-
tiveness of contour deformations applied to Wilson loops.
In particular, analytic results can be used to determine
the StN gains obtained by using deformed observables
even when the corresponding undeformed observables are
too noisy to be determined reliably.

A. SU(N) lattice gauge theory in (1 + 1)D

Lattice gauge theory in (1 + 1)D is defined on a set V
of Euclidean spacetime points x arranged in a discrete
two-dimensional lattice, with vectors 1̂ and 2̂ giving the
displacement in lattice units between neighboring lattice
sites along the two Euclidean spacetime axes. The dis-
cretized gauge field is represented by group-valued vari-
ables on each link of the lattice, with Ux,µ denoting the
variable associated with link (x, x+µ̂). The physical con-
tent of the theory is encoded in the (discretized) action.
We consider the Wilson action for SU(N) lattice gauge
theory [69], given for a (1 + 1)D Euclidean spacetime
volume by

S ⌘ �
1

g2

X

x2V
tr
�
Px + P

�1
x

�
, (28)

where g is the bare gauge coupling and each plaquette
Px 2 SU(N) is defined as

Px ⌘ Ux,1Ux+1̂,2U
�1
x+2̂,1

U
�1
x,2 . (29)

Writing the action and plaquettes using inversion rather
than Hermitian conjugation allows the relevant inte-
grands to be interpreted in the following sections as holo-
morphic functions of integration variables throughout the
complexified domain. For SU(N) elements these opera-
tions are equivalent, but analytically continuing the ac-
tion to SL(N,C) requires the use of the inverse [60–62].
Expectation values of operators O(U) in the lattice

regularized theory are defined by specializing Eq. (9)–
(10) to the particular case of SU(N) lattice gauge theory

hOi =
1

Z

Z
DU O(U) e�S(U)

, (30)

where the Euclidean partition function Z is defined by

Z =

Z
DU e

�S(U) (31)

and DU =
Q

x,µ dUx,µ in terms of the Haar measure
dUx,µ of SU(N).
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With open boundary conditions in (1+1)D, the parti-
tion function defined by this action factorizes into a prod-
uct of independent integrals over each Px. To exploit this
factorization in (1 + 1)D, a gauge fixing prescription can
be applied in which Ux,2 = 1 for all x and Ux,1 = 1 for
sites with x2 = 0 (a maximal tree gauge). In this gauge,

Px = Ux,1U
�1
x+2̂,1

, (32)

which can be easily inverted to obtain

Ux,1 =

"
x2�1Y

k=0

Px+k2̂

#�1

. (33)

The variables Px are therefore in one-to-one correspon-
dence with the remaining non-gauge-fixed Ux,1. The
Haar measure is invariant under this change of variables,
and the path integral defining the partition function fac-
torizes as

Z =
Y

x2V0

z = z
|V0|

, (34)

where V
0
⇢ V is the subset of lattice points with uncon-

strained Ux,1 in this gauge (those for which x2 6= 0) and z

is the contribution to the partition function from a single
plaquette,

z ⌘

Z
dP e

1
g2 tr(P+P�1)

. (35)

The calculations of z and similar single-variable SU(N)
integrals are presented in Appendix A.

Wilson loops are defined by the matrix-valued quantity

WA ⌘

Y

x,µ2@A
Ux,µ, (36)

where
Q

x,µ2@A Ux,µ represents an ordered product of
links along the boundary @A of the two-dimensional re-
gion A with area A. The expectation value of the gauge-
invariant observable 1

N tr (WA) probes the interaction be-
tween a pair of static quarks if the region A is taken to
be rectangular. Inserting Eq. (33) into Eq. (36) gives4

1

N
tr (WA) =

1

N
tr

 
Y

x2A
Px

!
. (37)

Using linearity of expectation values and factorization of
path integrals analogous to Eq. (34), the expectation val-
ues of Wilson loops can be related to products of (matrix-
valued) single-variable expectation values,

⌧
1

N
tr (WA)

�
=

1

N
tr

 
Y

x2A
hPxi

!
. (38)

4
For simplicity we restrict to rectangular Wilson loops with one

corner at the origin.

Each single-variable expectation value is given by⌦
P

ab
x

↵
= h�1i �

ab, allowing the traced Wilson loop to be
written as a product of scalars,

⌧
1

N
tr (WA)

�
=
Y

x2A
h�1i = h�1i

A
, (39)

where we have introduced the single-variable normal-
ized expectation value of the group character function
�1(P ) = tr(P ),

h�1i ⌘
1

z

Z
dP

1

N
tr(P ) e

1
g2 tr(P+P�1)

, (40)

whose value is computed in Appendix A.
Eq. (39) implies that Wilson loop expectation values

follow area law scaling, htr(WA)/Ni ⇠ e
��A, and SU(N)

gauge theory in (1 + 1)D confines for all values of the
coupling, with a separation-independent force between
static test charges given by the string tension

� ⌘ � lim
A!1

@A lnWA = � ln h�1i . (41)

Although h�1i is in general given by a convergent infinite
series in Eq. (A6), in the case of SU(2) a simpler form
can be found in terms of modified Bessel functions,

�
SU(2) = ln

✓
I1(4/g2)

I2(4/g2)

◆
, (42)

which goes to zero as g
2
! 0. This observation can be

generalized to all SU(N) groups, and the lattice-units
string tension goes to zero while the static quark corre-
lation length grows to infinity in the limit of g2 ! 0 in
all cases. We can consider this to be the naive contin-
uum limit of the theory, though the correlation lengths of
dynamical quantities such as plaquettes or localized Wil-
son loops remain finite by the factorization of the path
integral. When investigating the approach to the contin-
uum in Sec. IV and V, we should decrease the coupling
while fixing the dimensionless quantity �V , where V is
the total number of plaquettes; the particular choices of
couplings and V used in our numerical studies are re-
ported in Table I. Results are plotted versus �A when
comparing quantities at fixed physical separation is im-
portant.

B. Noise and sign problems in the Wilson loop

Although the expectation value htr(WA)/Ni is real,
the integrand tr(WA)/N has fluctuating signs (for N =
2) or fluctuating complex phases (for N � 3) across the
domain of integration. These fluctuations result in a
sign/StN problem for this observable. The sample mean
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proving sign/StN problems is only explored here for pure
gauge theory.

The deformed observable method introduced in
Ref. [48] relates path integrals over deformed contours
to path integrals written in terms of modified observ-
ables on undeformed contours, enabling improvement in
the StN of observables without the need to modify MC
sampling. We apply the method here to calculations of
Wilson loops in SU(2) and SU(3) gauge theory, in which
Wilson loops are known to have an exponentially severe
StN problem and have been used to study other StN im-
provement methods [53]. Calculations are performed in
(1 + 1)D as a proof of concept, as it is possible to com-
pare with exact StN results derived analytically and to
use specialized approaches for e�cient Monte Carlo en-
semble generation for (1 + 1)D gauge theories. Results
are obtained for a range of Wilson loop areas and lattice
spacings including areas of up to 64 lattice units at the
finest lattice spacing. The variances of Wilson loops with
largest areas are reduced by factors of 103–104, demon-
strating that deformed observables can dramatically im-
prove StN problems in SU(N) lattice gauge theory. The
linear scaling with spacetime volume of these contour de-
formations suggests that it should be computationally
feasible to explore the application of analogous contour
deformations to (3 + 1)D lattice gauge theory in future
work.

The remainder of this paper is organized as follows.
Sec. II describes our approach to contour deformations
for SU(N) variables, including a family of complex man-
ifolds for integration over sets of SU(N) variables, and
reviews the deformed observables method introduced in
Ref. [48]. Sec. III presents analytical results for expec-
tation values and variances of observables in (1 + 1)D
SU(N) lattice gauge theory. Results for MC calculations
of deformed observables for Wilson loops are presented
for SU(2) gauge theory in Sec. IV and for SU(3) gauge
theory in Sec. V. A summary of results and consideration
of future work is found in Sec. VI.

II. GENERAL FORMALISM

Cauchy’s integral theorem implies that the contour of
a complex line integral can be deformed without chang-
ing the integral value if the integrand is holomorphic in
the intervening region and the endpoints are held fixed.1

When multidimensional integration is performed, the full
theorem can be generalized if the integral is describable
as iterated complex line integrals or by a technical ex-
tension to the full multivariate setting [54]. For the pur-
pose of contour deformations, however, only a weaker
form of the theorem (equivalent to Stokes’ theorem) is

1
For periodic functions this condition on the endpoints can be

relaxed, as discussed in Sec. II A.
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FIG. 1. Left: schematic depiction of valid and invalid contour
deformations, defined by the mapping e✓(✓) from base coordi-
nates to the manifold, when the original domain is a finite in-
terval. Right: schematic depiction of additional allowed defor-
mations (shifts) when endpoints are identified; these shifts are
applicable to U(1) variables or azimuthal angles � in SU(N)
manifolds.

required. Specifically, a contour deformation from man-
ifold MA to MB leaves the integral value unchanged if
MA[MB bounds a region in which the integrand is holo-
morphic; see Ref. [47] for a simple proof. To implement
such contour deformations and confirm holomorphy of an
integrand throughout the relevant region of configuration
space, a coordinate parameterization is useful. We dis-
cuss such parameterizations and contour deformation for
SU(N) groups and SU(N) gauge theory in the following
sections.

A. Contour deformations of angular parameters

A general formalism for applying path integral con-
tour deformations to SU(N) group integrals can be ob-
tained by using manifold coordinates that map subsets
of RN2�1 to SU(N). For any N , the group manifold
can be given explicit global coordinates using N

2
� 1

angular variables [55]. These variables can be divided
into azimuthal angles �1, . . . ,�J 2 [0, 2⇡] and zenith an-
gles ✓1, . . . , ✓K 2 [0,⇡/2], where J = (N2 + N � 2)/2
and K = (N2

� N)/2.2 The azimuthal angles are peri-
odic, such that �i = 0 is identified with �i = 2⇡, while
the zenith angles have distinct endpoints. We define the
combined coordinate ⌦ ⌘ (�1, . . . ,�J , ✓1, . . . , ✓K).

A generic integral over group-valued variable U 2

SU(N) can be written as

I =

Z
dU f(U), (1)

where the Haar measure dU is defined to be the unique
measure that satisfies d(V U) = d(UV ) = dU for V 2

2
This is not the only possible assignment of angular coordinates to

the manifold. For example, Appendix B explores an alternative

parameterization for SU(2).
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Wilson loops are known to have an exponentially severe
StN problem and have been used to study other StN im-
provement methods [53]. Calculations are performed in
(1 + 1)D as a proof of concept, as it is possible to com-
pare with exact StN results derived analytically and to
use specialized approaches for e�cient Monte Carlo en-
semble generation for (1 + 1)D gauge theories. Results
are obtained for a range of Wilson loop areas and lattice
spacings including areas of up to 64 lattice units at the
finest lattice spacing. The variances of Wilson loops with
largest areas are reduced by factors of 103–104, demon-
strating that deformed observables can dramatically im-
prove StN problems in SU(N) lattice gauge theory. The
linear scaling with spacetime volume of these contour de-
formations suggests that it should be computationally
feasible to explore the application of analogous contour
deformations to (3 + 1)D lattice gauge theory in future
work.

