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30 second Lattice QFT primer
Lattice discretization: 

- Gauge field discretized on links  [e.g. ]


- Other fields  discretized to live on sites  
 
 
 

Caveats: 

- Euclidean spacetime 


- Discretization effects (must take )

Uμ(x) ∈ G SU(3)

ϕ(x) x

t → iτ

a → 0

a

x x + µ̂Uµ(x) µ

⌫

ϕ(x)

Lattice path integral → observables



30 second Lattice QFT primer
Lattice discretization: 

- Gauge field discretized on links  [e.g. ]


- Other fields  discretized to live on sites  
 
 
 

Caveats: 

- Euclidean spacetime 


- Discretization effects (must take )

Uμ(x) ∈ G SU(3)

ϕ(x) x

t → iτ

a → 0

⟨𝒪⟩ =
1
Z ∫ 𝒟U 𝒪(U) e−S(U)

Vaccum/thermal expt. value 
of quantum operator In principle tractable integral✓

a

x x + µ̂Uµ(x) µ

⌫

ϕ(x)

Lattice path integral → observables



30 second Lattice QFT primer
Lattice discretization: 

- Gauge field discretized on links  [e.g. ]


- Other fields  discretized to live on sites  
 
 
 

Caveats: 

- Euclidean spacetime 


- Discretization effects (must take )

Uμ(x) ∈ G SU(3)

ϕ(x) x

t → iτ

a → 0 Z = ∫ 𝒟U e−S(U), ∫ 𝒟U = ∏
x,μ

∫ dUμ(x)

Normalizing constant Path integral measure

⟨𝒪⟩ =
1
Z ∫ 𝒟U 𝒪(U) e−S(U)

Vaccum/thermal expt. value 
of quantum operator In principle tractable integral✓

a

x x + µ̂Uµ(x) µ

⌫

ϕ(x)

Lattice path integral → observables



Importance sampling: the workhorse of LQFT
Monte Carlo sampled ensembles allow estimates of (many) QFT observables 
 
 
 
 
 

Markov chain Monte Carlo (MCMC)


- Asymptotically converges to distribution 


- However: States of the chain are “autocorrelated”


- Skip thermalization steps, ensemble “thinned” to a subset

p

⟨𝒪⟩ ≈
1
n

n

∑
i=1

𝒪[Ui] Ui ∼ p(U) = e−S(U)/Z

. . .

Example: MCMC for scalar field configurations

⟨𝒪⟩ =
1
Z ∫ 𝒟U 𝒪(U) e−S(U)

Target distribution
Desired continuum QFT quantity
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Example: MCMC for scalar field configurations

⟨𝒪⟩ =
1
Z ∫ 𝒟U 𝒪(U) e−S(U)

Target distribution

𐄂 𐄂
Skip to thermalize

Desired continuum QFT quantity



Critical slowing down (CSD)
Local/diffusive Markov chains inefficient as 


- Correlation length grows in lattice units, but 
information transfer is local


- Rare to update entire field coherently 
 

Critical slowing down: diverging autocorrelations 
due to local mixing


Topological freezing: Markov chain gets “stuck” in 
topological sectors

a → 0

CSD also affects a number of other models:

○ CPN-1

○ O(N)

○ 𝜙4

○ ...

[Vierhaus; Thesis, doi:10.18452/14138]
[Frick, et al. PRL63 (1989) 2613]
[Flynn, et al. 1504.06292]
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Significant obstacles to continuum limit



Circumventing CSD?
Avoid diffusive/local Markov chain updates.


Proposal: Sample from generative ML models.


Caveats:

⚠ We require exactness 

⚠ Inverted data hierarchy 
… ~  DoFs in a config 
… ~  configs


✓ Target probability density 


✓ Physical symmetries = “flat directions”


 
We choose flow-based models.
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[Karras, Lane, Aila / NVIDIA 1812.04948]
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AKA ‘normalizing flows’
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Lattice sampling Image generation
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vs.

