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30 second Lattice QFT primer

Lattice discretization:

- Gauge field discretized on links U (x) € G [e.g. SU(3)]

- Other fields @(x) discretized to live on sites x

Lattice path integral =@ observables

Caveats:
- Euclidean spacetime t — it

- Discretization effects (must take a — ()

P(x)
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30 second Lattice QFT primer

Lattice discretization: ——
- Gauge field discretized on links Uﬂ(x) e G le.g. SU3)] v
J U@ [y, Lo
- Other fields @(x) discretized to live on sites x H(x)
Lattice path integral =@ observables
VaC((;LCJ gz;hn??nagz);f;}gf ue \/ In principle tractable integral

Caveats:
- Euclidean spacetime t — it

- Discretization effects (must take a — ()

| , i
()= |2U0W)e |

7 = J@Ue‘S(U), JQZU = HJdUM(x)
X,

Normalizing constant Path integral measure



Importance sampling: the workhorse of LQFT

Monte Carlo sampled ensembles allow estimates of (many) QFT observables

Deswed Contlnuum QFT quantlty
o o o o Target distribution

' q (0) ~ — Z@[U] q U, ~pU)=e>YV)/Z

J‘ (O) = J@U@(U)e‘s(m

Markov chain Monte Carlo (MCMC)

Example: MCMC for scalar field configurations

- Asymptotically converges to distribution p
- However: States of the chain are “autocorrelated”

- Skip thermalization steps, ensemble “thinned” to a subset



Importance sampling: the workhorse of LQFT

Monte Carlo sampled ensembles allow estimates of (many) QFT observables

Deswed Contlnuum QFT quantlty
o o o o Target distribution

q (0) ~ — Z@[U] q U, ~pU)=e>YV)/Z

J‘ (O) = J@U@(U)e‘s(m

Skip to thermalize

Markov chain Monte Carlo (MCMC)

Example: MCMC for scalar field configurations

- Asymptotically converges to distribution p
- However: States of the chain are “autocorrelated”

- Skip thermalization steps, ensemble “thinned” to a subset



Critical slowing down (CSD)

| ocal/diffusive Markov chains inefficient as a — (

- Correlation length grows in lattice units, but
iInformation transfer is local

- Rare to update entire field coherently

Critical slowing down: diverging autocorrelations
due to local mixing

Topological freezing: Markov chain gets “stuck” in
topological sectors

Topological
charge squared
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CSD also affects a number of other models:

o O O O

CPN-
O(N)

4)4

Flynn, et al. 1504.06292]
Frick, et al. PRL63 (1989) 2613]

Vierhaus; Thesis, doi:10.18452/14138]



Topological

Critical slowing down (CSD) ... .~

" K (037 fm/a)
Local/diffusive Markov chains inefficient as a — 0 2 o
- Correlation length grows in lattice units, but I B L W

Information tran

- raeeweEsd - CSD & Topological
freezing:
Critical slowing d

due to local mixing Significant obstacles to continuum limit
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Circumventing CSD?

Avoid diffusive/local Markov chain updates.

Proposal: Sample from generative ML models.

Caveats:
L. We require exactness

' Inverted data hierarchy
... ~10° = 10'° DoFs in a config
... ~10° configs

v Target probability density e >Y)/Z

v Physical symmetries = “flat directions”

We choose flow-based models.
\ AKA ‘normalizing flows’

Lattice sampling

likely |
(log prob = 22)

likely E

(log prob = 5)

Image generation
[Karras, Lane, Aila / NVIDIA 1812.04948]

likely
(log prob =?) §

likely
(log prob = ?)

unlikely |
(log prob = ?)




Circumventing CSD?

Avoid diffusive/local Markov chain updates.
Proposal: Sample from generative ML models.