The remainder of this paper is organized as follows.
Sec. II describes our approach to contour deformations
for SU(N) variables, including a family of complex man-
ifolds for integration over sets of SU(N) variables, and
reviews the deformed observables method introduced in
Ref. [48]. Sec. III presents analytical results for expec-
tation values and variances of observables in (1 + 1)D
SU(N) lattice gauge theory. Results for MC calculations
of deformed observables for Wilson loops are presented
for SU(2) gauge theory in Sec. IV and for SU(3) gauge
theory in Sec. V. A summary of results and consideration
of future work is found in Sec. VI.

II. GENERAL FORMALISM

Cauchy’s integral theorem implies that the contour of
a complex line integral can be deformed without chang-
ing the integral value if the integrand is holomorphic in
the intervening region and the endpoints are held fixed.1

When multidimensional integration is performed, the full
theorem can be generalized if the integral is describable
as iterated complex line integrals or by a technical ex-
tension to the full multivariate setting [54]. For the pur-
pose of contour deformations, however, only a weaker
form of the theorem (equivalent to Stokes’ theorem) is

1
For periodic functions this condition on the endpoints can be

relaxed, as discussed in Sec. II A.
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deformations, defined by the mapping e✓(✓) from base coordi-
nates to the manifold, when the original domain is a finite in-
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required. Specifically, a contour deformation from man-
ifold MA to MB leaves the integral value unchanged if
MA[MB bounds a region in which the integrand is holo-
morphic; see Ref. [47] for a simple proof. To implement
such contour deformations and confirm holomorphy of an
integrand throughout the relevant region of configuration
space, a coordinate parameterization is useful. We dis-
cuss such parameterizations and contour deformation for
SU(N) groups and SU(N) gauge theory in the following
sections.

A. Contour deformations of angular parameters

A general formalism for applying path integral con-
tour deformations to SU(N) group integrals can be ob-
tained by using manifold coordinates that map subsets
of RN2�1 to SU(N). For any N , the group manifold
can be given explicit global coordinates using N

2
� 1

angular variables [55]. These variables can be divided
into azimuthal angles �1, . . . ,�J 2 [0, 2⇡] and zenith an-
gles ✓1, . . . , ✓K 2 [0,⇡/2], where J = (N2 + N � 2)/2
and K = (N2

� N)/2.2 The azimuthal angles are peri-
odic, such that �i = 0 is identified with �i = 2⇡, while
the zenith angles have distinct endpoints. We define the
combined coordinate ⌦ ⌘ (�1, . . . ,�J , ✓1, . . . , ✓K).

A generic integral over group-valued variable U 2

SU(N) can be written as

I =

Z
dU f(U), (1)

where the Haar measure dU is defined to be the unique
measure that satisfies d(V U) = d(UV ) = dU for V 2

2
This is not the only possible assignment of angular coordinates to

the manifold. For example, Appendix B explores an alternative

parameterization for SU(2).
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A. Gauge field parameterization

There are many possible parameterizations of the
SU(2) group manifold, any of which can be used to de-
fine valid path integral contour deformations. We argue
above that it is advantageous to consider a single compo-
nent of the Wilson loop, taken without loss of generality
to be W 11

A , as the observable whose path integral contour
is deformed in order to calculate

⌦
W

11
A
↵
= htr(WA)/Ni.

Contour deformations that reduce the magnitude of W 11
A

in generic gauge field configurations while preserving⌦
W

11
A
↵
can be expected to reduce phase fluctuations and

therefore the variance of W 11
A . The angular parameter-

ization of each plaquette Px 2 SU(2) is useful for this
purpose, and is explicitly defined by

P
11
x = sin ✓x e

i�1
x ,

P
12
x = cos ✓x e

i�2
x ,

P
21
x = � cos ✓x e

�i�2
x ,

P
22
x = sin ✓x e

�i�1
x ,

(50)

following the generalized SU(N) angular parameteriza-
tion given in Ref. [55]. The azimuthal angles satisfy
�
1
x,�

2
x 2 [0, 2⇡], with endpoints identified, while the an-

gle ✓x spans the finite interval [0,⇡/2]. The normalized
Haar measure can be written in these coordinates as

dPx = h(⌦x) d⌦x ⌘
1

4⇡2
sin(2✓x) d✓x d�

1
x d�

2
x. (51)

We begin by considering the e↵ects of simple deforma-
tions using these parameters. In the simplest case of a
region A with area A = 1, the Wilson loop consists of a
single plaquette, W 11

A = P
11
x , where the loop starts and

ends at site x. The magnitude of W 11
A can be reduced

by e
�� by deforming �

1
x ! �

1
x + i� analogously to the

approach described for e
i� integrals above. In the case

of A = 2, the Wilson loop can be written in terms of the
product of two plaquettes, W 11

A = (PxPx0)11. In the an-
gular parameterization, the Wilson loop is a sum of two
terms

(PxPx0)11 = sin ✓x sin ✓x0e
i�1

x+i�1
x0+cos ✓x cos ✓x0e

i�2
x�i�2

x0 .

(52)
The first term involves products of diagonal entries whose
magnitude can be reduced by e

�� by taking �
1
x ! �

1
x +

i� or �
1
x0 ! �

1
x0 + i� and the second term involves o↵-

diagonal components whose magnitude can be reduced
analogously by taking �

2
x � �

2
x0 ! (�2

x � �
2
x0) + i�. For

A > 2, it can be seen similarly that shifting �
1
x ! �

1
x+i�

and (�2
x � �

2
x+1) ! (�2

x � �
2
x+1) + i� for all x leads to

suppression of the magnitudes of all terms appearing in
W

11
A .
A family of contour deformations capable of express-

ing these constant imaginary shifts to the phases of all
elements of Px can therefore be expected to reduce phase
fluctuations and the variance of W 11

A . Such a family of
contour deformations is parameterized below as a subset

of the vertical deformation expanded in a Fourier series
in Eqs. (5)–(8).
An alternative parameterization of SU(2) is explored

in Appendix B, in which it is found that imaginary shifts
along these lines are more di�cult to express and orders
of magnitude less variance reduction is achieved when ap-
plying the same optimization methods. This exploration
suggests that a choice of parameterization that allows the
observable to be expressed in the form e

i� is important
for variance reduction in observables a✏icted with a sign
problem.
It is also possible to directly parameterize the gauge

field Ux,µ 2 SU(2) using Eq. (50). This alternative pa-
rameterization may be useful in more than two space-
time dimensions, where Gauss’ Law constraints imply
that not all plaquettes are independent and a path in-
tegral change of variables from Ux,µ to P

µ⌫
x cannot be

performed straightforwardly.

B. Fourier deformation basis

In our study of SU(2) gauge theory, we optimize over
a family of vertical contour deformations expressed in
terms of a Fourier series truncated above a specific cuto↵
mode. To avoid a costly Jacobian calculation, each pla-
quette variable Px is deformed conditioned on plaquettes
Py at sites earlier in the product defining WA in Eq. (37),
which we write as y  x. This family of deformations is
given by

✓̃x ⌘ ✓x + i

X

yx

f✓(✓y,�
1
y,�

2
y;

xy
,�

xy
, ⌘

xy
,�

xy
, ⇣

xy),

�̃
1
x ⌘ �

1
x + i

x;�1

0

+ i

X

yx

f�1(✓y,�
1
y,�

2
y;

xy
,�

xy
, ⌘

xy
,�

xy
, ⇣

xy),

�̃
2
x ⌘ �

2
x + i

x;�2

0

+ i

X

yx

f�2(✓y,�
1
y,�

2
y;

xy
,�

xy
, ⌘

xy
,�

xy
, ⇣

xy),

(53)

in terms of parameters xy, �xy, ⌘xy, �xy, and ⇣
xy. The

functions f✓, f�1 , and f�2 compute the shift in the imag-
inary direction of the angular parameters of Px condi-
tioned on Py, and their decomposition in terms of Fourier
modes is detailed below. For this ordered dependence on
previous sites, the Jacobian determinant factorizes into
a product of block determinants per lattice site

J =
Y

x

jx(✓x,�
1
x,�

2
x), (54)

where

jx(✓x,�
1
x,�

2
x) = det

0

BB@

@f✓
@✓x

@f✓
@�1

x

@f✓
@�2

x
@f�1
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@f�1

@�1
x

@f�1

@�2
x

@f�2

@✓x

@f�2

@�1
x

@f�2

@�2
x

1

CCA . (55)
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The structure of the deformation in Eq. (53) therefore by-
passes the need for expensive Jacobian determinant cal-
culations involving matrices whose rank grows with the
spacetime volume and is inspired by analogous methods
to simplify Jacobian determinant calculations in normal-

izing flows [64]. Note that an absolute value is not taken
over the determinant in Eq. (55).

The vertical deformation in Eq. (53) can be expanded
in a multi-parameter Fourier series as

f✓ =
⇤X

m=1


xy;✓
m sin (2m✓y)

(
1 +
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h
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xy;✓,�1

mn sin(n�1
y + �

xy;✓,�1

mn ) + ⌘
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mn sin(n�2
y + �

xy;✓,�2

mn )
i)

,

f�1 =
⇤X

m=1


xy;�1

m sin(m�
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y + ⇣

xy;�1

m )

(
1 +

⇤X

n=1

h
�
xy;�1,✓
mn sin(2n✓y) + ⌘

xy;�1,�2

mn sin(n�2
y + �

xy;�1,�2

mn )
i)

,

f�2 =
⇤X

m=1


xy;�2

m sin(m�
2
y + ⇣

xy;�2

m )

(
1 +

⇤X

n=1

h
�
xy;�2,✓
mn sin(2n✓y) + ⌘

xy;�2,�1

mn sin(n�1
y + �

xy;�2,�1

mn )
i)

,

(56)

where ⇤ is a hyperparameter that sets the maximum
Fourier mode to include and controls the total number
of free parameters. As the zero modes have trivial y de-
pendence, we have collected them in Eq. (53) into the y-

independent terms x;�1

0 and 
x;�2

0 . The included Fourier

terms are defined to satisfy the constraints e✓x(0) = 0,
e✓x(⇡/2) = ⇡/2, e�1

x(0) = e�1
x(2⇡), and e�2

x(0) = e�2
x(2⇡),

which together ensure that the endpoints of both the
zenith and azimuthal integration domains are appropri-
ately handled as described in Sec. II A. The derivatives
needed for the Jacobian in Eqs. (54)–(55) can be calcu-
lated straightforwardly by di↵erentiating Eq. (56). The
additional factor describing the change in the Haar mea-
sure needed to compute the Jacobian of the group mea-
sure is given in these coordinates as

Y

x

h(e⌦x)

h(⌦x)
=
Y

x

"
sin(2✓̃x)

sin(2✓x)

#
. (57)

Combining the results of Eq. (50) and Eqs. (53)–
(57), the expectation value of any holomorphic observ-
able O({Px}) is equal to the expectation value of the
deformed observable

Q({Px}) ⌘ O({ ePx})
e
�S({ ePx})

e�S({Px})

Y

x

jx

"
sin(2✓̃x)

sin(2✓x)

#
, (58)

where

ePx =

 
sin e✓xei

e�1
x cos e✓xei

e�2
x

� cos e✓xe�ie�2
x sin e✓xe�ie�1

x

!
2 SL(2,C). (59)

If the plaquettes are sampled in the matrix representation
for Monte Carlo evaluation, computing the observable Q

in Eq. (58) requires converting to the angular represen-
tation before deforming and evaluating. This conversion

is given by

✓x = arcsin(|P 11
x |),

�
1
x = arg(P 11

x ),

�
2
x = arg(P 12

x ),

(60)

and can be done when evaluating the observable
Q({Px}). Though these functions are not entire, the con-
version used here does not determine whether the inte-
grand itself is a holomorphic function of these angular
parameters.

