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Hadron Correlators

The two-point correlator is an important hadronic observable in

Lattice QCD calculations. It can be interpreted via spectral

decomposition 1

C(t) = a3
∑

x
〈O(t, x)Ō(0, 0)〉 =

∑
k

〈0| Ô |k〉 〈k| ˆ̄O |0〉 e−tEk

Where O(t) is an interpolating operator of the desired hadron state.
For example:

Pion: Oπ+(x) = d̄(x)α,c(γ5)αβu(x)β,c
Proton: OP(x) = εabcu(x)α,a

(
u(x)T

β,bC(γ5)βγd(x)γ,c
)

1
Notation taken from C. Gattringer and C. B. Lang, ”Quantum Chromodynamics on the Lattice”, Springer, 2010
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Quark Contractions

The correlator is then the result of the contraction between O(x)
and Ō(y). For pions, for example, it is:

〈Oπ+(x)Ōπ+(y)〉 =
= 〈d̄(x)α1,c1(γ5)α1β1u(x)β1,c1 ū(y)α2,c2(γ5)α2β2d(y)β2,c2〉
= −〈(γ5)α1β1 d̄(x)α1,c1d(y)β2,c2(γ5)α2β2 ū(y)α2,c2u(x)β1,c1〉
= −〈tr

[
γ5D−1

u (y, x)γ5D−1
d (x, y)

]
〉G
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The Quark Propagator

For a generic quark flavor q, the term:

〈q(x)α,a q̄(y)β,b〉 = D−1(y, x)αβab

is the inverse of the Dirac operator. In principle, one needs to invert

the whole matrix. However, one can set a source (point-like in this

case):

ηβ,b(0) = δb,c1δβ,α1δy,0

and reformulate the problem as:

D(0, x)αβab q(x)α,a = ηβ,b(0),

equivalent to computing only one column of the inverse matrix.
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A Linear System

The problem is now reduced to a set of linear systems of the very

simple form Dq = η, where η are 3 × 4 = 12 different source vectors
(Dirac and color indices).

The matrix D is the Dirac operator, a very sparse matrix (its exact

form depends on the lattice action).

Note: for every quark flavor, we have an ensemble of linear systems.
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Iterative Solvers

This kind of linear systems is usually solved using iterative

methods. One of the simplest ones it the Conjugate Gradient, but

many variations are used. For example, the BiCGStab is a common

choice because it works for non-hermitian operators.

These iterative solvers are terminated at convergence, when thre

residue is smaller than a fixed stopping parameter ε:

||Axn − b|| < ε
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The Goal

The main idea of this work is to try to accelerate the computation of the

linear system for the quark propagator. We use numerical data for different

stopping parameters ε to as training and prediction data sets.

For example, using a precise measurement of the propagator (ε = 10−8) on

a subset of the ensemble and a less precise (sloppy) one

(ε = 10−1, 10−2, 10−3) on the whole ensemble.

Compute a precise correlator and 
a sloppy correlator on a fraction 
of the ensemble for training  and 
bias correction

Use only the information of
 the sloppy correlator to 
estimate the precise one

Total ensemble size

Bias correction set

Training Set

Expensive inversions

Cheap inversions

To properly estimate the uncertainty bias-correction and boostrap are used.
6



Gauge Field Ensembles Used

β κl κs L/a T/a a [fm] mπ [MeV ] N
M1 1.90 0.13700 0.1364 32 64 0.0907(13) 699.0(3) 399
M2 1.90 0.13727 0.1364 32 64 0.0907(13) 567.6(3) 400
M3 1.90 0.13754 0.1364 32 64 0.0907(13) 409.7(7) 450
A1 1.83 0.13825 0.1371 16 32 0.1095(25) 710(1) 800
A2 1.90 0.13700 0.1364 20 40 0.0936(33) 676.3(7) 790

Ensembles from the PACS-CS collaboration2, with clover fermions.

Physical quantites calculated for another work3

2PACS-CS, S. Aoki et al., Phys. Rev.D79, 034503 (2009), 0807.1661
3J. Dragos, A. Shindler et al., (2019), 10.1103/PhysRevC.103.015202
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Times

The time to solution of the linear system is roughly linear with the

log of the stopping parameter ε.
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Correlations Maps
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Correlation Map of Hadrons for Ensemble M2.
Precisions:10−2, 10−8
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Correlation between hadron correlators on ensemble M2 computed

with ε = 10−2 and ε = 10−8.
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Example of Raw Data
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Pion Correlator for Ensemble M3

ε = 10−8

ε = 10−3

ε = 10−2

ε = 10−1
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Single Point ML Models Used

• SPNN2: a Neural Network using ε = 10−1, 10−2 as input and

ε = 10−8 as target

• SPNN3: a Neural Network using ε = 10−1, 10−2, 10−3 as input

and ε = 10−8 as target

Output LayerInput Layer Hidden Layers
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Single Point ML Models Used

• SPNN_t1: a Neural Network using ε = 10−1, 10−2 at time t and
t ± 1 as input and ε = 10−8 as target

• SPNN_t2: a Neural Network using ε = 10−1, 10−2 at time t, t ± 1
and t ± 2, as input and ε = 10−8 as target

Output LayerInput Layer Hidden Layers

12



Global ML Models Used

• GNN2: a Neural Network using ε = 10−1, 10−2 at all times t at
once ε = 10−8 at all times as target

• GNN3: a Neural Network using ε = 10−1, 10−2, 10−3 at all times

t at once ε = 10−8 at all times as target

Output LayerInput Layer Hidden Layers
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Evaluating Performance

In order to asses the quality of the results we compute three

quantities:

• the computational gain for given training fraction f .
Γ(f ) = tεmin

tp
(1 − f ) + f

• the ratio of the variances
σ2

ML
σ2

E

• the compatibility of the results
|〈O〉ML−〈O〉E |√

σ2
ML+σ2

E

These have been computed for a small euclidean time, an

asymptotic time and on the effective mass

The product Π(f ) =
(
Γ(f )σ

2
ML
σ2

E

)−1
will be our main metric. If above 1

we are gaining.
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Results

Ensemble Properties:

203 × 40 Lattice
676 MeV pion mass

600 configurations
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Results

Ensemble Properties:

203 × 40 Lattice
676 MeV pion mass

600 configurations
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Summary and Outlook

• A 2.5 speedup is consistently achieved in the mπ range 400− 700
MeV and lattice spacings 0.09 − 0.11 fm

• The overall method appears to be solid and stable in the cases

we have tested it so far

• Need to define an operative procedure, maybe splitting the

methods depending on t
• We are testing partially quenched cases with heavy quarks to

see if there are larger gains at higher masses, where numerical

solver precisions are critical
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Thank You
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Bias correction

When fitting, there could be some bias on the sample average

depending on the subset used for training:

So we further split our training data set and compute the

expectation value as:

C̄ =
1

N − NL

∑
i∈prediction

CP
i +

1
NB

∑
i∈biascorr

(Ci − CP
i )



Bootstrapping

To estimate the error on the expectation value of the observable,

multiple bootstrap samples are used.

Boostrapping is a common resampling method used in LQCD

analysis. It consists of taking a random sample of a quantity O from

a given set of N data with repetitions. This is performed K times:

Ck =
1
N

N∑
i

C∗
i

One then sets the estimator of O as:

C̄ =
1
K

K∑
i

Ck, σ2
C = C̄ =

1
K

K∑
i
(C̄ − Ck)

2

The training and prediction set are bootstrapped independently.
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