Caveats:
L. We require exactness

' Inverted data hierarchy
... ~10° = 10'° DoFs in a config
... ~10° configs

v Target probability density e >Y)/Z

v' Physical symmetries = “flat directions”

We choose flow-based models.
\ AKA ‘normalizing flows’

Lattice sampling  vs. Image generation
[Karras, Lane, Aila / NVIDIA 1812.04948]

g

likely -

(log prob = 22) #;I_

likely likely

(log prob = 5)

unlikely
(log prob = -6107)

Every sample has a
computable log prob

> -.“* L ) ‘ | :
Faces generated via “real NVP” flow
[Dinh, Sohl-Dickstein, Bengio 1605.08803]



A story of symmetries & generative models
(In three parts)

1. Flow-based generative models
2. Gauge symmetry & translational symmetry

3. Fermions & translational symmetry
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Flow-based sampling: Overview
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(Convolutional) neural networks: Black-box (local) function approximators

Coupling layers: Invertible transformations, tractable Jacobian

Flow model: Prior density + flow = sampleable + computable output density

' Training:
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Flow-based sampling: Overview

(Convolutional) neural networks: Black-box (local) function approximators
Coupling layers: Invertible transformations, tractable Jacobian

Flow model: Prior density + flow = sampleable + computable output density

| /\r(qﬁ) — (@)

Sample Model dist. " d| f(gb)L

: ) = det
g 4= )| gt =D
' Exactness: ¢

+ Use g(¢p') and p(¢p)to ' %

correct approximation

' Training:

 Measure KL divergence

j  Apply gradient-based opt -




ofv |
() = r(v) | det 2L
iﬁ j oV ‘

Defining the flow function

The “flow” f must be invertible and have tractable Jacobian determinant

- For LQFT, don’t know what f needs to be a priori

- Construct expressive parameterized ansatz and optimize it

Key to expressivity — Use composition.

/\W) How/ | qu) ,/\N\.

f_— Each layer is invertible, has tractable Jac.
v W/ Simple individual layers combine to give
— complex transformations.

7 91 < 99
V U




CO u pl i n Iaye rs Similar to leapfrog integrator
9 s

Idea: Construct each g to act on a subset of Components', conditioned only on
the complimentary subset. “Masking pattern” m defines subsets.

— Jacobian is explicitly upper-triangular (get LDJ from diag elts)

“Updated” i (m; = 0) “Frozen” [ (m;, = 1) Updated Frozen
\ “ 6[g(1" e WY S
| . Vi | §
O BYE TN (honzero) S
dlg (V)]l _ ” . V2
aV; N b Schematically -
" - 1 [clj)
0 T | T

— Invertible if each diag component invertible, d[g(V)]./dV; # 0.



Example: RNVP for scalar fields

eeze B %
% params

0o /-

Updated

Scalar field @(x) € R ~ grayscale image

Real NVP coupling layer:

[Dinh, Sohl-Dickstein, Bengio 1605.08803] Frozen

>mq§ = mao

Update A =

Checkerboard masking pattern m

(I —m)¢



Example: RNVP for scalar fields

Scalar field @(x) € R ~ grayscale image

Real NVP coupling layer:

[Dinh, Sohl-Dickstein, Bengio 1605.08803]

Frozen
» Mm@’ = mao

o\

NN

paraims.

Freeze B

Update A =

Checkerboard masking pattern m

Elementwise affine transformation
IS manifestly invertible



Example: RNVP for scalar fields

Scalar field @(x) € R ~ grayscale image

Black-box neural network (NN)
does NOT need to be invertible

Real NVP coupling layer:

[Dinh, Sohl-Dickstein, Bengio 1605.08803]

Frozen
» Mm@’ = mao

\

v
Freeze B

NN
o params.
i
(1 — m)gb’

Checkerboard masking pattern m

Elementwise affine transformation
IS manifestly invertible



Symmetries in flows

Motivation: Target p(¢) is often invariant under
symmetries. Make g(¢) automatically invariant too?

Invariant prior + equivariant flow = symmetric model [Cohen, Weliing 1602.07576]

[ \
r(t-U)=rU) f@-U)=t-f(U)

Exact symmetry Learned symmetry

Symmetries... o /’\
q(¢)

v Reduce data complexity of training q(¢)

v Reduce model parameter count

Pure-symmetry

v May make “loss landscape” easier Invariant



?

Translational equivariance :

*\?
=

1. Use Convolutional Neural Nets (CNNs).

- Output values (e.g. ¢*“ and #(x)) for each site are local
functions of frozen DoFs

- CNNs are equivariant under translations

ﬁ Frozen
l » MY’ = mao
mao \
parz;ms.
: ¢’ \

ol 7
ﬁ—@—ﬁ—» (=)o

Updated

2. Make masking pattern (mostly) invariant. % /
b

N\

Translation of input...