C. Optimization procedure

This contour deformation expanded in a Fourier series
provides a means of exploring deformed observables with
potentially reduced variance. It is shown above that sim-
ple deformations within this family are possible to con-
struct by hand and are already su�cient to reduce the
average magnitude of Wilson loop observables. However,
these deformations are restricted to zero modes of the
Fourier expansion and rely on construction based on in-
tuition. To maximize the variance reduction, we explore
numerical optimization of the deformation parameters

xy, �xy, ⌘xy, �xy, and ⇣

xy as discussed in Sec. II C. We
are interested in ReW 11

A , for which the terms of Eq. (43)
that can be modified by contour deformation are

L ⌘
⌦
(ReQA)

2
↵
=

1

2

⌦
|Q

2
A|
↵
+

1

2

⌦
Q

2
A
↵
, (61)

where QA is the deformed observable associated with
the W

11
A . The first term in Eq. (61) is manifestly

non-holomorphic due to the absolute value over a
complex-valued observable, while the second term in-
cludes squared reweighting factors of the original and
deformed action which prevent identification as a defor-
mation of

⌦
(W 11

A )2
↵
. These terms together define the loss
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in terms of the three zenith angles 0  ✓
1
x, ✓

2
x, ✓

3
x  ⇡/2

and the five azimuthal angles 0  �
1
x, . . . ,�

5
x  2⇡ for

each plaquette. We collect these angles into a variable
⌦x = (✓1x, .., ✓

3
x,�
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x, ...,�
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x) for ease of notation. The Haar

measure is related to the measure of ⌦ by [55]
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To compute deformed observables from Monte Carlo
samples in the matrix representation, an inverse map of
(65) is needed and for example can be specified by
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(67)

An SU(3) field configuration in (1 + 1)D with open
boundary conditions is defined by a collection of angular
variables ⌦x associated all plaquettes Px on the lattice.
The ath component of the deformed angles at site x is de-
noted by (e⌦x)a, and for vertical deformations expanded
in Fourier modes is specified by
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where
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(69)

Deformed observables analogous to Eq. (58) can be con-
structed for the SU(3) case using this parameterization
and ratios of the deformed and undeformed Haar measure
factors obtained from Eq. (66).

B. Results

Practical performance of these deformations was in-
vestigated by optimizing Wilson loop variance using the
three sets of SU(3) parameters detailed in Table I as in
the SU(2) case. The couplings were tuned to match the
string tensions used for SU(2) gauge theory and corre-
spond to lattice spacings varying by a factor of 4. For
each choice of parameters, an ensemble of n = 32000

configurations was generated using the factorized HMC
method discussed in Sec. IVD. Fig. 8 shows variance re-
duction for Wilson loops of all possible sizes for the three
lattice spacings studied. At the largest loop areas, we
found variance reduction of greater than three orders of
magnitude. Across all three ensembles, analytical results
for the Wilson loop expectation values and variances were
reproduced by the undeformed Monte Carlo estimates.
The expectation value of the deformed observable is con-
sistent with the analytical and original Monte Carlo re-
sults, while the variance of the deformed observable ex-
ponentially decreases with increasing �A.

Fig. 9 compares the variance reduction achieved at all
three lattice spacings versus physical loop area �A. We
found approximately equivalent improvement in the vari-
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in terms of the three zenith angles 0  ✓
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each plaquette. We collect these angles into a variable
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x) for ease of notation. The Haar

measure is related to the measure of ⌦ by [55]
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(66)

To compute deformed observables from Monte Carlo
samples in the matrix representation, an inverse map of
(65) is needed and for example can be specified by
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An SU(3) field configuration in (1 + 1)D with open
boundary conditions is defined by a collection of angular
variables ⌦x associated all plaquettes Px on the lattice.
The ath component of the deformed angles at site x is de-
noted by (e⌦x)a, and for vertical deformations expanded
in Fourier modes is specified by
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where
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(69)

Deformed observables analogous to Eq. (58) can be con-
structed for the SU(3) case using this parameterization
and ratios of the deformed and undeformed Haar measure
factors obtained from Eq. (66).

B. Results

Practical performance of these deformations was in-
vestigated by optimizing Wilson loop variance using the
three sets of SU(3) parameters detailed in Table I as in
the SU(2) case. The couplings were tuned to match the
string tensions used for SU(2) gauge theory and corre-
spond to lattice spacings varying by a factor of 4. For
each choice of parameters, an ensemble of n = 32000

configurations was generated using the factorized HMC
method discussed in Sec. IVD. Fig. 8 shows variance re-
duction for Wilson loops of all possible sizes for the three
lattice spacings studied. At the largest loop areas, we
found variance reduction of greater than three orders of
magnitude. Across all three ensembles, analytical results
for the Wilson loop expectation values and variances were
reproduced by the undeformed Monte Carlo estimates.
The expectation value of the deformed observable is con-
sistent with the analytical and original Monte Carlo re-
sults, while the variance of the deformed observable ex-
ponentially decreases with increasing �A.

Fig. 9 compares the variance reduction achieved at all
three lattice spacings versus physical loop area �A. We
found approximately equivalent improvement in the vari-
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The structure of the deformation in Eq. (53) therefore by-
passes the need for expensive Jacobian determinant cal-
culations involving matrices whose rank grows with the
spacetime volume and is inspired by analogous methods
to simplify Jacobian determinant calculations in normal-

izing flows [64]. Note that an absolute value is not taken
over the determinant in Eq. (55).

The vertical deformation in Eq. (53) can be expanded
in a multi-parameter Fourier series as
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(56)

where ⇤ is a hyperparameter that sets the maximum
Fourier mode to include and controls the total number
of free parameters. As the zero modes have trivial y de-
pendence, we have collected them in Eq. (53) into the y-

independent terms x;�1

0 and 
x;�2

0 . The included Fourier

terms are defined to satisfy the constraints e✓x(0) = 0,
e✓x(⇡/2) = ⇡/2, e�1

x(0) = e�1
x(2⇡), and e�2

x(0) = e�2
x(2⇡),

which together ensure that the endpoints of both the
zenith and azimuthal integration domains are appropri-
ately handled as described in Sec. II A. The derivatives
needed for the Jacobian in Eqs. (54)–(55) can be calcu-
lated straightforwardly by di↵erentiating Eq. (56). The
additional factor describing the change in the Haar mea-
sure needed to compute the Jacobian of the group mea-
sure is given in these coordinates as

Y

x

h(e⌦x)

h(⌦x)
=
Y
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"
sin(2✓̃x)

sin(2✓x)

#
. (57)

Combining the results of Eq. (50) and Eqs. (53)–
(57), the expectation value of any holomorphic observ-
able O({Px}) is equal to the expectation value of the
deformed observable

Q({Px}) ⌘ O({ ePx})
e
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Y
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where
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e�1
x cos e✓xei
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x

� cos e✓xe�ie�2
x sin e✓xe�ie�1

x

!
2 SL(2,C). (59)

If the plaquettes are sampled in the matrix representation
for Monte Carlo evaluation, computing the observable Q

in Eq. (58) requires converting to the angular represen-
tation before deforming and evaluating. This conversion

is given by

✓x = arcsin(|P 11
x |),

�
1
x = arg(P 11

x ),

�
2
x = arg(P 12

x ),

(60)

and can be done when evaluating the observable
Q({Px}). Though these functions are not entire, the con-
version used here does not determine whether the inte-
grand itself is a holomorphic function of these angular
parameters.

C. Optimization procedure

This contour deformation expanded in a Fourier series
provides a means of exploring deformed observables with
potentially reduced variance. It is shown above that sim-
ple deformations within this family are possible to con-
struct by hand and are already su�cient to reduce the
average magnitude of Wilson loop observables. However,
these deformations are restricted to zero modes of the
Fourier expansion and rely on construction based on in-
tuition. To maximize the variance reduction, we explore
numerical optimization of the deformation parameters

xy, �xy, ⌘xy, �xy, and ⇣

xy as discussed in Sec. II C. We
are interested in ReW 11

A , for which the terms of Eq. (43)
that can be modified by contour deformation are

L ⌘
⌦
(ReQA)

2
↵
=

1

2

⌦
|Q

2
A|
↵
+

1

2

⌦
Q

2
A
↵
, (61)

where QA is the deformed observable associated with
the W

11
A . The first term in Eq. (61) is manifestly

non-holomorphic due to the absolute value over a
complex-valued observable, while the second term in-
cludes squared reweighting factors of the original and
deformed action which prevent identification as a defor-
mation of

⌦
(W 11

A )2
↵
. These terms together define the loss

SU(3) more complicated!