Faces generated via “real NVP” flow

[Dinh, Sohl-Dickstein, Bengio 1605.08803]

Every sample has a 
computable log prob

AKA ‘normalizing flows’



A story of symmetries & generative models
(In three parts)

1. Flow-based generative models 
 

2. Gauge symmetry & translational symmetry 
 

3. Fermions & translational symmetry
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Flow-based sampling: Overview
(Convolutional) neural networks: Black-box (local) function approximators

Coupling layers: Invertible transformations, tractable Jacobian

Flow model: Prior density + flow = sampleable + computable output density

q(ϕ′�) = r(ϕ) det
ij

∂[ f(ϕ)]i

∂ϕj

−1

Training: 
• Measure KL divergence

• Apply gradient-based opt

Exactness: 
• Use  and to 

correct approximation
q(ϕ′�) p(ϕ′�)



Defining the flow function
The “flow”   must be invertible and have tractable Jacobian determinant


- For LQFT, don’t know what    needs to be a priori


- Construct expressive parameterized ansatz and optimize it 

Key to expressivity — Use composition.

f

f

Each layer is invertible, has tractable Jac.

Simple individual layers combine to give 
complex transformations.

q(U) = r(V) det
ij

∂[ f(V)]i

∂Vj

−1



Coupling layers
Idea: Construct each  to act on a subset of components, conditioned only on 
the complimentary subset. “Masking pattern”  defines subsets.


 →  Jacobian is explicitly upper-triangular (get LDJ from diag elts) 
 
 
 
 
 
 
 

 →  Invertible if each diag component invertible, .

g
m

∂[g(V)]i/∂Vi ≠ 0

∂[g(V )]i

∂Vj
=

∂[g(V)]1

∂V1

∂[g(V)]2

∂V2
(nonzero)

⋱
1

0 1
⋱

“Updated”  ( )i mi = 0 “Frozen”  ( )i mi = 1 Updated Frozen

U
pd

at
ed

Fr
oz

en

Schematically

Similar to leapfrog integrator



Example: RNVP for scalar fields
Scalar field     grayscale image 

Real NVP coupling layer:

ϕ(x) ∈ ℝ ≈

[Dinh, Sohl-Dickstein, Bengio 1605.08803]

Freeze B

Update A

Checkerboard masking pattern m
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Example: RNVP for scalar fields
Scalar field     grayscale image 

Real NVP coupling layer:

ϕ(x) ∈ ℝ ≈

[Dinh, Sohl-Dickstein, Bengio 1605.08803]

Elementwise affine transformation 
is manifestly invertible

Black-box neural network (NN) 
does NOT need to be invertible

Freeze B

Update A

Checkerboard masking pattern m



Symmetries in flows

Invariant prior + equivariant flow = symmetric model 
 
 

Symmetries…


✓Reduce data complexity of training


✓Reduce model parameter count


✓May make “loss landscape” easier

q(�)

Exact symmetry

q(�)

Learned symmetry

Invariant

Pure-symmetry

r(t ⋅ U) = r(U) f(t ⋅ U) = t ⋅ f(U)

[Cohen, Welling 1602.07576]

Motivation: Target  is often invariant under 
symmetries. Make  automatically invariant too?

p(ϕ)
q(ϕ)



Translational equivariance

1. Use Convolutional Neural Nets (CNNs). 

- Output values (e.g.  and ) for each site are local 
functions of frozen DoFs


- CNNs are equivariant under translations 

2. Make masking pattern (mostly) invariant.


- E.g. checkerboard

es(x) t(x)

CNN

Translation of input…

… equals translation of output



Optimizing the model
Must not require a large number of samples from real distribution to optimize!