- E.g. checkerboard /

|

(L=m)¢ ... equals translation of output

< ———




See also Self-Learning Monte Carlo (SLMC) methods:
[Huang, Wang PRB95 (2017) 035105;
Liu, et al. PRB95 (2017) 041101;

Optimizing the model e 8

Must not require a large number of samples from real distribution to optimize!
Self-training:
1. Loss function = modified Kullback-Leibler (KL) divergence

Dy (ql1p) := [@Uq(U) log g(U) —log p(U)| > 0

Constant shift removes
unknown normalization

Dy (ql1p) := JQZ Uq(U)|logq(U) + S(U)| 2 —logZ  (sing p(U) = e *12)

2. Stochastic estimate: draw samples U, from the model, then measure

1 M
— 21 [log g(U) + S(U,)]



Exactness

Samples from model are from biased distribution g(@) # p(¢), but...

For each ¢, drawn from the ’
model, we know g(¢;) and p(¢,)

Exact bias correction possible
(e.g. “flow-based MCMC” or reweighting)

Note: Efficiency of bias correction
depends on how close g and p are.



Birds-eye view

Flow f

Arm + 4(U)
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generating samples is

"embarrassingly parallel”

Parameterize flow using
coupling layers

A 4

Training step

Draw samples from model

Compute loss function

Gradient descent

Markov chain using
samples from model

Each layer contains

‘\ _
arbitrary neural nets

Desired accuracy?

Y

Save trained model




A story of symmetries & generative models
(In three parts)

1. Flow-based generative models

2. Gauge symmetry & translational symmetry

3. Fermions & translational symmetry



Gauge field discretized in
terms of parallel transporters

Y

(inks) U,(x). | 0@

Lattice gauge theory actions (typically)
satisfy symmetries:

1. (Discrete) translational symmetries
2. Hypercubic symmetries

3. Gauge symmetries
(Q-U),(x) = Qx)U,(x0)Q" (x + /1)

Lattice gauge theory & Symmetries

Symmetries factor distribution into uniform
component along symmetry direction, and non-
uniform component along invariant direction.
Schematically:

Exact symmetry Learned symmetry

q(U) ﬂ

Pure-symmetry \)

Invariant



1. (Discrete) translational symmetries

3. Gauge symmetries
(Q-U),(x) = Qx)U,(x0)Q" (x + /1)



Gauge symmetry via gauge fixing?

Where gauge DoFs are explicitly
factored out, e.g. maximal tree

| |
Explicit gauge fixing Is at odds with translational symmetry + locality

— Fixed to 1

Link physically encodes Wilson loop around shaded region



Gauge symmetry via gauge fixing?

Where gauge DoFs are fixed by solving
a constraint, e.g. Landau gauge

| |
Implicit gauge fixing difficult to act on via flow-based models

Nd
Landau gauge: U;}X(x) = argming Z Z ReTr[U/?(x)]

x p=l ] Unclear how to invertibly
‘ transform U;X(x).

N~1
Coulomb gauge: U;:‘X(x) = argminUQZ Z ReTr[Uf}(x)]
x u=l



Gauge symmetries in flows

Choose to act on the un-fixed link representation U (x).

Carefully construct architecture to enforce...

Gauge-invariant prior: Gauge-equivariant flow:
Not very difficult! Coupling layers acting on
Uniform distribution works. (untraced) Wilson loops.
/ . .
With respect to r(U) =1 Loop transformation easier

Haar measure

to satisfty.




Gauge symmetries in flows

Choose to act on the un-fixed link representation U (x).

refull n
Carefully cons Open loop

Gaugd . — 4 . iant flow:
No ? — ? — acting on
Uniform| | | | ] [ pnloops.

/

With respect to
Haar measure

to satisfty.




Open loop

Gauge-equivariant coupling layer .

Compute a field of Wilson loops W -(x). ! @ ;
Inner coupling layer [function of W (x)] SN l
- “Actively” update a subset of loops.* We(x) — Wex)

- Condition on “frozen” closed loops.

