

Flow-based models for lattice ensemble generation

Gurtej KanwarUniversity of Bern

Based on ...

... flow-based sampling for lattice QFT:

[Albergo, GK, Shanahan PRD100 (2019) 034515]

[Albergo, Boyda, Hackett, GK, Cranmer, Racanière, Rezende, Shanahan 2101.08176]

[Albergo, GK, Racanière, Rezende, Urban, Boyda, Cranmer, Hackett, Shanahan 2106.05934]

[Hackett, Hsieh, Albergo, Boyda, Chen, Chen, Cranmer, GK, Shanahan 2107.00734]

... flows for compact vars & lattice gauge theories:

[GK, Albergo, Boyda, Cranmer, Hackett, Racanière, Rezende, Shanahan PRL125 (2020) 121601] [Rezende, Papamakarios, Racanière, Albergo, GK, Shanahan, Cranmer ICML (2020) 2002.02428] [Boyda, GK, Racanière, Rezende, Albergo, Cranmer, Hackett, Shanahan PRD103 (2021) 074504]

Phiala Shanahan

Dan Hackett

Denis Boyda

Sébastien Racanière Danilo Rezende

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Julian Urban

30 second Lattice QFT primer

Lattice discretization:

- Gauge field discretized on links $U_{\mu}(x) \in G$ [e.g. $\mathrm{SU}(3)$]
- Other fields $\phi(x)$ discretized to live on sites x

Lattice path integral → observables

Caveats:

- Euclidean spacetime $t \to i au$
- Discretization effects (must take $a \rightarrow 0$)

30 second Lattice QFT primer

Lattice discretization:

- Gauge field discretized on links $U_{\mu}(x) \in G$ [e.g. $\mathrm{SU}(3)$]
- Other fields $\phi(x)$ discretized to live on sites x

Lattice path integral → **observables**

Caveats:

- Euclidean spacetime $t \to i au$
- Discretization effects (must take $a \rightarrow 0$)

30 second Lattice QFT primer

Lattice discretization:

- Gauge field discretized on links $U_{\mu}(x) \in G$ [e.g. $\mathrm{SU}(3)$]
- Other fields $\phi(x)$ discretized to live on sites x

Lattice path integral → **observables**

Caveats:

- Euclidean spacetime $t \to i au$
- Discretization effects (must take $a \rightarrow 0$)

Vaccum/thermal expt. value of quantum operator
$$\sqrt{\ln \text{principle tractable integral}}$$

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int \mathcal{D} U \mathcal{O}(U) \, e^{-S(U)}$$

$$Z = \int \mathcal{D}U \, e^{-S(U)}, \qquad \int \mathcal{D}U = \prod_{x,\mu} \int dU_{\mu}(x)$$
 Normalizing constant Path integral measure

Importance sampling: the workhorse of LQFT

Monte Carlo sampled ensembles allow estimates of (many) QFT observables

Desired continuum QFT quantity

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int \mathcal{D}U \mathcal{O}(U) \, e^{-S(U)} \qquad \qquad \qquad \langle \mathcal{O} \rangle \approx \frac{1}{n} \sum_{i=1}^{n} \mathcal{O}[U_i] \qquad \qquad \qquad \qquad U_i \sim p(U) = e^{-S(U)} / Z$$

Markov chain Monte Carlo (MCMC)

Example: MCMC for scalar field configurations

- **Asymptotically** converges to distribution p
- However: States of the chain are "autocorrelated"
- Skip thermalization steps, ensemble "thinned" to a subset

Importance sampling: the workhorse of LQFT

Monte Carlo sampled ensembles allow estimates of (many) QFT observables

Desired continuum QFT quantity

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int \mathcal{D}U \mathcal{O}(U) \, e^{-S(U)} \qquad \qquad \qquad \langle \mathcal{O} \rangle \approx \frac{1}{n} \sum_{i=1}^{n} \mathcal{O}[U_i] \qquad \qquad \qquad \qquad \text{Target distribution}$$