Self-training: 

1. Loss function = modified Kullback-Leibler (KL) divergence 
 
 
 
 

2. Stochastic estimate: draw samples  from the model, then measureUi

DKL(q | |p) := ∫ 𝒟U q(U)[log q(U) − log p(U)] ≥ 0

D′�KL(q | |p) := ∫ 𝒟U q(U)[log q(U) + S(U)] ≥ − log Z

Constant shift removes 
unknown normalization

(Using )p(U) = e−S(U)/Z

See also Self-Learning Monte Carlo (SLMC) methods:

[Huang, Wang PRB95 (2017) 035105;


Liu, et al. PRB95 (2017) 041101; 
… and many more …]

1
M

M

∑
i=1

[log q(Ui) + S(Ui)]



Exactness
Samples from model are from biased distribution , but…q(ϕ) ≠ p(ϕ)

For each  drawn from the 
model, we know  and 

ϕi
q(ϕi) p(ϕi)

Exact bias correction possible 
(e.g. “flow-based MCMC” or reweighting)

Note: Efficiency of bias correction 
depends on how close  and  are.q p



Birds-eye view
Parameterize flow using 

coupling layers Each layer contains 
arbitrary neural nets

Training step

Draw samples from model

Compute loss function

Gradient descent

Markov chain using 
samples from model

Desired accuracy?

Save trained model[Image credit: 1805.04829]

generating samples is 
"embarrassingly parallel"



A story of symmetries & generative models
(In three parts)

1. Flow-based generative models 
 

2. Gauge symmetry & translational symmetry 
 

3. Fermions & translational symmetry



Lattice gauge theory & Symmetries

(Ω ⋅ U)μ(x) = Ω(x)Uμ(x)Ω†(x + ̂μ)

Symmetries factor distribution into uniform 
component along symmetry direction, and non-

uniform component along invariant direction. 
Schematically:

q(U)

Exact symmetry

q(U)

Learned symmetry

Invariant

Pure-symmetry

Gauge field discretized in 
terms of parallel transporters 
(links) .


Lattice gauge theory actions (typically) 
satisfy symmetries:


1. (Discrete) translational symmetries


2. Hypercubic symmetries


3. Gauge symmetries

Uμ(x) x x + µ̂Uµ(x)
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µ
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Gauge symmetry via gauge fixing?

Explicit gauge fixing is at odds with translational symmetry + locality

1

0

Link physically encodes Wilson loop around shaded region

Where gauge DoFs are explicitly 
factored out, e.g. maximal tree

Fixed to 1



Gauge symmetry via gauge fixing?

Implicit gauge fixing difficult to act on via flow-based models

Where gauge DoFs are fixed by solving 
a constraint, e.g. Landau gauge

Ufix
μ (x) = argminUΩ ∑

x

Nd

∑
μ=1

ReTr[UΩ
μ (x)]Landau gauge:

Ufix
μ (x) = argminUΩ ∑

x

Nd−1

∑
μ=1

ReTr[UΩ
μ (x)]Coulomb gauge:

Unclear how to invertibly 
transform .Ufix

μ (x)



Gauge symmetries in flows
Choose to act on the un-fixed link representation .


Carefully construct architecture to enforce… 

Uμ(x)

Gauge-invariant prior: 

Not very difficult! 
Uniform distribution works.


 r(U) = 1With respect to 
Haar measure

Gauge-equivariant flow: 

Coupling layers acting on 
(untraced) Wilson loops.


Loop transformation easier 
to satisfy.

x x + µ̂Uµ(x)

a

µ

⌫



Gauge symmetries in flows
Choose to act on the un-fixed link representation .


Carefully construct architecture to enforce… 

Uμ(x)

Gauge-invariant prior: 

Not very difficult! 
Uniform distribution works.


 r(U) = 1With respect to 
Haar measure

Gauge-equivariant flow: 

Coupling layers acting on 
(untraced) Wilson loops.


Loop transformation easier 
to satisfy.

x x + µ̂Uµ(x)

a

µ

⌫

`

W`(x) ! ⌦(x)W`(x)⌦†(x)

Open loop

`

tr W`(x) ! tr W`(x)

µ

⌫

Closed loop



Gauge-equivariant coupling layer
Compute a field of Wilson loops .


Inner coupling layer [function of ]


- “Actively” update a subset of loops.*


- Condition on “frozen” closed loops.


Outer coupling layer [function of ]


- Solve for link update to satisfy actively updated loops.


- Other loops in  may “passively” update.

Wℓ(x)

Wℓ(x)

Uμ(x)

Wℓ(x)
V`(x)

`

Uµ(x)

x

µ

⌫

`

W`(x) ! ⌦(x)W`(x)⌦†(x)

Open loop

`

tr W`(x) ! tr W`(x)

µ

⌫

Closed loop

Gauge invariant!