Gauge invariant!

Outer coupling layer [function of U (x)] l —
- Solve for link update to satisfy actively updated loops. ] @ |
- Other loops in W (x) may “passively” update. | U, (x) |

s w(x).

[GK, Albergo, Boyda, Cranmer, Hackett, Racaniére, Rezende, Shanahan PRL125 (2020) 121601] U, (x) = Wy(x) V;(x)
[Boyda, GK, Racaniere, Rezende, Albergo, Cranmer, Hackett, Shanahan PRD103 (2021) 074504]



Open loop

Gauge-equivariant coupling layer .

Compute a field of Wilson loops W -(x). ! @ ;
Inner coupling layer [function of W (x)] L. T
Flow

- “Actively” update a subset of loops.* * This “kernel” must satisfy: Wo(x) — Wy(x)
(WA (x)) = h*(Wy(x))

- Condition on “frozen” closed loops.

Gauge invariant!

Outer coupling layer [function of U (x)] l —
- Solve for link update to satisfy actively updated loops. I @ I
- Other loops in W,(x) may “passively” update. | U, (x) |

s w(x).

[GK, Albergo, Boyda, Cranmer, Hackett, Racaniére, Rezende, Shanahan PRL125 (2020) 121601] U, (x) = Wy(x) V;(x)
[Boyda, GK, Racaniere, Rezende, Albergo, Cranmer, Hackett, Shanahan PRD103 (2021) 074504]






Kernels

Coupling layers required kernels satisfying conjugation equivariance:

h(QWQ") = Qh(W)Q!

U(1): Trivially satisfied because H(QWQ") = (W) = Qh(W)Q".

However, invertible transforms on the compact domain required.
[Rezende, Papamakarios, Racaniere, Albergo, GK, Shanahan, Cranmer; ICML (2020) 2002.02428]

SU(N): Non-trivial constraint requiring some fun mathematical engineering...



SU(N) kernels: strategy

SU(N) matrix-conj. equivariance is non-trivial.
hW(QWQT) = QrW)Q!

Useful observations:

- Conjugation only rotates eigenvectors.

- Spectrum is invariant.

- Wilson loop spectrum encodes gauge-invariant
physics — This is what we want to transform.

Strategy: Invertibly transform only the
spectrum of W via a “spectral map\”.

Or, “spectral flow”.

[Boyda, GK, Racaniere, Rezende, Albergo, Cranmer, Hackett, Shanahan PRD103 (2021) 074504]



SU(N) kernels: strategy

SU(N) matrix-conj. equivariance is non-trivial.
hW(QWQT) = QrW)Q!

Useful observations:

- Conjugation only rotates eigenvectors.

- Spectrum is invariant.

- Wilson loop spectrum encodes gauge-invariant

physics — This is what we want to transform.

Strategy: Invertibly transform only the
spectrum of W via a “spectral map\”.

Or, “spectral flow”.

[Boyda, GK, Racaniere, Rezende, Albergo, Cranmer, Hackett, Shanahan PRD103 (2021) 074504]

Diagonalize

Undiagonalize




SU(N) kernels:
Permutation equivariance

Canonicalize

Uncanonicalize

“Cell”, related to other

Sub-manifold of cells by permutations
det = 1 eigenvalues of {1, Py, P3}-




SU(N) kernels:
Transform the canonical cell

Change variables to rectilinear box £2

NSNS

Transform by acting on coords of box €2, either...

Autoregressive ... Or ... Independent

A [ - fll
fz
(2

M\~ I\~ [2]

Spline

0-'0--0

Spline

<\ = [2]

Map into box

Invertible spline

transformation

Undo map into box




SW)=—-p) ) ReP, ()

U(1) gauge theory in 1 +1 D P, (x) = Uﬂ(x)xU:(jcy+ ﬂ)U;(x + ﬁ)Uj(x)
There Is exact lattice topology in 2D. 4 : W. ME:IC for =7
3 i gk
Q= zi 2 arg(Pp;(x)) ’ - ‘ e “MW - Hrlow
" A (I) 20(I)OO 40(1)00 | 60(I)OO 80(|)OO 100|OOO