Markov chain Monte Carlo (MCMC)

Example: MCMC for scalar field configurations

- **Asymptotically** converges to distribution p
- However: States of the chain are "autocorrelated"
- Skip thermalization steps, ensemble "thinned" to a subset

Critical slowing down (CSD)

Local/diffusive Markov chains inefficient as $a \rightarrow 0$

- Correlation length grows in lattice units, but information transfer is local
- Rare to update entire field coherently

Critical slowing down: diverging autocorrelations due to local mixing

Topological freezing: Markov chain gets "stuck" in topological sectors

[Schaefer et al. / ALPHA collaboration NPB845 (2011) 93]

CSD also affects a number of other models:

- o CPN-1 [Flynn, et al. **1504.06292**]
- O(N) [Frick, et al. **PRL63 (1989) 2613**]
- $\circ \phi^4$ [Vierhaus; Thesis, **doi:10.18452/14138**]
- 0 ...

Critical slowing down (CSD)

Local/diffusive Markov chains inefficient as $a \rightarrow 0$

- Correlation length grows in lattice units, but information trans

- Rare to update

Critical slowing d due to local mixino

Topological freezi topological sectors

CSD & Topological freezing:

Significant obstacles to continuum limit

Topological

charge squared

CSD also affects a number of other models:

- CPN-1 [Flynn, et al. **1504.06292**]
- [Frick, et al. **PRL63 (1989) 2613**]
- [Vierhaus; Thesis, doi:10.18452/14138]

Circumventing CSD?

Avoid diffusive/local Markov chain updates.

Proposal: Sample from generative ML models.

Caveats:

- We require exactness
- Inverted data hierarchy ... $\sim 10^9 10^{10}$ DoFs in a config ... $\sim 10^3$ configs
- ✓ Target probability density $e^{-S(U)}/Z$
- √ Physical symmetries = "flat directions"

We choose flow-based models.

AKA 'normalizing flows

Lattice sampling

VS.

Image generation

[Karras, Lane, Aila / NVIDIA 1812.04948]

Circumventing CSD?

Avoid diffusive/local Markov chain updates.

Proposal: Sample from generative ML models.

Caveats:

- We require exactness
- Inverted data hierarchy ... $\sim 10^9 10^{10}$ DoFs in a config ... $\sim 10^3$ configs
- ✓ Target probability density $e^{-S(U)}/Z$
- √ Physical symmetries = "flat directions"

We choose flow-based models.

AKA 'normalizing flows'

Lattice sampling

Image generation

[Karras, Lane, Aila / NVIDIA 1812.04948]

likely (log prob = 22)

likely (log prob = 5)

Faces generated via "real NVP" flow [Dinh, Sohl-Dickstein, Bengio **1605.08803**]

A story of symmetries & generative models (In three parts)

1. Flow-based generative models

2. Gauge symmetry & translational symmetry

3. Fermions & translational symmetry

A story of symmetries & generative models (In three parts)

1. Flow-based generative models

2. Gauge symmetry & translational symmetry

3. Fermions & translational symmetry

(Convolutional) neural networks: Black-box (local) function approximators

(Convolutional) neural networks: Black-box (local) function approximators

Coupling layers: Invertible transformations, tractable Jacobian

(Convolutional) neural networks: Black-box (local) function approximators

Coupling layers: Invertible transformations, tractable Jacobian

Flow model: Prior density + flow = sampleable + computable output density

$$q(\phi') = r(\phi) \left| \det \frac{\partial [f(\phi)]_i}{\partial \phi_j} \right|^{-1}$$

(Convolutional) neural networks: Black-box (local) function approximators

Coupling layers: Invertible transformations, tractable Jacobian

Flow model: Prior density + flow = sampleable + computable output density

Training:

- Measure KL divergence
- Apply gradient-based opt

$$q(\phi') = r(\phi) \left| \det \frac{\partial [f(\phi)]_i}{\partial \phi_j} \right|^{-1}$$