• Focus on Wilson loop observables for various areas


• Advantageous to fix the gauge and focus on one component of the untraced 
loop


• StN is exponentially degrading since


• Deformed observable with previous parameterisation 
 
 
 
where 

Defining observables
SU(N) gauge theory in 1+1d

W 11
A =

 
Y

x2A

Px

!11

<latexit sha1_base64="HFyHLtLJ8wyNl0bvaggFaVtn2uo="></latexit><latexit sha1_base64="89Qkls8TYV04UGdioDta8Rjvi9E=">AAACTXicjVHLSgMxFM3UR2t9VV26CRZBN2VGBN2Ir43LCrYVOuOQSTNtMJMZkjtiGeZz/BoXgrjxQ9yIiGk7gq+FBwKHc84luSdBIrgG2362SlPTM7Plylx1fmFxabm2strWcaooa9FYxOoyIJoJLlkLOAh2mShGokCwTnB9OvI7N0xpHssLGCbMi0hf8pBTAkbya4cdP3MpEfg4v8ocJ8cH2BUshC3sJiru+dmtyyX+jOS46d9iV/H+ALbHeb9Wtxv2GPg3cQpSRwX+F/drj24vpmnEJFBBtO46Owl4GVHAqWB51U01Swi9Jn3WNVSSiGkvG7eR402j9HAYK3Mk4LH6dSIjkdbDKDDJiMBA//RG4l9eN4Vw38u4TFJgkk4uClOBIcajanGPK0ZBDA0hVHHzVkwHRBEK5gOqZnXn56K/SXun4dgN53y3fnRSdFZB62gDbSEH7aEjdIaaqIUoukP36Am9Wg/Wi/VmvU+iJauYWUPfUCp/ADM4q5Y=</latexit><latexit sha1_base64="89Qkls8TYV04UGdioDta8Rjvi9E="></latexit><latexit sha1_base64="89Qkls8TYV04UGdioDta8Rjvi9E="></latexit>

hW 11
A i = 1

N
trhWAi ⇠ e��A

<latexit sha1_base64="3Advpq3qSQrl+sMBA9zTPZCUVfo="></latexit><latexit sha1_base64="5xg/1swOR4gwfp0E/Hz/v8TQZUo="></latexit><latexit sha1_base64="5xg/1swOR4gwfp0E/Hz/v8TQZUo="></latexit><latexit sha1_base64="5xg/1swOR4gwfp0E/Hz/v8TQZUo="></latexit>

Var(W 11
A ) ⇠ 1

<latexit sha1_base64="z4Hr5WQOYZFI64V73W6GKICcSlk=">AAACC3icbVDLSsNAFJ3UV62vqEs3g0Wom5Ipgi6rblxWsA9oYphMJ+3QmSTMTIQSsnfjr7hxoYhbf8Cdf+O0zUJbD1w4nHMv994TJJwp7TjfVmlldW19o7xZ2dre2d2z9w86Kk4loW0S81j2AqwoZxFta6Y57SWSYhFw2g3G11O/+0ClYnF0pycJ9QQeRixkBGsj+fZx5koBO1jmNdj1M5dgDi/z+wyh/BS6igmIfLvq1J0Z4DJBBamCAi3f/nIHMUkFjTThWKk+aiTay7DUjHCaV9xU0QSTMR7SvqERFlR52eyXHJ4YZQDDWJqKNJypvycyLJSaiMB0CqxHatGbiv95/VSHF17GoiTVNCLzRWHKoY7hNBg4YJISzSeGYCKZuRWSEZaYaBNfxYSAFl9eJp1GHTl1dHtWbV4VcZTBETgGNYDAOWiCG9ACbUDAI3gGr+DNerJerHfrY95asoqZQ/AH1ucPZjaZVw==</latexit><latexit sha1_base64="0lyDxO4gQ923E4ojymzTMcAN63Q=">AAACMHicjVC7TsMwFHV4lvIKMLJYrZDKUsUVEowFFkaQ6ENqQuS4TmvVTiLbQaqi7HwNAwv/wQQDQqx8BW6bAVoGjmTp6JxzdX1PkHCmtOO8WUvLK6tr66WN8ubW9s6uvbffVnEqCW2RmMeyG2BFOYtoSzPNaTeRFIuA004wupz4nXsqFYujWz1OqCfwIGIhI1gbybcrmSsFbGOZ12DHz1yCOTzP7zKE8mPoKiYg8u2qU3emgIsEFaQKCvwv7tsvbj8mqaCRJhwr1UONRHsZlpoRTvOymyqaYDLCA9ozNMKCKi+bHpzDI6P0YRhL8yINp+rPiQwLpcYiMEmB9VDNexPxL6+X6vDMy1iUpJpGZLYoTDnUMZy0B/tMUqL52BBMJDN/hWSIJSbadFw2p6P5QxdJu1FHTh3dnFSbF0VnJXAIKqAGEDgFTXAFrkELEPAAHsEzeLeerFfrw/qcRZesYuYA/IL19Q1oZ6DQ</latexit><latexit sha1_base64="0lyDxO4gQ923E4ojymzTMcAN63Q=">AAACMHicjVC7TsMwFHV4lvIKMLJYrZDKUsUVEowFFkaQ6ENqQuS4TmvVTiLbQaqi7HwNAwv/wQQDQqx8BW6bAVoGjmTp6JxzdX1PkHCmtOO8WUvLK6tr66WN8ubW9s6uvbffVnEqCW2RmMeyG2BFOYtoSzPNaTeRFIuA004wupz4nXsqFYujWz1OqCfwIGIhI1gbybcrmSsFbGOZ12DHz1yCOTzP7zKE8mPoKiYg8u2qU3emgIsEFaQKCvwv7tsvbj8mqaCRJhwr1UONRHsZlpoRTvOymyqaYDLCA9ozNMKCKi+bHpzDI6P0YRhL8yINp+rPiQwLpcYiMEmB9VDNexPxL6+X6vDMy1iUpJpGZLYoTDnUMZy0B/tMUqL52BBMJDN/hWSIJSbadFw2p6P5QxdJu1FHTh3dnFSbF0VnJXAIKqAGEDgFTXAFrkELEPAAHsEzeLeerFfrw/qcRZesYuYA/IL19Q1oZ6DQ</latexit><latexit sha1_base64="0lyDxO4gQ923E4ojymzTMcAN63Q=">AAACMHicjVC7TsMwFHV4lvIKMLJYrZDKUsUVEowFFkaQ6ENqQuS4TmvVTiLbQaqi7HwNAwv/wQQDQqx8BW6bAVoGjmTp6JxzdX1PkHCmtOO8WUvLK6tr66WN8ubW9s6uvbffVnEqCW2RmMeyG2BFOYtoSzPNaTeRFIuA004wupz4nXsqFYujWz1OqCfwIGIhI1gbybcrmSsFbGOZ12DHz1yCOTzP7zKE8mPoKiYg8u2qU3emgIsEFaQKCvwv7tsvbj8mqaCRJhwr1UONRHsZlpoRTvOymyqaYDLCA9ozNMKCKi+bHpzDI6P0YRhL8yINp+rPiQwLpcYiMEmB9VDNexPxL6+X6vDMy1iUpJpGZLYoTDnUMZy0B/tMUqL52BBMJDN/hWSIJSbadFw2p6P5QxdJu1FHTh3dnFSbF0VnJXAIKqAGEDgFTXAFrkELEPAAHsEzeLeerFfrw/qcRZesYuYA/IL19Q1oZ6DQ</latexit>

ordered product

12

The structure of the deformation in Eq. (53) therefore by-
passes the need for expensive Jacobian determinant cal-
culations involving matrices whose rank grows with the
spacetime volume and is inspired by analogous methods
to simplify Jacobian determinant calculations in normal-

izing flows [64]. Note that an absolute value is not taken
over the determinant in Eq. (55).

The vertical deformation in Eq. (53) can be expanded
in a multi-parameter Fourier series as
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where ⇤ is a hyperparameter that sets the maximum
Fourier mode to include and controls the total number
of free parameters. As the zero modes have trivial y de-
pendence, we have collected them in Eq. (53) into the y-

independent terms x;�1

0 and 
x;�2

0 . The included Fourier

terms are defined to satisfy the constraints e✓x(0) = 0,
e✓x(⇡/2) = ⇡/2, e�1

x(0) = e�1
x(2⇡), and e�2

x(0) = e�2
x(2⇡),

which together ensure that the endpoints of both the
zenith and azimuthal integration domains are appropri-
ately handled as described in Sec. II A. The derivatives
needed for the Jacobian in Eqs. (54)–(55) can be calcu-
lated straightforwardly by di↵erentiating Eq. (56). The
additional factor describing the change in the Haar mea-
sure needed to compute the Jacobian of the group mea-
sure is given in these coordinates as
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Combining the results of Eq. (50) and Eqs. (53)–
(57), the expectation value of any holomorphic observ-
able O({Px}) is equal to the expectation value of the
deformed observable
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If the plaquettes are sampled in the matrix representation
for Monte Carlo evaluation, computing the observable Q

in Eq. (58) requires converting to the angular represen-
tation before deforming and evaluating. This conversion

is given by
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and can be done when evaluating the observable
Q({Px}). Though these functions are not entire, the con-
version used here does not determine whether the inte-
grand itself is a holomorphic function of these angular
parameters.

C. Optimization procedure

This contour deformation expanded in a Fourier series
provides a means of exploring deformed observables with
potentially reduced variance. It is shown above that sim-
ple deformations within this family are possible to con-
struct by hand and are already su�cient to reduce the
average magnitude of Wilson loop observables. However,
these deformations are restricted to zero modes of the
Fourier expansion and rely on construction based on in-
tuition. To maximize the variance reduction, we explore
numerical optimization of the deformation parameters
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xy as discussed in Sec. II C. We
are interested in ReW 11

A , for which the terms of Eq. (43)
that can be modified by contour deformation are
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where QA is the deformed observable associated with
the W

11
A . The first term in Eq. (61) is manifestly

non-holomorphic due to the absolute value over a
complex-valued observable, while the second term in-
cludes squared reweighting factors of the original and
deformed action which prevent identification as a defor-
mation of
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(W 11
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. These terms together define the loss
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The structure of the deformation in Eq. (53) therefore by-
passes the need for expensive Jacobian determinant cal-
culations involving matrices whose rank grows with the
spacetime volume and is inspired by analogous methods
to simplify Jacobian determinant calculations in normal-

izing flows [64]. Note that an absolute value is not taken
over the determinant in Eq. (55).

The vertical deformation in Eq. (53) can be expanded
in a multi-parameter Fourier series as
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h
�
xy;�1,✓
mn sin(2n✓y) + ⌘

xy;�1,�2

mn sin(n�2
y + �

xy;�1,�2

mn )
i)

,

f�2 =
⇤X

m=1


xy;�2

m sin(m�
2
y + ⇣

xy;�2

m )

(
1 +

⇤X

n=1

h
�
xy;�2,✓
mn sin(2n✓y) + ⌘

xy;�2,�1

mn sin(n�1
y + �

xy;�2,�1

mn )
i)

,

(56)

where ⇤ is a hyperparameter that sets the maximum
Fourier mode to include and controls the total number
of free parameters. As the zero modes have trivial y de-
pendence, we have collected them in Eq. (53) into the y-

independent terms x;�1

0 and 
x;�2

0 . The included Fourier

terms are defined to satisfy the constraints e✓x(0) = 0,
e✓x(⇡/2) = ⇡/2, e�1

x(0) = e�1
x(2⇡), and e�2

x(0) = e�2
x(2⇡),

which together ensure that the endpoints of both the
zenith and azimuthal integration domains are appropri-
ately handled as described in Sec. II A. The derivatives
needed for the Jacobian in Eqs. (54)–(55) can be calcu-
lated straightforwardly by di↵erentiating Eq. (56). The
additional factor describing the change in the Haar mea-
sure needed to compute the Jacobian of the group mea-
sure is given in these coordinates as

Y

x

h(e⌦x)

h(⌦x)
=
Y

x

"
sin(2✓̃x)

sin(2✓x)

#
. (57)

Combining the results of Eq. (50) and Eqs. (53)–
(57), the expectation value of any holomorphic observ-
able O({Px}) is equal to the expectation value of the
deformed observable

Q({Px}) ⌘ O({ ePx})
e
�S({ ePx})

e�S({Px})

Y

x

jx

"
sin(2✓̃x)

sin(2✓x)

#
, (58)

where

ePx =

 
sin e✓xei

e�1
x cos e✓xei

e�2
x

� cos e✓xe�ie�2
x sin e✓xe�ie�1

x

!
2 SL(2,C). (59)

If the plaquettes are sampled in the matrix representation
for Monte Carlo evaluation, computing the observable Q

in Eq. (58) requires converting to the angular represen-
tation before deforming and evaluating. This conversion

is given by

✓x = arcsin(|P 11
x |),

�
1
x = arg(P 11

x ),

�
2
x = arg(P 12

x ),

(60)

and can be done when evaluating the observable
Q({Px}). Though these functions are not entire, the con-
version used here does not determine whether the inte-
grand itself is a holomorphic function of these angular
parameters.