Markov chain step

- Compared flow, analytical, HMC, and

1.4
heat bath on 16 X 16 lattices for f = {1,...,7} o Xq/Exact
- Topo freezing in HMC and heat bath 1.0 - t; {z: 1%
s - i |
- Gauge-equiv flow-based model at each [ N
06713 umMc | HB % Flow

- Flow-based MCMC observables agree ! : "'7

Topological susceptibility v, = (Q?1V)

[GK, Albergo, Boyda, Cranmer, Hackett, Racaniere, Rezende, Shanahan PRL125 (2020) 121601]



U(1) topological freezing mitigated
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U(1) topological freezing mitigated

10000 -

1000 E
int -

/TQ 100 —

Topological _
autocorrelation time 10 E

14 HB

1=

4 HMC

4 Flow

‘I
.
“I
“I
.

Autocorrelation time
reduced by
~4 orders of magnitude!



S(U) = — % Z Z ReTr P, (x)

SU(N) gauge theory in 1+1D g

P,x) = U,xU,(x+ DU (x + D)U; (x)

Gauge-equiv flow models for 2D lattice gauge theory on 16 X 16 lattices.

- Matched 't Hooft couplings: . - - -
SUQ) < f=1{1.8,22,2.7) oy
SUQB) < p={4.0,5.0,6.0} oA A A AN ot )

- 48 PAFF coupling layers, links updated 6 times each

- No equivalent to U(1) topological freezing, studied absolute model quality



* Flow-based MCMC observables agree with

analytical

 High-quality models: autocorrelation time In

[Boyda, GK, Racaniere, Rezende, Albergo, Cranmer, Hackett, Shanahan PRD103 (2021) 074504]

Results for SU(2) and SU(3) gauge theory

flow-based Markov chain 7z, . = 1—4

SU(2)

L ESS(%) 91 80 56 88 75 48 |

v

\

“Effective Sample Sizes” indicating model overlap onto
target are all larger than ~50% (100% = perfect model)

Exact translational subgroup; residual learned

—280
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A oy A ann i
320 ] ArA
ana
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St (T3 U). e S (Ti - U) + log Z

—360
—380 -
[ [ [ [ [ [
256 0 100 200
translations 1
Rotation and reflection symmetry learned
300 4 Sett (R; - U) 1| S(R;-U)+log Z
:_=ii ,:. }& . e E ; . . . " " .
—320 -
——————
—340 | ———
e D )
N —————————— S———————|
—380 - - -

8 rotations &
reflections

0 2 4 0 2 4 6
‘ 2 . 2



[Boyda, GK, Racaniere, Rezende, Albergo, Cranmer, Hackett, Shanahan PRD103 (2021) 074504]

Results for SU(2) and SU(3) gauge theory

Exact translational subgroup; residual learned

* Flow-based MCMC observables agree with - —
. 280 - | Sett (L3 U) S (L U) + log Z —
analytical

L S S N U S S N U s S N U Y S W OO
et RAAAA R §RAANVAAAAARAAAQ AR AAVAAAARAAAQ 444 4AAA

—320

 High-quality models: autocorrelation time In
—340 -
flow-based Markov chain 7z, . = 1—4 i
—380 -
SU(2) SU(3) 256 0 100 200
translations 7
D S22 27 40 50 60
‘ IS O AT P R DI, O P N ST TS A DN Rotation and reflection Symmetry learned
¢ ESS(%) 91 80 510 88 75 48 1 T
R T A R T R T TR T AT A AT TR I TTiers _300 i Seﬁ‘ (R’L . U) . S (R’L . U) —|— log Z
\ —
“Effective Sample Sizes” indicating model overlap onto 390 - —+
target are all larger than ~50% (100% = perfect model) — —
—340 | ———e—
—_——

—360 | = ettt —t—t—

Promising early results. No theoretical obstacle | B S
to scaling to 4D SU(N) lattice gauge theory. Smtaﬁo,,s&a'; . ﬁl o 3 1

reflections




A story of symmetries & generative models
(In three parts)

1. Flow-based generative models
2. Gauge symmetry & translational symmetry

3. Fermions & translational symmetry



Fermions in field theory

Grassmann representation in path integral means...
... we cannot sample fermion fields
... Integrating out fermions results in costly fermion determinants

[91//@1/71_[ e VP = H det D,
/ /

Pseudofermions used in standard MCMC for theories with dynamical fermions.