(Convolutional) neural networks: Black-box (local) function approximators

Coupling layers: Invertible transformations, tractable Jacobian

Flow model: Prior density + flow = sampleable + computable output density

Training:

- Measure KL divergence
- Apply gradient-based opt

Exactness:

• Use $q(\phi')$ and $p(\phi')$ to correct approximation

$$q(\phi') = r(\phi) \left| \det \frac{\partial [f(\phi)]_i}{\partial \phi_j} \right|^{-1}$$

Defining the flow function

$$q(U) = r(V) \left| \det \frac{\partial [f(V)]_i}{\partial V_j} \right|^{-1}$$

The "flow" f must be invertible and have tractable Jacobian determinant

- For LQFT, don't know what f needs to be a priori
- Construct expressive parameterized ansatz and optimize it

Key to expressivity — Use composition.

Coupling layers

Similar to leapfrog integrator

Idea: Construct each g to act on a **subset** of components, conditioned only on the complimentary subset. "Masking pattern" m defines subsets.

→ Jacobian is explicitly upper-triangular (get LDJ from diag elts)

 \rightarrow Invertible if each diag component invertible, $\partial [g(V)]_i/\partial V_i \neq 0$.

Example: RNVP for scalar fields

Scalar field $\phi(x) \in \mathbb{R} \approx \text{grayscale image}$

Real NVP coupling layer:

[Dinh, Sohl-Dickstein, Bengio 1605.08803]

Example: RNVP for scalar fields

Scalar field $\phi(x) \in \mathbb{R} \approx \text{grayscale image}$

Real NVP coupling layer:

[Dinh, Sohl-Dickstein, Bengio 1605.08803]

Example: RNVP for scalar fields

Scalar field $\phi(x) \in \mathbb{R} \approx \text{grayscale image}$

Real NVP coupling layer:

[Dinh, Sohl-Dickstein, Bengio 1605.08803]

Symmetries in flows

Motivation: Target $p(\phi)$ is often invariant under symmetries. Make $q(\phi)$ automatically invariant too?

Invariant prior + equivariant flow = symmetric model [Cohen, Welling 1602.07576]

$$r(t \cdot U) = r(U) \qquad f(t \cdot U) = t \cdot f(U)$$

Symmetries...

- √ Reduce data complexity of training
- √ Reduce model parameter count
- √ May make "loss landscape" easier

Translational equivariance

1. Use Convolutional Neural Nets (CNNs).

- Output values (e.g. $e^{s(x)}$ and t(x)) for each site are local functions of frozen DoFs

- CNNs are equivariant under translations

2. Make masking pattern (mostly) invariant.

- E.g. checkerboard

See also Self-Learning Monte Carlo (SLMC) methods: [Huang, Wang PRB95 (2017) 035105; Liu, et al. PRB95 (2017) 041101; ... and many more ...]

Optimizing the model

Must not require a large number of samples from real distribution to optimize!

Self-training:

1. Loss function = modified Kullback-Leibler (KL) divergence

$$\text{Constant shift removes} \\ \text{unknown normalization} \\ D'_{\text{KL}}(q \mid \mid p) := \int \mathcal{D}U \, q(U) \big[\log q(U) - \log p(U) \big] \geq 0 \\ D'_{\text{KL}}(q \mid \mid p) := \int \mathcal{D}U \, q(U) \big[\log q(U) + S(U) \big] \geq -\log Z \qquad \text{(Using } p(U) = e^{-S(U)/Z) }$$

2. Stochastic estimate: draw samples U_i from the model, then measure

$$\frac{1}{M} \sum_{i=1}^{M} \left[\log q(U_i) + S(U_i) \right]$$

Exactness

Samples from **model** are from biased distribution $q(\phi) \neq p(\phi)$, but...