C. Optimization procedure

This contour deformation expanded in a Fourier series
provides a means of exploring deformed observables with
potentially reduced variance. It is shown above that sim-
ple deformations within this family are possible to con-
struct by hand and are already su�cient to reduce the
average magnitude of Wilson loop observables. However,
these deformations are restricted to zero modes of the
Fourier expansion and rely on construction based on in-
tuition. To maximize the variance reduction, we explore
numerical optimization of the deformation parameters

xy, �xy, ⌘xy, �xy, and ⇣

xy as discussed in Sec. II C. We
are interested in ReW 11

A , for which the terms of Eq. (43)
that can be modified by contour deformation are

L ⌘
⌦
(ReQA)

2
↵
=

1

2

⌦
|Q

2
A|
↵
+

1

2

⌦
Q

2
A
↵
, (61)

where QA is the deformed observable associated with
the W

11
A . The first term in Eq. (61) is manifestly

non-holomorphic due to the absolute value over a
complex-valued observable, while the second term in-
cludes squared reweighting factors of the original and
deformed action which prevent identification as a defor-
mation of

⌦
(W 11

A )2
↵
. These terms together define the loss



• Studies in 1+1d SU(2) and SU(3) with the following parameters


• Dimensionless string tension        held fixed


• N=32000 decor related configurations generated using HMC


• Optimisation: 320/320/32360 configurations used for training/testing/
measurement
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SU(2) SU(3)

� V g � g �

0.4 16 0.98 4.2 0.72 11.7
0.2 32 0.71 8.0 0.53 21.7
0.1 64 0.51 15.5 0.38 41.8

TABLE I. The couplings used in our numerical studies of
SU(2) and SU(3) lattice gauge theory. The dimensionless
quantity �V is fixed to 6.4 while � and V are individually
varied. The conventional Wilson action parameter � = 2N/g2

is also reported.

of Re tr(WA)/N gives an estimator for htr(WA)/Ni, and
the variance of this estimator can be directly computed,

Var[Re tr(WA)/N ]

=
1

N2

⌦
Re tr(WA)

2
↵
�

1

N2
Re htr(WA)i

2

=
1

2N2

⌦��tr(WA)
2
��↵+ 1

2N2

⌦
tr(WA)

2
↵

�
1

N2
Re htr(WA)i

2
.

(43)

The expectation values in the first and second terms in
the variance can be factorized analogously to the Wilson
loop expectation value, and are shown in Appendix A to
be
⌦��tr(WA)

2
��↵ = 1 + (N2

� 1)h�1,�1i
A

⌦
tr(WA)

2
↵
=

N(N + 1)

2
h�2i

A +
N(N � 1)

2
h�1,1i

A
,

(44)
in terms of the single-site integrals h�1,�1i, h�2i, and
h�1,1i, defined in Eqs. (A9) and (A13). In total, the
variance is

Var[Re tr(WA)/N ] =
1

2N2
+

O(e�cA)

2N2
� e

�2�A
, (45)

where c is a constant. The fact that h�ri < 1 for non-
trivial irreps r (assuming that g

2 is finite) [72] implies
that c > 0 and therefore that the variance is asymptoti-
cally constant as A ! 1,

Var[Re tr(WA)/N ] ⇠
1

2N2
. (46)

The signal-to-noise ratio for n samples can be written
exactly in terms of Eqs. (43), (44), and (39), but for this
analysis it is su�cient to identify the asymptotic behavior
from Eqs. (45) and (39), giving

StN[Re tr(WA)/N ] =

⌦
1
N tr (WA)

↵
q

1
nVar[Re

1
N tr(WA)]

⇠ N
p
2ne��A

,

(47)

which degrades exponentially with area A. For the esti-
mator Re tr(WA)/N , the analysis above shows that this

can only be counteracted by exponentially increasing the
number of samples n. Eqs. (44) and (45) also make clear
that the leading asymptotic behavior of the variance is
due to the typical magnitude-squared of the observable,⌦
| tr(WA)2|/N2

↵
, which remains O(1) for all areas. Can-

cellations due to phase fluctuations are required to re-
produce the exponentially small Wilson loop expectation
values predicted for large areas, confirming that the StN
problem can be related to a sign problem in the Wilson
loop observable.
Attributing the StN problem to O(1) magnitudes for

individual samples of the Wilson loop observable at
all areas also inspires our deformations of the Wilson
loop observable in the following sections. The quantity⌦
| tr(WA)2|/N2

↵
can be written as an integral of a non-

holomorphic integrand which will generically be modi-
fied by contour deformations of the path integral. If
we choose contour deformations that reduce the average
magnitude of the observable, this quantity, and thus the
leading term of the variance, will be reduced. The ob-
servable mean is unchanged and the StN ratio will thus
increase under such a deformation.
For SU(2), the single-site integrals can be evaluated

straightforwardly (see Appendix A) and the SU(2) vari-
ance is

Var[Re tr(WSU(2)
A )/N ]

=
1

4
+

3

4

✓
I3(4/g2)

I1(4/g2)

◆A

� e
�2�SU(2)A

,

(48)

where �
SU(2) is given in Eq. (42). The StN of SU(2)

Wilson loops in (1 + 1)D can therefore be explicitly cal-
culated,

StN[Re tr(WSU(2)
A )/N ]

=
2
p
ne

��SU(2)A

r
1 + 3

⇣
I3(4/g2)
I1(4/g2)

⌘A
� 4e�2�SU(2)A

. (49)

Using numerical evaluation of the corresponding single-
site integrals for SU(N) Wilson loops yields theoretical
curves for the variance and signal-to-noise for general N .
In the studies below, we choose to deform the (1, 1) com-
ponent of the Wilson loop, W 11

A , instead of trWA/N fol-
lowing the reasoning of Sec. IID. The variance of W 11

A
can be related to the variance of tr(WA)/N and is com-
pared to Monte Carlo results in the following sections.

IV. SU(2) PATH INTEGRAL CONTOUR
DEFORMATIONS

As a proof-of-principle, we apply path integral contour
deformations to Wilson loop calculations in SU(2) lattice
gauge theory in (1+1)D with open boundary conditions.
An identical setting with gauge group SU(3) is investi-
gated in the following section.
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With open boundary conditions in (1+1)D, the parti-
tion function defined by this action factorizes into a prod-
uct of independent integrals over each Px. To exploit this
factorization in (1 + 1)D, a gauge fixing prescription can
be applied in which Ux,2 = 1 for all x and Ux,1 = 1 for
sites with x2 = 0 (a maximal tree gauge). In this gauge,

Px = Ux,1U
�1
x+2̂,1

, (32)

which can be easily inverted to obtain

Ux,1 =

"
x2�1Y

k=0

Px+k2̂

#�1

. (33)

The variables Px are therefore in one-to-one correspon-
dence with the remaining non-gauge-fixed Ux,1. The
Haar measure is invariant under this change of variables,
and the path integral defining the partition function fac-
torizes as

Z =
Y

x2V0

z = z
|V0|

, (34)

where V
0
⇢ V is the subset of lattice points with uncon-

strained Ux,1 in this gauge (those for which x2 6= 0) and z

is the contribution to the partition function from a single
plaquette,

z ⌘

Z
dP e

1
g2 tr(P+P�1)

. (35)

The calculations of z and similar single-variable SU(N)
integrals are presented in Appendix A.

Wilson loops are defined by the matrix-valued quantity

WA ⌘

Y

x,µ2@A
Ux,µ, (36)

where
Q

x,µ2@A Ux,µ represents an ordered product of
links along the boundary @A of the two-dimensional re-
gion A with area A. The expectation value of the gauge-
invariant observable 1

N tr (WA) probes the interaction be-
tween a pair of static quarks if the region A is taken to
be rectangular. Inserting Eq. (33) into Eq. (36) gives4

1

N
tr (WA) =

1

N
tr

 
Y

x2A
Px

!
. (37)

Using linearity of expectation values and factorization of
path integrals analogous to Eq. (34), the expectation val-
ues of Wilson loops can be related to products of (matrix-
valued) single-variable expectation values,

⌧
1

N
tr (WA)

�
=

1

N
tr

 
Y

x2A
hPxi

!
. (38)

4
For simplicity we restrict to rectangular Wilson loops with one

corner at the origin.

Each single-variable expectation value is given by⌦
P

ab
x

↵
= h�1i �

ab, allowing the traced Wilson loop to be
written as a product of scalars,

⌧
1

N
tr (WA)

�
=
Y

x2A
h�1i = h�1i

A
, (39)

where we have introduced the single-variable normal-
ized expectation value of the group character function
�1(P ) = tr(P ),

h�1i ⌘
1

z

Z
dP

1

N
tr(P ) e

1
g2 tr(P+P�1)

, (40)

whose value is computed in Appendix A.
Eq. (39) implies that Wilson loop expectation values

follow area law scaling, htr(WA)/Ni ⇠ e
��A, and SU(N)

gauge theory in (1 + 1)D confines for all values of the
coupling, with a separation-independent force between
static test charges given by the string tension

� ⌘ � lim
A!1

@A lnWA = � ln h�1i . (41)

Although h�1i is in general given by a convergent infinite
series in Eq. (A6), in the case of SU(2) a simpler form
can be found in terms of modified Bessel functions,

�
SU(2) = ln

✓
I1(4/g2)

I2(4/g2)

◆
, (42)

which goes to zero as g
2
! 0. This observation can be

generalized to all SU(N) groups, and the lattice-units
string tension goes to zero while the static quark corre-
lation length grows to infinity in the limit of g2 ! 0 in
all cases. We can consider this to be the naive contin-
uum limit of the theory, though the correlation lengths of
dynamical quantities such as plaquettes or localized Wil-
son loops remain finite by the factorization of the path
integral. When investigating the approach to the contin-
uum in Sec. IV and V, we should decrease the coupling
while fixing the dimensionless quantity �V , where V is
the total number of plaquettes; the particular choices of
couplings and V used in our numerical studies are re-
ported in Table I. Results are plotted versus �A when
comparing quantities at fixed physical separation is im-
portant.