Wℓ(x) Flow W′�ℓ(x)

U′�μ(x) = W′�ℓ(x) V†
ℓ(x)[GK, Albergo, Boyda, Cranmer, Hackett, Racanière, Rezende, Shanahan  PRL125 (2020) 121601]

[Boyda, GK, Racanière, Rezende, Albergo, Cranmer, Hackett, Shanahan  PRD103 (2021) 074504]



Gauge-equivariant coupling layer
Compute a field of Wilson loops .


Inner coupling layer [function of ]


- “Actively” update a subset of loops.*


- Condition on “frozen” closed loops.


Outer coupling layer [function of ]


- Solve for link update to satisfy actively updated loops.


- Other loops in  may “passively” update.
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Closed loop

Gauge invariant!

Wℓ(x) Flow W′�ℓ(x)

U′�μ(x) = W′�ℓ(x) V†
ℓ(x)

* This “kernel” must satisfy: 
h(WΩ

ℓ (x)) = hΩ(Wℓ(x))

[GK, Albergo, Boyda, Cranmer, Hackett, Racanière, Rezende, Shanahan  PRL125 (2020) 121601]
[Boyda, GK, Racanière, Rezende, Albergo, Cranmer, Hackett, Shanahan  PRD103 (2021) 074504]



Passive-Active-Frozen-Frozen (PAFF) pattern

1

0
Active

Passive

Frozen

Active, passive, and frozen loops

Links to be updated



Kernels
Coupling layers required kernels satisfying conjugation equivariance:


U(1): Trivially satisfied because .


However, invertible transforms on the compact domain required.


SU(N): Non-trivial constraint requiring some fun mathematical engineering… 

h(ΩWΩ†) = h(W) = Ωh(W)Ω†

h(ΩWΩ†) = Ωh(W)Ω†

[Rezende, Papamakarios, Racanière, Albergo, GK, Shanahan, Cranmer; ICML (2020) 2002.02428]



SU(N) kernels: strategy
SU(N) matrix-conj. equivariance is non-trivial.


Useful observations: 

- Conjugation only rotates eigenvectors.


- Spectrum is invariant.


- Wilson loop spectrum encodes gauge-invariant 
physics  This is what we want to transform. 

Strategy: Invertibly transform only the 
spectrum of  via a “spectral map”.

→

W

h(ΩWΩ†) = Ωh(W)Ω†

Or, “spectral flow”.

[Boyda, GK, Racanière, Rezende, Albergo, Cranmer, Hackett, Shanahan  PRD103 (2021) 074504]
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SU(N) kernels: 
Permutation equivariance

Sub-manifold of 
 eigenvaluesdet = 1

�⇡ 0 ⇡

�1

�⇡

0

⇡

�2

SU(2)

�1

�⇡

0

⇡�2

�⇡

0

⇡

�3

�⇡

0

⇡

SU(3)

“Cell”, related to other 
cells by permutations 

of .{ϕ1, ϕ2, ϕ3}



SU(N) kernels: 
Transform the canonical cell

Change variables to rectilinear box Ω

Transform by acting on coords of box , either…Ω

… or …



U(1) gauge theory in 1+1D
There is exact lattice topology in 2D.


- Compared flow, analytical, HMC, and 
heat bath on  lattices for 


- Topo freezing in HMC and heat bath


- Gauge-equiv flow-based model at each 


- Flow-based MCMC observables agree

16 × 16 β = {1,…,7}

β

Q =
1

2π ∑
x

arg(P01(x))

MCMC for β = 7

5 6 7

�

0.6

0.8

1.0

1.2

1.4
�Q/Exact

HMC HB Flow

Topological susceptibility χQ = ⟨Q2/V⟩
[GK, Albergo, Boyda, Cranmer, Hackett, Racanière, Rezende, Shanahan  PRL125 (2020) 121601]

S(U) = − β∑
x

∑
μ<ν

Re Pμν(x)

Pμν(x) = Uμ(x)Uν(x + ̂μ)U†
μ(x + ̂ν)U†

ν (x)



U(1) topological freezing mitigated

1 2 3 4 5 6 7

�
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Flow
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U(1) topological freezing mitigated

1 2 3 4 5 6 7

�

1

10

100

1000

10000

⌧ int
Q

HMC

HB

Flow Autocorrelation time 
reduced by 

~4 orders of magnitude!