For each ϕ_i drawn from the model, we know $q(\phi_i)$ and $p(\phi_i)$

Exact bias correction possible (e.g. "flow-based MCMC" or reweighting)

Note: Efficiency of bias correction depends on how close *q* and *p* are.

Birds-eye view

[Image credit: 1805.04829]

A story of symmetries & generative models (In three parts)

1. Flow-based generative models

2. Gauge symmetry & translational symmetry

3. Fermions & translational symmetry

Lattice gauge theory & Symmetries

Gauge field discretized in terms of parallel transporters (links) $U_{\mu}(x)$.

Lattice gauge theory actions (typically) satisfy symmetries:

- 1. (Discrete) translational symmetries
- 2. Hypercubic symmetries
- 3. Gauge symmetries

$$(\Omega \cdot U)_{\mu}(x) = \Omega(x)U_{\mu}(x)\Omega^{\dagger}(x+\hat{\mu})$$

Symmetries **factor** distribution into uniform component along symmetry direction, and non-uniform component along invariant direction. Schematically:

Exact symmetry

Learned symmetry

Lattice gauge theory & Symmetries

Gauge field discretized in terms of parallel transporters (links) $U_{\mu}(x)$.

Lattice gauge theory actions (typically) satisfy symmetries:

- 1. (Discrete) translational symmetries
- 2. Hypercubic symmetries
- 3. Gauge symmetries

$$(\Omega \cdot U)_{\mu}(x) = \Omega(x)U_{\mu}(x)\Omega^{\dagger}(x+\hat{\mu})$$

Symmetries **factor** distribution into uniform component along symmetry direction, and non-uniform component along invariant direction.

Schematically:

Exact symmetry

Learned symmetry

Gauge symmetry via gauge fixing?

Where gauge DoFs are explicitly factored out, e.g. maximal tree

Explicit gauge fixing is at odds with translational symmetry + locality

Link physically encodes Wilson loop around shaded region

Gauge symmetry via gauge fixing?

Where gauge DoFs are fixed by solving a constraint, e.g. Landau gauge

Implicit gauge fixing difficult to act on via flow-based models

Landau gauge:
$$U_{\mu}^{\text{fix}}(x) = \operatorname{argmin}_{U^{\Omega}} \sum_{x} \sum_{\mu=1}^{N_d} \operatorname{ReTr}[U_{\mu}^{\Omega}(x)]$$

Coulomb gauge:
$$U_{\mu}^{\text{fix}}(x) = \operatorname{argmin}_{U^{\Omega}} \sum_{x} \sum_{\mu=1}^{N_d-1} \operatorname{ReTr}[U_{\mu}^{\Omega}(x)]$$

Unclear how to invertibly transform $U_{\mu}^{\mathrm{fix}}(x)$.

Gauge symmetries in flows

Choose to act on the un-fixed link representation $U_{\mu}(x)$.

Carefully construct architecture to enforce...

Gauge-invariant prior:

Not very difficult! Uniform distribution works.

With respect to Haar measure

$$r(U) = 1$$

Gauge-equivariant flow:

Coupling layers acting on (untraced) Wilson loops.

Loop transformation easier to satisfy.

Gauge symmetries in flows

Choose to act on the un-fixed link representation $U_{\mu}(x)$.

Open loop

With respect to

Haar measure

Closed loop

iant flow:

acting on on loops.

tion easier

to satisfy.

Gauge-equivariant coupling layer

Compute a field of Wilson loops $W_{\mathcal{C}}(x)$.

Inner coupling layer [function of $W_{\mathcal{C}}(x)$]

- "Actively" update a subset of loops.*
- Condition on "frozen" closed loops.

Gauge invariant!

Outer coupling layer [function of $U_{\mu}(x)$]

- Solve for link update to satisfy actively updated loops.
- Other loops in $W_{\mathcal{L}}(x)$ may "passively" update.

Open loop

$$U'_{\mu}(x) = W'_{\ell}(x) V^{\dagger}_{\ell}(x)$$

Gauge-equivariant coupling layer

Compute a field of Wilson loops $W_{\mathcal{C}}(x)$.