B. Noise and sign problems in the Wilson loop

Although the expectation value htr(WA)/Ni is real,
the integrand tr(WA)/N has fluctuating signs (for N =
2) or fluctuating complex phases (for N � 3) across the
domain of integration. These fluctuations result in a
sign/StN problem for this observable. The sample mean
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• Expectation values and variances of SU(2) Wilson loops of various 
sizes on finest ensemble
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15

4 8 12 16 20 24 28 32

A

10
�10

10
�9

10
�8

10
�7

10
�6

10
�5

Var
�
ReW 11

A
�

(original)

Var (QA) (deformed)

8 16 24 32 40 48 56 64

A

10
�10

10
�9

10
�8

10
�7

10
�6

10
�5

Var
�
ReW 11

A
�

(original)

Var (QA) (deformed)

FIG. 4. SU(2) Wilson loop expectation values and variances for ensembles with three di↵erent values of the gauge coupling
g = 0.98, 0.71, 0.51 (top to bottom). Red lines indicate analytical results for

⌦
W 11

A
↵

= htr(WA)/2i (left plots) and for
Var(Re W 11

A ) (right plots).



• What path is learnt?


• A ramped shift of one angle and small constant shift of another 
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FIG. 5. SU(2) Wilson loop variance ratios of standard observ-
ables to deformed observables for ensembles with three di↵er-
ent values of the gauge coupling g, corresponding to three
di↵erent values of lattice spacing.
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FIG. 6. The manifold parameters found by optimizing the
variance of the deformed Wilson loop observable QA at three
di↵erent choices of area A on the ensemble with total volume
V = 32 and � = 8.0. Optimization at each A was initialized
using the parameters found for the observable with area A�1,
as detailed in the main text.

corresponding to a positive imaginary shift applied to

�
1
x, and a decreasing 

x;�2

0 , corresponding to a positive
imaginary shift applied to each di↵erence �2

x��
2
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pendence on plaquettes at sites y  x when deforming
Px. Despite this increased expressivity, these additional
parameters did not provide significantly larger StN im-
provements compared to using only constant terms, as
shown in Fig. 7. In some cases, the optimized mani-
fold with larger cuto↵ resulted in higher variance (lower
variance ratio) than the optimized manifold with cuto↵
⇤ = 0. The manifolds with larger cuto↵s include all pos-
sible manifolds with smaller cuto↵s, thus this is neces-
sarily a training e↵ect, likely due to noisier gradients and
less stable training dynamics. We did not pursue noise re-
duction and alternative approaches to training (such as
iteratively including higher ⇤) as these manifolds with
higher cuto↵s did not produce significant improvements
at any value of the area.

V. SU(3) PATH INTEGRAL CONTOUR
DEFORMATIONS

We further investigated the ability of contour defor-
mations to reduce the variance of Wilson loops in SU(3)
gauge theory in (1+1)D with open boundary conditions.
This setting is identical to the previous section, except for
the use of SU(3) rather than SU(2) gauge field variables.
Suitable parameterizations for contour deformations of
SU(3) gauge fields are discussed below.

A. Gauge field parameterization and contour
deformation

For the SU(3) gauge group, we use the angular param-
eterization constructed in Ref. [55]. The components of
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The Haar measure is given in these coordinates as

dPx =
1

4⇡2
sin2

⇣
↵x

2

⌘
d↵x sin ✓xd✓xd�x, (B4)

The inverse map needed to obtain these angular param-
eters for an SU(2) matrix Px is given by

↵x = 2 arccos
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x

P 12
x

�
.

(B5)

As with Eq. (60), these are not entire functions of Px

but this is not an obstacle for contour deformation be-
cause it is only the parameterization given by Eqs. (B1)
and (B2) that determines whether path integrands can
be interpreted as holomorphic functions of the angles
{↵x, ✓x, �x} associated with Px.

Deformed observables starting with the (1, 1) compo-
nent of SU(2) Wilson loops can be defined using this
parameterization. A family of vertical deformations for
{↵x, ✓x, �x} can be defined analogously to the deforma-
tion described in Sec. IVB. Since ↵x and ✓x have fixed
(non-identified) integration contour endpoints, a con-
stant vertical deformation can only be applied to �x. For
A = 1 in particular, Tr(Px) = cos(↵x/2), and the trace
is independent of the only constant vertical deformation
that can be applied. Neither this constant vertical de-
formation nor non-constant vertical deformations corre-
sponding to Fourier basis cuto↵s ⇤ = 1, 2 lead to statisti-
cally significant variance reduction with A = 1. As shown

in Fig. 12, for A > 1 deformed observable results using
this parameterization with ⇤ = 0 do lead to significant
variance reduction when compared to undeformed con-
tour results. However, orders of magnitude less variance
reduction is obtained for large area Wilson loops using
optimized deformed observables with this parameteriza-
tion when compared to results using the parameteriza-
tion explored in Sec. IVA. The fact that the parameter-
ization in Eq. (B1) leads to less variance reduction than
the parameterization in Sec. IVA can be intuitively ex-
plained by the inability of constant vertical deformations
to decrease the magnitudes of the (1, 1) components of
(products of) SU(2) matrices using the parameterization
Eq. (B1). The significance of the di↵erence between the
results demonstrates the utility of rewriting observables
before deformation in achieving practical StN improve-
ments, as discussed in Sec. IID.

Appendix C: Regularization terms to avoid
overtraining and overlap problems

When Re S̃ is significantly di↵erent from S, we can en-
counter an overlap problem for training and evaluation;
both processes involve factors of e�Re S̃+S that can have
very large magnitude fluctuations in this situation. To
mitigate this problem, it is helpful to include regular-
ization terms in the loss function L. These terms may
bias the exact loss minimum away from the optimal, but
allow closer convergence to that optimal solution given fi-
nite statistics estimates of L. The strength of these terms
is controlled by a small parameter ✏.
We discuss two possible terms here. First, an L2 reg-

ularizer [85] may be used, which simply ensures the pa-
rameters controlling the deformation all remain close to
zero. Generically labeling those parameters as �i, this
loss term can be written

LL2 ⌘ ✏

X

i

|�i|
2
. (C1)

In the limit of ✏ ! 1, the parameters �i are forced to
zero and the optimization procedure must remain at the
original manifold. A smaller choice of ✏ mildly biases
the optimization procedure towards the original mani-
fold, such that the loss function and gradients remain
feasible to estimate with finite statistics. An alternate
approach is to directly penalize distance between Re S̃
and S using a regularization term,

Lact ⌘ ✏
1

Z

Z
dx e

�S(x)
���S(x)� Re S̃(x)

��� . (C2)

This term is minimized when S = Re S̃, providing a bias
towards remaining close to the original manifold. Though
written as a path integral, this quantity can be estimated
using the original samples, much like the main loss func-
tion and gradients.
Both of these regularizer terms were explored, however

no severe overlap problem was observed during training

12

The structure of the deformation in Eq. (53) therefore by-
passes the need for expensive Jacobian determinant cal-
culations involving matrices whose rank grows with the
spacetime volume and is inspired by analogous methods
to simplify Jacobian determinant calculations in normal-

izing flows [64]. Note that an absolute value is not taken
over the determinant in Eq. (55).

The vertical deformation in Eq. (53) can be expanded
in a multi-parameter Fourier series as
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mn sin(n�1
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mn )
i)

,

(56)

where ⇤ is a hyperparameter that sets the maximum
Fourier mode to include and controls the total number
of free parameters. As the zero modes have trivial y de-
pendence, we have collected them in Eq. (53) into the y-

independent terms x;�1

0 and 
x;�2

0 . The included Fourier

terms are defined to satisfy the constraints e✓x(0) = 0,
e✓x(⇡/2) = ⇡/2, e�1

x(0) = e�1
x(2⇡), and e�2

x(0) = e�2
x(2⇡),

which together ensure that the endpoints of both the
zenith and azimuthal integration domains are appropri-
ately handled as described in Sec. II A. The derivatives
needed for the Jacobian in Eqs. (54)–(55) can be calcu-
lated straightforwardly by di↵erentiating Eq. (56). The
additional factor describing the change in the Haar mea-
sure needed to compute the Jacobian of the group mea-
sure is given in these coordinates as

Y

x

h(e⌦x)

h(⌦x)
=
Y

x

"
sin(2✓̃x)

sin(2✓x)

#
. (57)

Combining the results of Eq. (50) and Eqs. (53)–
(57), the expectation value of any holomorphic observ-
able O({Px}) is equal to the expectation value of the
deformed observable

Q({Px}) ⌘ O({ ePx})
e
�S({ ePx})

e�S({Px})

Y

x

jx

"
sin(2✓̃x)

sin(2✓x)

#
, (58)

where

ePx =

 
sin e✓xei

e�1
x cos e✓xei

e�2
x

� cos e✓xe�ie�2
x sin e✓xe�ie�1

x

!
2 SL(2,C). (59)

If the plaquettes are sampled in the matrix representation
for Monte Carlo evaluation, computing the observable Q

in Eq. (58) requires converting to the angular represen-
tation before deforming and evaluating. This conversion

is given by

✓x = arcsin(|P 11
x |),

�
1
x = arg(P 11

x ),

�
2
x = arg(P 12

x ),

(60)

and can be done when evaluating the observable
Q({Px}). Though these functions are not entire, the con-
version used here does not determine whether the inte-
grand itself is a holomorphic function of these angular
parameters.

C. Optimization procedure

This contour deformation expanded in a Fourier series
provides a means of exploring deformed observables with
potentially reduced variance. It is shown above that sim-
ple deformations within this family are possible to con-
struct by hand and are already su�cient to reduce the
average magnitude of Wilson loop observables. However,
these deformations are restricted to zero modes of the
Fourier expansion and rely on construction based on in-
tuition. To maximize the variance reduction, we explore
numerical optimization of the deformation parameters

xy, �xy, ⌘xy, �xy, and ⇣

xy as discussed in Sec. II C. We
are interested in ReW 11

A , for which the terms of Eq. (43)
that can be modified by contour deformation are

L ⌘
⌦
(ReQA)

2
↵
=

1

2

⌦
|Q

2
A|
↵
+

1

2

⌦
Q

2
A
↵
, (61)

where QA is the deformed observable associated with
the W

11
A . The first term in Eq. (61) is manifestly

non-holomorphic due to the absolute value over a
complex-valued observable, while the second term in-
cludes squared reweighting factors of the original and
deformed action which prevent identification as a defor-
mation of

⌦
(W 11

A )2
↵
. These terms together define the loss
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FIG. 9. SU(3) Wilson loop variance ratios of standard ob-
servables to deformed observables for ensembles with three
di↵erent values of the gauge coupling that correspond to
g = 0.72, 0.53, 0.38 (top to bottom).

ance at the two coarser lattice spacings (g = 0.72 and
g = 0.53), and a small, yet significant, decrease in the
variance improvement achieved at the finest lattice spac-
ing (g = 0.38). Despite this, the variance was reduced
by three orders of magnitude at the largest area on the
finest lattice by using an optimized deformed observable,
and at all three couplings variance improvements are con-
sistent with exponential in the physical loop area. The
number of parameters to be optimized grows with the vol-
ume in lattice units, and the analogous results observed
for SU(2) gauge theory suggest that the results at finer
lattice spacings could be partially explained by increased
di�culty in training the larger number of parameters.