——— -
e — — =

Starting point for flow-
based sampling



[Albergo, GK, Racaniere, Rezende, Urban, Boyda, Cranmer, Hackett, Shanahan 2106.05934]

5 ways to marginalize

Any could in principle be learned by flow-based models.

Below: Bosonic part of action written generically as Sz(¢)

Name Probability density
Joint® p(d,p) = exp(=Sp(d) — @' [M(9)]" ) |
Expensive to
¢-marginal p(¢) = 2 evaluate det exactly
" A.B _
@-conditional p(p|op) Zn det M(9)
Can actually be p-marginal© p(p) = "dp exp(— ‘
sampled directly A R AT VT P Intractable density
(e.g. pseudofermion $-conditional® p(dlp) = exp(=55(9) — ¢ IM(9)] _¢) (even unnormalized)

refresh in HMC)

J d¢ exp(—S5(¢) — ¢ [M($)]” ¢)




Translational invariance

Pseudofermion fields @(x) satisfy antiperiodic BCs in the time direction.

Marginalizations with PFs should address this for translational equivariance.

Building blocks:

Explicit averaging:

- i * CNN outputs averaged over time
Restricted CNNs: translations with correct BCs

Channels either antiperiodic
(AP) or periodic (P) in time

Invertible linear layers:
Operations restricted for well-

defined outputs (either P or AP) Flow = composed linear
operators W o ... W ,

AP activations only odd fns

Each 7 ; is a conv with fixed
direction (and correct BCs)



Staggered Dirac op with
Results for Yukawa model

Yukawa coupling g¢ywy
and mass term My y

Studied 2D gb4 model coupled via Yukawa interaction to staggered yr

d Ny
S(.w) = ) [=2 ) pWPx + @) + (m* + 2d)p(x)* + Ap0)*1 + D WDl

. ¢-marginal } Gibbs Autoregressive { Fully Joint
- 16 X 16 lattices -~
| | oo g=0.1 o || g =03
- Two degenerate fermions (N, =2) | =~ -
E)g le-1
- Massless (M = () . .
sampling schemes % N m,;i;{;{_} IR -;};f;i,,,, ot s
% i)% —5He—1 - { { i } { —5e—1
Correlation functions 9 4 6 s 10 12 14 ) s 6 s 10 12 14
effectively reproduced o o

»
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'
t
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Summary and Outlook

Future directions:

Symmetries allow efficient & consistent

- o N
training of flow-based models. igher spacetime dims

2. Tuning of training hyperparameters

Gauge symmetry + translational 3. Efficient model architectures at scale?
symmetry addressed throughout.

Effective models produced for U(1),
SU(2), SU(3) lattice gauge theory and
a ¢* Yukawa model in 1+1D.



Summary and Outlook

Symmetries allow efficient & consistent
training of flow-based models.

Gauge symmetry + translational
symmetry addressed throughout.

Effective models produced for U(1),
SU(2), SU(3) lattice gauge theory and
a ¢* Yukawa model in 1+1D.

Future directions:

1. Higher spacetime dims
2. Tuning of training hyperparameters

3. Efficient model architectures at scale?

See also:

Approaches to multimodal sampling and mixed
HMC + flow-based sampling:

[Hackett, Hsieh, Albergo, Boyda, Chen, Chen,
Cranmer, GK, Shanahan; 2107.00734]

Jupyter notebook tutorial:

[Albergo, Boyda, Hackett, GK, Cranmer,
Racaniere, Rezende, Shanahan; 2101.08176]
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Exactness: Flow-based MCMC

Markov chain constructed using Independence Metropolis accept/reject on
model proposals.

“Embarrassingly parallel” step!

» Independent proposals U’ from model distribution q/

« Accept proposal U’, making it next elt of Markov chain, with probability

p(U) q(U)>

PacclU = U') = min (LQ(U’) p(U)

* |f rejected, duplicate previous elt of Markov chain

- Only need to compute observables on duplicated elts once!