Topological 
autocorrelation time



SU(N) gauge theory in 1+1D
 
Gauge-equiv flow models for 2D lattice gauge theory on  lattices. 

- Matched ’t Hooft couplings: 
     
     

- 48 PAFF coupling layers, links updated 6 times each 
 

- No equivalent to  topological freezing, studied absolute model quality

16 × 16

SU(2) ⟺ β = {1.8, 2.2, 2.7}
SU(3) ⟺ β = {4.0, 5.0, 6.0}

U(1)

1

0
Active

Passive

Frozen

S(U) = −
β
N ∑

x
∑
μ<ν

ReTr Pμν(x)

Pμν(x) = Uμ(x)Uν(x + ̂μ)U†
μ(x + ̂ν)U†

ν (x)



Results for SU(2) and SU(3) gauge theory
• Flow-based MCMC observables agree with 

analytical


• High-quality models: autocorrelation time in 
flow-based Markov chain  = 1—4τint

0 100 200

i

�380

�360

�340

�320

�300

�280 Se↵ (Ti · U)

0 100 200

i

S (Ti · U) + log Z

Rotation and reflection symmetry learned

Exact translational subgroup; residual learned

0 2 4 6

i

�380

�360

�340

�320

�300
Se↵ (Ri · U)

0 2 4 6

i

S (Ri · U) + log Z

[Boyda, GK, Racanière, Rezende, Albergo, Cranmer, Hackett, Shanahan  PRD103 (2021) 074504]
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translations
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“Effective Sample Sizes” indicating model overlap onto 
target are all larger than ~50% (100% = perfect model)✓
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Promising early results. No theoretical obstacle 
to scaling to 4D  lattice gauge theory.SU(N) 0 2 4 6
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A story of symmetries & generative models
(In three parts)

1. Flow-based generative models 
 

2. Gauge symmetry & translational symmetry 
 

3. Fermions & translational symmetry



Fermions in field theory
Grassmann representation in path integral means…


… we cannot sample fermion fields


… integrating out fermions results in costly fermion determinants 
 
 

Pseudofermions used in standard MCMC for theories with dynamical fermions.

∫ 𝒟ψ𝒟ψ̄∏
f

e−ψ̄f Df ψf = ∏
f

det Df

∫ 𝒟ψ𝒟ψ̄∏
f

e−ψ̄f Df ψf ∝ ∫ 𝒟φ𝒟φ†∏
k

e−φ†
k ℳ−1

k φk

Starting point for flow-
based sampling



5 ways to marginalize
Any could in principle be learned by flow-based models.


Below: Bosonic part of action written generically as SB(ϕ)

Intractable density 
(even unnormalized)

Expensive to 
evaluate det exactly

Can actually be 
sampled directly 

(e.g. pseudofermion 
refresh in HMC)

[Albergo, GK, Racanière, Rezende, Urban, Boyda, Cranmer, Hackett, Shanahan  2106.05934]



Translational invariance
Pseudofermion fields  satisfy antiperiodic BCs in the time direction.


Marginalizations with PFs should address this for translational equivariance.


Building blocks:

φ(x)

Restricted CNNs: 
• Channels either antiperiodic 

(AP) or periodic (P) in time


• Operations restricted for well-
defined outputs (either P or AP)


• AP activations only odd fns

Explicit averaging: 
• CNN outputs averaged over time 

translations with correct BCs

Invertible linear layers: 
• Flow = composed linear 

operators 


• Each  is a conv with fixed 
direction (and correct BCs)

𝒲n ∘ … ∘ 𝒲1

𝒲i
det 𝒲i = ∏

k

ak ± ∏
k

bk



Results for Yukawa model
Studied 2D  model coupled via Yukawa interaction to staggered  
 