Inner coupling layer [function of $W_{\mathcal{L}}(x)$]

- "Actively" update a subset of loops.*
- Condition on "frozen" closed loops.

Gauge invariant!

* This "kernel" must satisfy: $h(W_{\ell}^{\Omega}(x)) = h^{\Omega}(W_{\ell}(x))$

Open loop

$$W_{\mathcal{C}}(x) \xrightarrow{\text{Flow}} W_{\mathcal{C}}'(x)$$

Outer coupling layer [function of $U_{\mu}(x)$]

- Solve for link update to satisfy actively updated loops.
- Other loops in $W_{\mathcal{L}}(x)$ may "passively" update.

$$U'_{\mu}(x) = W'_{\ell}(x) V^{\dagger}_{\ell}(x)$$

Active, passive, and frozen loops

Passive-Active-Frozen-Frozen (PAFF) pattern

Kernels

Coupling layers required kernels satisfying conjugation equivariance:

$$h(\Omega W \Omega^{\dagger}) = \Omega h(W) \Omega^{\dagger}$$

U(1): Trivially satisfied because $h(\Omega W \Omega^{\dagger}) = h(W) = \Omega h(W) \Omega^{\dagger}$.

However, invertible transforms on the compact domain required.

[Rezende, Papamakarios, Racanière, Albergo, GK, Shanahan, Cranmer; ICML (2020) 2002.02428]

SU(N): Non-trivial constraint requiring some fun mathematical engineering...

SU(N) kernels: strategy

SU(N) matrix-conj. equivariance is non-trivial.

$$h(\Omega W \Omega^{\dagger}) = \Omega h(W) \Omega^{\dagger}$$

Useful observations:

- Conjugation only rotates eigenvectors.
- Spectrum is invariant.
- Wilson loop spectrum encodes gauge-invariant physics → This is what we want to transform.

Strategy: Invertibly transform only the spectrum of W via a "spectral map".

Or, "spectral flow".

SU(N) kernels: strategy

SU(N) matrix-conj. equivariance is non-trivial.

$$h(\Omega W \Omega^{\dagger}) = \Omega h(W) \Omega^{\dagger}$$

Useful observations:

- Conjugation only rotates eigenvectors.
- Spectrum is invariant.
- Wilson loop spectrum encodes gauge-invariant physics → This is what we want to transform.

Strategy: Invertibly transform only the spectrum of W via a "spectral map".

Or, "spectral flow"

$$W = P \left(egin{array}{ccc} e^{i\phi_1} & & \ & \ddots & \ & & e^{i\phi_N} \end{array}
ight) \!\! P^\dagger$$

$$\Psi \rightarrow \Omega$$

$$W' \; = \; P \left(egin{array}{ccc} e^{i\phi_1'} & & & \ & \ddots & & \ & & e^{i\phi_N'} \end{array}
ight) \!\! P^\dagger$$

[Boyda, GK, Racanière, Rezende, Albergo, Cranmer, Hackett, Shanahan PRD103 (2021) 074504]

SU(N) kernels: Permutation equivariance

Undiagonalize

 $W' = P \left(egin{array}{ccc} e^{i\phi_1'} & & & \ & \ddots & & \ & e^{i\phi_N'} \end{array}
ight) \!\! P^\dagger$

SU(N) kernels: Transform the canonical cell

Change variables to rectilinear box Ω

$$\begin{array}{c|c}
 & \zeta^{-1} \\
 & \swarrow \\
 & \zeta
\end{array}
\qquad \begin{array}{c|c}
 & \phi^{-1} \\
 & \phi
\end{array}
\qquad \begin{array}{c|c}
 & \Omega
\end{array}$$

Transform by acting on coords of box Ω , either...