The ⇤ = 0 manifold parameterization involves few
enough parameters that it is possible to investigate the
structure of the optimal parameters similarly to the case
of SU(2) gauge theory. As shown in Fig. 10, we found
that the optimized values of x;3

0 and 
x;4
0 decrease with

x, while 
x;1
0 and 

x;2
0 appear to converge towards ap-

proximately constant positive and negative values, re-
spectively. The final parameter 

x;5
0 fluctuates in both

the positive and negative directions. These results can
be qualitatively explained by expanding the (1, 1) com-
ponent of the Wilson loop for small area. For A = 1
the Wilson loop is equivalent to Px, for which the (1, 1)
component is

P
11
x = cos ✓1x cos ✓

2
xe

i�1
x . (70)

The magnitude of this quantity can be reduced by shift-
ing �

1
! e�1

x = �
1
x + i�, which is consistent with the

positive x;1
0 values obtained after optimization shown in

Fig. 10. Extending the analysis to the A = 2 Wilson
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FIG. 10. The parameters of the optimal manifold for Wilson
loop QA at three di↵erent areas A, as determined on the en-
semble with total volume V = 32 and g = 0.53. Optimization
for each QA was initialized using the parameters for optimal
QA0 with region A0 of area A�1, as detailed in the main text.

loop, the (1, 1) component is given by
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(71)
The magnitude of the first, second, and fourth terms are
reduced by shifting �

1
x ! �

1
x+i� and �

1
x0 ! �

1
x0+i� with

� > 0. The magnitude of the second and third terms can
be reduced by shifting �

3
x � �

3
x0 ! �

3
x � �

3
x0 + i� and

�
4
x � �

4
x0 ! �

4
x � �

4
x0 + i� with � > 0; this is also consis-

tent with a positive imaginary shift of i� in �
3
x ��

4
x0 and

�
4
x � �

3
x0 , reducing the magnitude of the fourth and fifth

terms. These deformations result in reduced magnitude
and correspondingly lower variance. Deformations with
these qualitative features are reproduced in the optimized
manifolds found for ⇤ = 0. Finally, we note that �2

x0 ap-
pears in the exponent with opposite signs in the second
and third terms, and similarly for �

5
x0 in the fourth and

fifth terms, so there is no constant vertical deformation
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FIG. 9. SU(3) Wilson loop variance ratios of standard ob-
servables to deformed observables for ensembles with three
di↵erent values of the gauge coupling that correspond to
g = 0.72, 0.53, 0.38 (top to bottom).

ance at the two coarser lattice spacings (g = 0.72 and
g = 0.53), and a small, yet significant, decrease in the
variance improvement achieved at the finest lattice spac-
ing (g = 0.38). Despite this, the variance was reduced
by three orders of magnitude at the largest area on the
finest lattice by using an optimized deformed observable,
and at all three couplings variance improvements are con-
sistent with exponential in the physical loop area. The
number of parameters to be optimized grows with the vol-
ume in lattice units, and the analogous results observed
for SU(2) gauge theory suggest that the results at finer
lattice spacings could be partially explained by increased
di�culty in training the larger number of parameters.

The ⇤ = 0 manifold parameterization involves few
enough parameters that it is possible to investigate the
structure of the optimal parameters similarly to the case
of SU(2) gauge theory. As shown in Fig. 10, we found
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The magnitude of the first, second, and fourth terms are
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manifolds found for ⇤ = 0. Finally, we note that �2
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pears in the exponent with opposite signs in the second
and third terms, and similarly for �
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x0 in the fourth and

fifth terms, so there is no constant vertical deformation
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FIG. 12. Colored points SU(2) Wilson loop variance ratios
using the alternative gauge field parameterization defined in
Eq. (B1). Gray points show analogous variance ratios using
the parameterization defined in Sec. IV A for comparison and
are identical to the results in Fig. 5.
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The inverse map needed to obtain these angular param-
eters for an SU(2) matrix Px is given by
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As with Eq. (60), these are not entire functions of Px

but this is not an obstacle for contour deformation be-
cause it is only the parameterization given by Eqs. (B1)
and (B2) that determines whether path integrands can
be interpreted as holomorphic functions of the angles
{↵x, ✓x, �x} associated with Px.

Deformed observables starting with the (1, 1) compo-
nent of SU(2) Wilson loops can be defined using this
parameterization. A family of vertical deformations for
{↵x, ✓x, �x} can be defined analogously to the deforma-
tion described in Sec. IVB. Since ↵x and ✓x have fixed
(non-identified) integration contour endpoints, a con-
stant vertical deformation can only be applied to �x. For
A = 1 in particular, Tr(Px) = cos(↵x/2), and the trace
is independent of the only constant vertical deformation
that can be applied. Neither this constant vertical de-
formation nor non-constant vertical deformations corre-
sponding to Fourier basis cuto↵s ⇤ = 1, 2 lead to statisti-
cally significant variance reduction with A = 1. As shown

in Fig. 12, for A > 1 deformed observable results using
this parameterization with ⇤ = 0 do lead to significant
variance reduction when compared to undeformed con-
tour results. However, orders of magnitude less variance
reduction is obtained for large area Wilson loops using
optimized deformed observables with this parameteriza-
tion when compared to results using the parameteriza-
tion explored in Sec. IVA. The fact that the parameter-
ization in Eq. (B1) leads to less variance reduction than
the parameterization in Sec. IVA can be intuitively ex-
plained by the inability of constant vertical deformations
to decrease the magnitudes of the (1, 1) components of
(products of) SU(2) matrices using the parameterization
Eq. (B1). The significance of the di↵erence between the
results demonstrates the utility of rewriting observables
before deformation in achieving practical StN improve-
ments, as discussed in Sec. IID.

Appendix C: Regularization terms to avoid
overtraining and overlap problems

When Re S̃ is significantly di↵erent from S, we can en-
counter an overlap problem for training and evaluation;
both processes involve factors of e�Re S̃+S that can have
very large magnitude fluctuations in this situation. To
mitigate this problem, it is helpful to include regular-
ization terms in the loss function L. These terms may
bias the exact loss minimum away from the optimal, but
allow closer convergence to that optimal solution given fi-
nite statistics estimates of L. The strength of these terms
is controlled by a small parameter ✏.
We discuss two possible terms here. First, an L2 reg-

ularizer [85] may be used, which simply ensures the pa-
rameters controlling the deformation all remain close to
zero. Generically labeling those parameters as �i, this
loss term can be written

LL2 ⌘ ✏

X

i

|�i|
2
. (C1)

In the limit of ✏ ! 1, the parameters �i are forced to
zero and the optimization procedure must remain at the
original manifold. A smaller choice of ✏ mildly biases
the optimization procedure towards the original mani-
fold, such that the loss function and gradients remain
feasible to estimate with finite statistics. An alternate
approach is to directly penalize distance between Re S̃
and S using a regularization term,

Lact ⌘ ✏
1

Z

Z
dx e

�S(x)
���S(x)� Re S̃(x)

��� . (C2)

This term is minimized when S = Re S̃, providing a bias
towards remaining close to the original manifold. Though
written as a path integral, this quantity can be estimated
using the original samples, much like the main loss func-
tion and gradients.
Both of these regularizer terms were explored, however

no severe overlap problem was observed during training
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The structure of the deformation in Eq. (53) therefore by-
passes the need for expensive Jacobian determinant cal-
culations involving matrices whose rank grows with the
spacetime volume and is inspired by analogous methods
to simplify Jacobian determinant calculations in normal-

izing flows [64]. Note that an absolute value is not taken
over the determinant in Eq. (55).

The vertical deformation in Eq. (53) can be expanded
in a multi-parameter Fourier series as
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(56)

where ⇤ is a hyperparameter that sets the maximum
Fourier mode to include and controls the total number
of free parameters. As the zero modes have trivial y de-
pendence, we have collected them in Eq. (53) into the y-

independent terms x;�1

0 and 
x;�2

0 . The included Fourier

terms are defined to satisfy the constraints e✓x(0) = 0,
e✓x(⇡/2) = ⇡/2, e�1

x(0) = e�1
x(2⇡), and e�2

x(0) = e�2
x(2⇡),

which together ensure that the endpoints of both the
zenith and azimuthal integration domains are appropri-
ately handled as described in Sec. II A. The derivatives
needed for the Jacobian in Eqs. (54)–(55) can be calcu-
lated straightforwardly by di↵erentiating Eq. (56). The
additional factor describing the change in the Haar mea-
sure needed to compute the Jacobian of the group mea-
sure is given in these coordinates as
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#
. (57)

Combining the results of Eq. (50) and Eqs. (53)–
(57), the expectation value of any holomorphic observ-
able O({Px}) is equal to the expectation value of the
deformed observable

Q({Px}) ⌘ O({ ePx})
e
�S({ ePx})
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where
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x
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If the plaquettes are sampled in the matrix representation
for Monte Carlo evaluation, computing the observable Q

in Eq. (58) requires converting to the angular represen-
tation before deforming and evaluating. This conversion

is given by

✓x = arcsin(|P 11
x |),

�
1
x = arg(P 11

x ),

�
2
x = arg(P 12

x ),

(60)

and can be done when evaluating the observable
Q({Px}). Though these functions are not entire, the con-
version used here does not determine whether the inte-
grand itself is a holomorphic function of these angular
parameters.

C. Optimization procedure

This contour deformation expanded in a Fourier series
provides a means of exploring deformed observables with
potentially reduced variance. It is shown above that sim-
ple deformations within this family are possible to con-
struct by hand and are already su�cient to reduce the
average magnitude of Wilson loop observables. However,
these deformations are restricted to zero modes of the
Fourier expansion and rely on construction based on in-
tuition. To maximize the variance reduction, we explore
numerical optimization of the deformation parameters

xy, �xy, ⌘xy, �xy, and ⇣

xy as discussed in Sec. II C. We
are interested in ReW 11

A , for which the terms of Eq. (43)
that can be modified by contour deformation are

L ⌘
⌦
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2
↵
=

1

2

⌦
|Q

2
A|
↵
+

1

2

⌦
Q

2
A
↵
, (61)

where QA is the deformed observable associated with
the W

11
A . The first term in Eq. (61) is manifestly

non-holomorphic due to the absolute value over a
complex-valued observable, while the second term in-
cludes squared reweighting factors of the original and
deformed action which prevent identification as a defor-
mation of

⌦
(W 11

A )2
↵
. These terms together define the loss

13

function L that we aim to minimize as a function of the
deformation parameters.