 
 

-  lattices


- Two degenerate fermions ( )


- Massless ( )


- Variety of models, all 4 
sampling schemes

ϕ4 ψ

16 × 16

Nf = 2

M = 0

S(ϕ, ψ) = ∑
x∈Λ

[−2
d

∑
μ=1

ϕ(x)ϕ(x + ̂μ) + (m2 + 2d)ϕ(x)2 + λϕ(x)4] +
Nf

∑
f=1

ψ̄f Df[ϕ]ψf

1e–1

5e–1

C
�
(t

)
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5e–1
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t
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1

+5e–1
C

�
/C

H
M

C
�

2 4 6 8 10 12 14

t

�5e–1

1

+5e–1

�-marginal Gibbs Autoregressive Fully Joint

Staggered Dirac op with 
Yukawa coupling  

and mass term 
gϕψ̄ψ
Mψ̄ψ

g = 0.1 g = 0.3

Correlation functions 
effectively reproduced✓



Summary and Outlook
 
 
Symmetries allow efficient & consistent 
training of flow-based models. 

Gauge symmetry + translational 
symmetry addressed throughout. 

Effective models produced for , 
,  lattice gauge theory and 

a  Yukawa model in 1+1D.

U(1)
SU(2) SU(3)

ϕ4

Future directions: 
1. Higher spacetime dims


2. Tuning of training hyperparameters


3. Efficient model architectures at scale?



Summary and Outlook
 
 
Symmetries allow efficient & consistent 
training of flow-based models. 

Gauge symmetry + translational 
symmetry addressed throughout. 

Effective models produced for , 
,  lattice gauge theory and 

a  Yukawa model in 1+1D.

U(1)
SU(2) SU(3)

ϕ4

Future directions: 
1. Higher spacetime dims


2. Tuning of training hyperparameters


3. Efficient model architectures at scale?

See also: 
Approaches to multimodal sampling and mixed 
HMC + flow-based sampling:


Jupyter notebook tutorial:

[Hackett, Hsieh, Albergo, Boyda, Chen, Chen, 
Cranmer, GK, Shanahan;  2107.00734]

[Albergo, Boyda, Hackett, GK, Cranmer, 
Racanière, Rezende, Shanahan;  2101.08176]



Backup Slides



Exactness: Flow-based MCMC
Markov chain constructed using Independence Metropolis accept/reject on 
model proposals.


• Independent proposals  from model distribution 


• Accept proposal , making it next elt of Markov chain, with probability 
 
 
 

• If rejected, duplicate previous elt of Markov chain


- Only need to compute observables on duplicated elts once!

U′� q

U′�

pacc(U → U′�) = min (1,
p(U′�)
q(U′�)

q(U)
p(U) ) .

“Embarrassingly parallel” step!



Exactness: Reweighting
• Also possible to reweight independently drawn samples: 
 
 
 
 

• May be preferable when observables  are efficiently computed, and 
sampling is expensive.


• Observables  are expensive in lattice QCD. We prefer resampling or 
MCMC approaches in these settings.

𝒪(U)

𝒪(U)

⟨𝒪⟩ =
∫ 𝒟U q(U)[𝒪(U) p(U)

q(U) ]
∫ 𝒟U q(U)[ p(U)

q(U) ]



U(1) kernels
Conjugation equivariance trivially satisfied: .


Invertible maps on U(1) variables:


- Periodic / compact domain must be addressed.


- For details, see: 

h(ΩWΩ†) = h(W) = Ωh(W)Ω†

[Rezende, Papamakarios, Racanière, Albergo, GK, Shanahan, Cranmer; 
ICML (2020) 2002.02428]

Non-compact projection: 
• Map , e.g. 