Autoregressive ... or ... Independent

$$f_1 \longrightarrow f_2 \longrightarrow \cdots$$
 Ω

Undiagonalize

U(1) gauge theory in 1+1D

$$S(U) = -\beta \sum_{x} \sum_{\mu < \nu} \operatorname{Re} P_{\mu\nu}(x)$$

$$P_{\mu\nu}(x) = U_{\mu}(x)U_{\nu}(x + \hat{\mu})U_{\mu}^{\dagger}(x + \hat{\nu})U_{\nu}^{\dagger}(x)$$

There is exact lattice topology in 2D.

$$Q = \frac{1}{2\pi} \sum_{x} \arg(P_{01}(x))$$

- Compared flow, analytical, HMC, and heat bath on 16×16 lattices for $\beta = \{1,...,7\}$
- Topo freezing in HMC and heat bath
- Gauge-equiv flow-based model at each β
- Flow-based MCMC observables agree

Topological susceptibility $\chi_Q = \langle Q^2/V \rangle$

U(1) topological freezing mitigated

U(1) topological freezing mitigated

SU(N) gauge theory in 1+1D

$$S(U) = -\frac{\beta}{N} \sum_{x} \sum_{\mu < \nu} \operatorname{ReTr} P_{\mu\nu}(x)$$

$$P_{\mu\nu}(x) = U_{\mu}(x)U_{\nu}(x + \hat{\mu})U_{\mu}^{\dagger}(x + \hat{\nu})U_{\nu}^{\dagger}(x)$$

Gauge-equiv flow models for 2D lattice gauge theory on 16×16 lattices.

Matched 't Hooft couplings:

$$SU(2) \iff \beta = \{1.8, 2.2, 2.7\}$$

 $SU(3) \iff \beta = \{4.0, 5.0, 6.0\}$

- 48 PAFF coupling layers, links updated 6 times each

- No equivalent to U(1) topological freezing, studied absolute model quality

Results for SU(2) and SU(3) gauge theory

- Flow-based MCMC observables agree with analytical
- High-quality models: autocorrelation time in flow-based Markov chain $\tau_{\rm int} = 1-4$

Exact translational subgroup; residual learned

Rotation and reflection symmetry learned

Results for SU(2) and SU(3) gauge theory

- Flow-based MCMC observables agree with analytical
- High-quality models: autocorrelation time in flow-based Markov chain $\tau_{\rm int} = 1-4$

Promising early results. No theoretical obstacle to scaling to 4D SU(N) lattice gauge theory.

A story of symmetries & generative models (In three parts)

1. Flow-based generative models

2. Gauge symmetry & translational symmetry

3. Fermions & translational symmetry

Fermions in field theory

Grassmann representation in path integral means...

... we cannot sample fermion fields

... integrating out fermions results in costly fermion determinants

$$\int \mathcal{D}\psi \mathcal{D}\bar{\psi} \prod_{f} e^{-\bar{\psi}_{f} D_{f} \psi_{f}} = \prod_{f} \det D_{f}$$

Pseudofermions used in standard MCMC for theories with dynamical fermions.

$$\int \! \mathcal{D}\psi \! \mathcal{D}\bar{\psi} \prod_f e^{-\bar{\psi}_f D_f \psi_f} \! \propto \! \int \! \mathcal{D}\varphi \! \mathcal{D}\varphi^\dagger \prod_k e^{-\varphi_k^\dagger \mathcal{M}_k^{-1} \varphi_k} \!$$

5 ways to marginalize

Any could in principle be learned by flow-based models.