This loss function is written as an expectation value in
terms of sampling from the original Monte Carlo weights
e
�S({Px}), and its gradient can similarly be written as an
expectation value,

rL = h2ReQArReQAi . (62)

The term rReQA can be expanded using the explicit
form of QA given in Eq. (58), as well as the forms of
the observable W

11
A and the action S in terms of {Px}

in Sec. III A. For this study, the gradient rReQA was
computed explicitly and cross-checked using automatic
di↵erentiation available in the JAX library [73]. Eq. (62)
can be stochastically estimated using an (undeformed)
ensemble of n configurations {P

i
x}, i 2 [1, . . . , n], drawn

proportional to the weight e�S({Px}),

rL ⇡
1

n

nX

i=1

⇥
2ReQA({P

i
x})rReQA({P

i
x})

⇤
. (63)

In all experiments below, we used the Adam opti-
mizer [74] to iteratively update parameters based on
these stochastic gradient estimates. Each gradient es-
timate was computed using 1/100th of the generated en-
semble; empirically, this small subset of the data was
su�cient to learn useful manifold parameters with signif-
icant variance reduction. The optimizer was configured
with default hyperparameters, except for a dynamically
scheduled step size. Stochastic noise on gradient esti-
mates and large optimizer step size can either slow con-
vergence or result in unstable training dynamics, while
step sizes that are too small waste computation as param-
eters fail to move quickly along precisely estimated gradi-
ents. We thus used a dynamic schedule that reduced the
step size over time. In particular, our step size schedule
started with an initial step size s0 and then permanently
reduced the step size by a factor of F (i.e. si+1 = si/F )
each time the loss function failed to improve over a win-
dow of W steps. The schedule halted training after the
step size was reduced Nr times. We used the parameters
F = 10, W = 50, Nr = 2, and s0 = 10�2 for both SU(2)
and SU(3) gauge theory.

In preliminary investigations, we found that naive
manifold optimization resulted in overtraining, i.e. over-
fitting parameters to the specific training data avail-
able [75–77]. In the context of manifold optimization,
this corresponds to minimizing a finite-ensemble variance
estimator rather than minimizing the true variance of
ReQA. In practice this produced deformed observables
with higher variance when measured on a di↵erent en-
semble than the training set.

To mitigate overtraining in the final results, we re-
served a “test set” of configurations, independent of the
training data, on which the loss function was periodically
measured [78]; the reserved test set of configurations was
chosen to have the same size as the training set. The step
size schedule was configured to use loss measurements

based on this test set, ensuring that training was slowed
and halted before significantly overfitting. We further
used a mini-batching technique, in which a set of m  n

configurations are resampled from the training set to es-
timate Eq. (63), as a means of avoiding overtraining [68].
The mini-batch size was chosen to be equal to the size of
the full training set (i.e. m = n), thus mini-batch eval-
uation in this context was just a resampling operation,
giving variation in gradient estimates over multiple eval-
uations. The fluctuations in these gradient estimates are
on the order of the uncertainty of the variance estima-
tor, preventing overfitting below this uncertainty. For
each observable W

11
A we also found it important to re-

strict to deforming only the plaquettes within the region
A. Though including extra degrees of freedom cannot
make the optimal variance any higher (the optimization
steps could always leave those plaquettes undeformed),
in practice we found that including such degrees of free-
dom allowed the deformed manifold to rapidly overtrain,
resulting in worse performance overall. Appendix C de-
tails further possible approaches to avoiding overfitting
and overlap problems using a regularizing term added to
the loss function. These approaches were found to be
unnecessary for our final results.

Finally, making a good choice of initial manifold pa-
rameters yielded practical improvement in training time
and quality. On one hand, initializing the manifold pa-
rameters to zero ensures that gradient descent starts from
the original manifold, and the optimization procedure
should find a local minimum with variance no higher than
the original manifold (up to noise from stochastic gradi-
ent estimates). However, correlations in sign and mag-
nitude fluctuations of observables with similar structure,
such as Wilson loops W 11

A and W
11
A0 with overlapping ar-

eas A and A
0, suggest that the variance reduction from

contour deformations will be correlated as well. Though
the optimal manifold for one observable will not gener-
ically be optimal for the other, it can serve as a better
starting point than the original manifold. In our study
of Wilson loops, we initialized manifold parameters for
each Wilson loop of area A using the optimal parameters
for the Wilson loop of area A�1, when the Fourier cuto↵
⇤ = 0, or using the optimal parameters for the Wilson
loop of area A and cuto↵ ⇤ � 1, when ⇤ 6= 0. Figure 3
shows the improvement in optimization time and quality
using this method for manifold deformations with ⇤ = 0.
While this approach sacrifices the guarantee that the lo-
cal minimum obtained corresponds to a deformed observ-
able with variance no higher than the original observable
(in the limit of infinitely precise gradient estimates), in
practice we find that this property is not violated. We
also note that this property can be easily checked after
optimization, and if the variance were found to increase
with respect to the original observable training could in-
stead be started from the original manifold to recover the
guarantee.
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Q`B;BM�H K�MB7QH/X AM i?2 `B;?i T�M2H- K�MB7QH/ T�`�K2i2`b r2`2 BMbi2�/ BMBiB�HBx2/ 7`QK
i?2 QTiBKBx2/ K�MB7QH/ T�`�K2i2`b 7Q` i?2 qBHbQM HQQT Q7 �`2� A� 1X h?2 HQbb 7mM+iBQM
7Q` �HH +?QB+2b Q7 qBHbQM HQQT #2;BMb 7`QK �M O(1) p�Hm2 QM i?2 H27i- `2~2+iBM; i?2 +QMbi�Mi
p�`B�M+2 rBi? `2bT2+i iQ +?QB+2b Q7 �`2� A 7Q` i?2 mM/27Q`K2/ Q#b2`p�#H2X 6Q` qBHbQM
HQQTb rBi? �`2� H�`;2` i?�M �TT`QtBK�i2Hv 16- i?2 HQbb 7mM+iBQM /B/ MQi +QMp2`;2 rBi?BM
i?2 8000 Bi2`�iBQMb b?QrM r?2M BMBiB�HBxBM; 7`QK i?2 mM/27Q`K2/ K�MB7QH/X PM i?2 `B;?i-
i?2 QTiBKBx�iBQM +QMp2`;2b iQ � KBMBKmK Q7 i?2 HQbb 7mM+iBQM rBi?BM 2000 Bi2`�iBQMb 7Q`
�HH p�Hm2b Q7 A b?QrMX h?2 p�`B�#BHBiv BM biQTTBM; iBK2b Bb /m2 iQ i?2 biQ+?�biB+ M�im`2
Q7 i?2 �miQK�iB+ H2�`MBM; `�i2 b+?2/mH2X 6B;m`2 �/�Ti2/ 7`QK 6B;X j Q7 Sm#X (R)X

i2`KBM2/ 7Q` 2�+? +?QB+2 Q7 Q#b2`p�#H2X 6Q` qBHbQM HQQTb- i?Bb BM+Hm/2b HQQTb Q7 2�+?
TQbbB#H2 �`2�- `2[mB`BM; � H�`;2 MmK#2` Q7 BM/2T2M/2Mi i`�BMBM; `mMb iQ #2 2t2+mi2/X �b
/Bb+mbb2/ BM a2+X 8XkXk- +Q``2H�iBQMb #2ir22M bBKBH�` Q#b2`p�#H2b bm;;2bib i?�i i?2 }M�H
K�MB7QH/ T�`�K2i2`b /2i2`KBM2/ 7Q` 2�+? Q#b2`p�#H2 K�v b?�`2 bB;MB}+�Mi bBKBH�`BiB2b-
2bT2+B�HHv 7Q` Q#b2`p�#H2b rBi? M2�`Hv B/2MiB+�H bi`m+im`2 bm+? �b qBHbQM HQQTb +Qp2`BM;
M2�`Hv i?2 b�K2 `2;BQMX hQ 2tTHQBi i?Bb 72�im`2- r2 +?Qb2 iQ BMBiB�HBx2 i?2 QTiBKBx�iBQM
Q7 K�MB7QH/ T�`�K2i2`b 7Q` 2�+? qBHbQM HQQT Q7 �`2� A 7`QK i?2 }M�H QTiBKBx2/ T�`�K@
2i2`b /2i2`KBM2/ 7Q` i?2 qBHbQM HQQT Q7 �`2� A � 1 7Q` K�MB7QH/b rBi? 6Qm`B2` +miQz
⇤ = 0X 6Q` K�MB7QH/b rBi? 6Qm`B2` +miQz ⇤ = 1 �M/ ⇤ = 2- r2 BMBiB�HBx2/ K�MB7QH/
T�`�K2i2`b 7Q` 2�+? qBHbQM HQQT Q7 �`2� A mbBM; i?2 QTiBKBx2/ K�MB7QH/ �bbQ+B�i2/
rBi? i?2 qBHbQM HQQT Q7 �`2� A �M/ +miQz ⇤ � 1X 6B;m`2 8XR8 +QKT�`2b i?Bb i`�Mb72`
H2�`MBM; �TT`Q�+? iQ BMBiB�HBxBM; 7`QK i?2 mM/27Q`K2/ K�MB7QH/X h?2 HQbb 7mM+iBQM +QM@
p2`;2b Km+? KQ`2 [mB+FHv 7Q` i?2 K�MB7QH/b BMBiB�HBx2/ #v i`�Mb72``BM; 7`QK � T`2pBQmbHv
QTiBKBx2/ K�MB7QH/- bB;MB}+�MiHv `2/m+BM; i?2 MmK#2` Q7 i`�BMBM; Bi2`�iBQMb `2[mB`2/
iQ +QMp2`;2 iQ � KBMBKmK Q7 i?2 HQbb 7mM+iBQM- 2bT2+B�HHv 7Q` /27Q`K2/ Q#b2`p�#H2b
�bbQ+B�i2/ rBi? qBHbQM HQQTb Q7 H�`;2 �`2�X

_2bmHibX .27Q`KBM; Q#b2`p�#H2b mbBM; i?2 ⇤ = 0 7�KBHv Q7 K�MB7QH/b Bb �H`2�/v bm7@
}+B2Mi iQ bB;MB}+�MiHv `2/m+2 i?2 p�`B�M+2 Q7 qBHbQM HQQTb 7Q` �HH +?QB+2b Q7 T�`�K2@
i2`b bim/B2/X 6B;m`2b 8XRe �M/ 8XRd +QKT�`2 #�b2 qBHbQM HQQT Q#b2`p�#H2b iQ ⇤ = 0



• Promising results in multiple theories


• Further exploration of possible/practical deformations


• Fourier basis seems inefficient/hard to train


• Possible ML approaches to defining deformation


• Extensions to higher dimensions


• Requires working with links rather than plaquettes 


• In 2D, see similar performance in both formulations


• Extensions to fermionic theories


• Onward to QCD!

Ongoing/future work
Contour deformation for observables