• Transform  as usual


• Map 

θ → x ∈ ℝ arctan(θ/2)

x → x′ �

x′� → θ′� ∈ [−π, π]

Circular invertible splines: 
• Spline “knots” trainable fns


• Identify endpoints  and 


• Number of knots  expressivity

π −π

↔

[Durkan, Bekasov, Murray, Papamakarios 1906.04032]



Plaquette distributions 

for 
, SU(9) β = 9 Plaquette distributions 

for 
, SU(3) β = 9

Density has zeros on vertical, horizontal, and 
diagonal lines where the slice crosses walls of cells

100

10�2

10�4

�
=

1

c(0) c(1) c(2)

100

10�2

10�4

�
=

5

�⇡ 0 ⇡

100

10�2

10�4

�
=

9

�⇡ 0 ⇡ �⇡ 0 ⇡

Flow Target

Plaquette distributions 

for 
, SU(2) β = 9

-⇡

0

⇡

F
lo

w

c(0) c(1) c(2)

-⇡ 0 ⇡
-⇡

0

⇡

T
ar

ge
t

-⇡ 0 ⇡ -⇡ 0 ⇡

10�5 10�4 10�3 10�2 10�1 100

Agree!

Agree!

Agree!

-⇡

0

⇡

F
lo

w

c(0) c(1) c(2)

-⇡ 0 ⇡
-⇡

0

⇡

T
ar

ge
t

-⇡ 0 ⇡ -⇡ 0 ⇡

10�5 10�4 10�3 10�2 10�1 100

100

10�2

10�4

�
=

1

c(0) c(1) c(2)

100

10�2

10�4

�
=

5

�⇡ 0 ⇡

100

10�2

10�4

�
=

9

�⇡ 0 ⇡ �⇡ 0 ⇡

Target Flow

Testing SU(N) kernels



U(1) observables
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SU(N) observables
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Center symmetry
Using only contractible loops in coupling layers enforces center symmetry. 
 

Fundamental fermions: 

- Center symmetry explicitly broken


- Must include non-contractible loops (e.g. Polyakov) 
in the set of frozen and/or transformed loops

A

WA

A0

WA0

µ

⌫ X⌫



Details of  modelsSU(2)

• Inner flow on open box  is a spline 
flow with 4 knots


-  and  boundaries align to 0 and 1 
edges of the open box 
 

• CNNs to compute the knot locations


- 32 hidden channels


- 2 hidden layers

Ω

B −B

[Durkan, Bekasov, Murray, Papamakarios 1906.04032]



Details of  modelsSU(3)

[Durkan, Bekasov, Murray, Papamakarios 1906.04032]

• Inner flow on open box  is a spline 
flow with 16 knots


-  and  boundaries align to 0 and 1 
edges of the open box 

• CNNs to compute the knot locations


- 32 hidden channels


- 2 hidden layers


• Exact conjugation equivariance also 
imposed

Ω

B −B

I

e2πi/3e−2πi/3
Complex 

Conjugation



Gauge theory model training
• Adam optimizer ~ stochastic grad. descent with 

momentum


- Batches of size 3072 per gradient descent step


- Monitored value of effective sample size (ESS) 
 
 
 
 
 
 
 

• Transfer learning: model trained first on  then 
used to initialize model for training on 

8 × 8
16 × 16

ESS =
( 1

n ∑i w(Ui))
2

1
n ∑i w(Ui)2

, Ui ∼ q(U)

w(U) = p(U)/q(U) “reweighting factors”
0 2000 4000 6000 8000 10000

Training iteration

0.0

0.1

0.2

0.3

0.4

0.5

E
S
S

� = 6 (init. from 8 ⇥ 8) � = 6 (random init.)

Transferred model 
almost fully optimized

Model with random 
init takes many steps 

to optimize



Proposed exact sampling schemes
Using a variety of learned densities  — Best choice not yet clear!q(…)

[Albergo, GK, Racanière, Rezende, Urban, Boyda, Cranmer, Hackett, Shanahan  2106.05934]

(1) -marginalϕ (2) Gibbs

(3) Autoregressive (4) Joint

LEARNED

LEARNED

LEARNED

LEARNED

LEARNED

EXACT

Key takeaways:


• Exact regardless of quality of 
modeled densities 


• Can define sampler over

… bosonic fields alone ( ) or


… bosonic + PF fields ( ) 

• For Gibbs, even a perfect 
model may have residual 
autocorrelations

q(…)

ϕ
ϕ, φ