Below: Bosonic part of action written generically as $S_B(\phi)$

	Name		Probability density	
	$ m Joint^A$	$p(\phi, arphi) =$	$rac{1}{Z} \exp(-S_B(\phi) - arphi^\dagger \left[\mathcal{M}(\phi) ight]^{-1} arphi)$	Expensive to evaluate det exactly
	$\phi ext{-marginal}$	$p(\phi) =$	$\frac{Z_{\mathcal{N}}}{Z} \exp(-S_B(\phi)) \det \mathcal{M}(\phi)$	
	$arphi$ -conditional $^{\mathrm{A,B}}$	$p(arphi \phi)=$	$rac{1}{Z_{\mathcal{N}}\det\mathcal{M}(\phi)}\exp(-arphi^{\dagger}\left[\mathcal{M}(\phi) ight]^{-1}arphi)$	
Can actually be sampled directly	$arphi$ -marginal $^{ ext{C}}$	p(arphi)=	2.0	Intractable density
(e.g. pseudofermion refresh in HMC)	$\phi ext{-conditional}^{ ext{A}}$	$p(\phi arphi) =$	$\frac{\exp(-S_B(\phi) - \varphi^{\dagger} \left[\mathcal{M}(\phi)\right]^{-1} \varphi)}{\int d\phi \exp(-S_B(\phi) - \varphi^{\dagger} \left[\mathcal{M}(\phi)\right]^{-1} \varphi)}$	(even unnormalized)

Translational invariance

Pseudofermion fields $\varphi(x)$ satisfy **antiperiodic BCs** in the time direction.

Marginalizations with PFs should address this for translational equivariance.

Building blocks:

Restricted CNNs:

- Channels either antiperiodic
 (AP) or periodic (P) in time
- Operations restricted for welldefined outputs (either P or AP)
- AP activations only odd fns

Explicit averaging:

 CNN outputs averaged over time translations with correct BCs

Invertible linear layers:

- Flow = composed linear operators $\mathcal{W}_n \circ \ldots \circ \mathcal{W}_1$
- Each \mathcal{W}_i is a conv with fixed direction (and correct BCs)

$$egin{bmatrix} a_1 & & \pm b_1 \ b_2 & a_2 & 0 \ & \cdots & & \ 0 & & & \ b_L & a_L \end{bmatrix}$$

$$\det \mathcal{W}_i = \prod_k a_k \pm \prod_k b_k$$

Results for Yukawa model

Staggered Dirac op with Yukawa coupling $g\phi\bar{\psi}\psi$ and mass term $M\bar{\psi}\psi$

Studied 2D ϕ^4 model coupled via Yukawa interaction to staggered ψ

$$S(\phi, \psi) = \sum_{x \in \Lambda} \left[-2 \sum_{\mu=1}^{d} \phi(x) \phi(x + \hat{\mu}) + (m^2 + 2d) \phi(x)^2 + \lambda \phi(x)^4 \right] + \sum_{f=1}^{N_f} \bar{\psi}_f D_f[\phi] \psi_f$$

- 16×16 lattices
- Two degenerate fermions ($N_f = 2$)
- Massless (M=0)
- Variety of models, all 4 sampling schemes

Summary and Outlook

Symmetries allow efficient & consistent training of flow-based models.

Gauge symmetry + translational symmetry addressed throughout.

Effective models produced for U(1), SU(2), SU(3) lattice gauge theory and a ϕ^4 Yukawa model in 1+1D.

Future directions:

- 1. Higher spacetime dims
- 2. Tuning of training hyperparameters
- 3. Efficient model architectures at scale?

Summary and Outlook

Symmetries allow efficient & consistent training of flow-based models.

Gauge symmetry + translational symmetry addressed throughout.

Effective models produced for U(1), SU(2), SU(3) lattice gauge theory and a ϕ^4 Yukawa model in 1+1D.

Future directions:

- 1. Higher spacetime dims
- 2. Tuning of training hyperparameters
- 3. Efficient model architectures at scale?

See also:

Approaches to multimodal sampling and mixed HMC + flow-based sampling:

[Hackett, Hsieh, Albergo, Boyda, Chen, Chen, Cranmer, GK, Shanahan; **2107.00734**]

Jupyter notebook tutorial:

[Albergo, Boyda, Hackett, GK, Cranmer, Racanière, Rezende, Shanahan; **2101.08176**]

Exactness: Flow-based MCMC

Markov chain constructed using Independence Metropolis accept/reject on model proposals.