Exactness: Reweighting

* Also possible to reweight independently drawn samples:

' pU)
[2UqU)| oW

p(U)
q(U) |

(0) =
|2U q(U)

« May be preferable when observables O(U) are efficiently computed, and
sampling Is expensive.

« Observables O(U) are expensive in lattice QCD. We prefer resampling or
MCMC approaches in these settings.



U(1) kernels

Conjugation equivariance trivially satisfied: 2(QWQ") = (W) = Qr(W)Q".

Invertible maps on U(1) variables:

[Durkan, Bekasov, Murray, Papamakarios 1906.04032]

- Periodic / compact domain must be addressed.

|

- For detalls, see:

[Rezende, Papamakarios, Racaniere, Albergo, GK, Shanahan, Cranmer;
ICML (2020) 2002.02428]

96(T)
—
.

Non-compact projection: Circular invertible splines:

Map 0 — x € R, e.g. arctan(6/2) °

Spline “knots” trainable fns
Transform x — x’ as usual

|dentify endpoints 7 and — 7«

Map x’' — 0" € |—r, 7]

Number of knots <> expressivity



Q.
10~5 104 103 102 101 100 10757 41 }/ \|

Density has zeros on vertical, horizontal, and
diagonal lines where the slice crosses walls of cells




U(1) observables
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SU(N) observables
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Center symmetry

Using only contractible loops in coupling layers enforces center symmetry.

Fundamental fermions:

- Center symmetry explicitly broken

- Must include non-contractible loops (e.g. Polyakov) !
In the set of frozen and/or transformed loops




Details of SU(2) models

—— RQ Spline

* Inner flow on open box €2 is a spline =
flow with 4 knots . Knots

ge(x)

- B and —B boundaries align to 0 and 1
edges of the open box

9p\T)
—
—
I

_B 0 B _B 0
ZT

* CNNs to compute the knot locations [Durkan, Bekasov, Murray, Papamakarios 1906.04032]

- 32 hidden channels

- 2 hidden layers



Detalls of SU(3) models . — -

° Knots

9p\T)
1

» Inner flow on open box €2 is a spline 0
flow with 16 knots

- B and — B boundaries align to 0 and 1 . , | :

_B 0 B _B 0 B

edges of the open box z z
[Durkan, Bekasov, Murray, Papamakarios 1906.04032]
 CNNs to compute the knot locations 7
- 32 hidden channels

- 2 hidden layers

 EXxact conjugation equivariance also
iImposed e —2mil3

A

Complex
Conjugation

P 2mi/3



Gauge theory model training

 Adam optimizer ~ stochastic grad. descent with
momentum

- Batches of size 3072 per gradient descent step

- Monitored value of effective sample size (ESS)
| 2

(7 2wy
1 2
; Zi W(Ul)

w(U) = p(U)/q(U)

ESS =

’ Ui ~ Q(U)

“reweighting factors”

» Transfer learning: model trained first on 8 X 8 then
used to initialize model for training on 16 X 16

— B = 6 (init. from 8 X

8) — [ = 6 (random init.)

Transferred model

almost fully optimized

Model with random
init takes many steps
to optimize

| |
2000 4000

| |
6000 3000 10000

Tralning iteration



[Albergo, GK, Racaniere, Rezende, Urban, Boyda, Cranmer, Hackett, Shanahan 2106.05934]

Proposed exact sampling schemes

Using a variety of learned densities g(...) — Best choice not yet clear!

Key takeaways:

(1) @-marginal (2) Gibbs
(@) e (@) e |
[AM(¢—>¢’) ] E AG(¢%¢'\9{) ]
[ Q(¢) ]—qb’j [Q(QS‘SO) ]‘Qb,}
LEARNED [ P(el6) ]—go'JA J .
EXACT
(3) Autoregressive (4) Joint
..................... s ;;;;;;;;;}";;j,';;;"’ ................. .................... s .
A ) ,7 ,
Aﬂ, =
J [a(¢,0) }¢', ¢
LEARNED
a(ol¢)) | ¢

LEARNED

Exact regardless of quality of
modeled densities ¢(...)

Can define sampler over
... bosonic fields alone (¢) or

... bosonic + PF fields (¢, @)

For Gibbs, even a perfect
model may have residual
autocorrelations