"Embarrassingly parallel" step!

- Independent proposals U^\prime from model distribution q —
- Accept proposal U^\prime , making it next elt of Markov chain, with probability

$$p_{\rm acc}(U \to U') = \min\left(1, \frac{p(U')}{q(U')} \frac{q(U)}{p(U)}\right).$$

- If rejected, duplicate previous elt of Markov chain
 - Only need to compute observables on duplicated elts once!

Exactness: Reweighting

Also possible to reweight independently drawn samples:

$$\langle \mathcal{O} \rangle = \frac{\int \mathcal{D}U q(U) \left[\mathcal{O}(U) \frac{p(U)}{q(U)} \right]}{\int \mathcal{D}U q(U) \left[\frac{p(U)}{q(U)} \right]}$$

- May be preferable when observables $\mathcal{O}(U)$ are efficiently computed, and sampling is expensive.
- Observables $\mathcal{O}(U)$ are expensive in lattice QCD. We prefer resampling or MCMC approaches in these settings.

U(1) kernels

Conjugation equivariance trivially satisfied: $h(\Omega W\Omega^{\dagger}) = h(W) = \Omega h(W)\Omega^{\dagger}$.

Invertible maps on U(1) variables:

- Periodic / compact domain must be addressed.
- For details, see:

[Rezende, Papamakarios, Racanière, Albergo, GK, Shanahan, Cranmer; ICML (2020) 2002.02428]

[Durkan, Bekasov, Murray, Papamakarios 1906.04032]

Non-compact projection:

- Map $\theta \to x \in \mathbb{R}$, e.g. $\arctan(\theta/2)$
- Transform $x \to x'$ as usual
- Map $x' \to \theta' \in [-\pi, \pi]$

Circular invertible splines:

- Spline "knots" trainable fns
- Identify endpoints π and $-\pi$
- Number of knots ↔ expressivity

Testing SU(N) kernels

Agree!

Density has zeros on vertical, horizontal, and diagonal lines where the slice crosses walls of cells

U(1) observables

SU(N) observables

Center symmetry

Using only contractible loops in coupling layers enforces center symmetry.

Fundamental fermions:

- Center symmetry explicitly broken
- Must include non-contractible loops (e.g. Polyakov) in the set of frozen and/or transformed loops

Details of SU(2) models

- Inner flow on open box Ω is a spline flow with **4 knots**
 - B and -B boundaries align to 0 and 1 edges of the open box

- CNNs to compute the knot locations
 - 32 hidden channels
 - 2 hidden layers

[Durkan, Bekasov, Murray, Papamakarios 1906.04032]

Details of SU(3) models

- Inner flow on open box Ω is a spline flow with **16 knots**
 - B and -B boundaries align to 0 and 1 edges of the open box
- CNNs to compute the knot locations
 - 32 hidden channels
 - 2 hidden layers
- Exact conjugation equivariance also imposed

[Durkan, Bekasov, Murray, Papamakarios 1906.04032]

Gauge theory model training

- Adam optimizer ~ stochastic grad. descent with momentum
 - Batches of size 3072 per gradient descent step
 - Monitored value of effective sample size (ESS)

$$ESS = \frac{\left(\frac{1}{n}\sum_{i}w(U_{i})\right)^{2}}{\frac{1}{n}\sum_{i}w(U_{i})^{2}}, \quad U_{i} \sim q(U)$$

$$w(U) = p(U)/q(U)$$
 "reweighting factors"

• Transfer learning: model trained first on 8×8 then used to initialize model for training on 16×16

Proposed exact sampling schemes

Using a variety of learned densities q(...) — Best choice not yet clear!

Key takeaways:

- Exact regardless of quality of modeled densities q(...)
- Can define sampler over
 - ... bosonic fields alone (ϕ) or
 - ... bosonic + PF fields (ϕ, φ)
- For Gibbs, even a perfect model may have residual autocorrelations