

Machine Learning Prediction and Compression of Lattice QCD Observables

Boram Yoon
(Los Alamos National Laboratory)

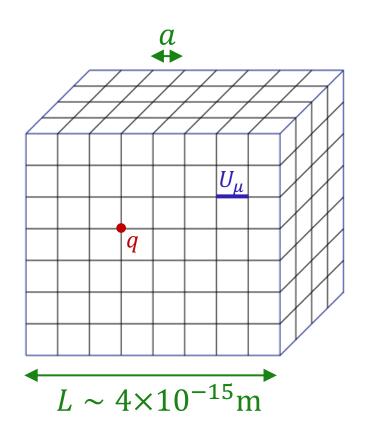
Contents

- 1) Correlations in Lattice QCD Observables
- 2) Prediction of Lattice QCD Observables using ML
- 3) ML Regression Algorithm using D-Wave Quantum Annelaer
- 4) Lossy Data Compression Algorithm for Lattice QCD Data
- 5) Summary

Correlations in Lattice QCD Observables

Lattice QCD

- Non-perturbative approach to solving QCD on discretized Euclidean space-time
 - Hypercubic lattice
 - Lattice spacing *a*
 - Quark fields placed on sites
 - Gluon fields on the links between sites; U_{μ}
- Numerical lattice QCD calculations using Monte Carlo methods
 - Computationally intensive
 - Use supercomputers
- Continuum results are obtained in $a \to 0$
- Has been successful for many QCD observables
 - Some results are with less than 1% error



Lattice QCD

Correlation functions

$$\langle O \rangle = Z^{-1} \int dU dq d\bar{q} \ O(U, q, \bar{q}) e^{-S_g - \bar{q}(D + m_q)q}$$

$$= Z^{-1} \int dU \left[O\left(U, (D + m_q)^{-1}\right) e^{-S_g} \det(D + m_q) \right]$$

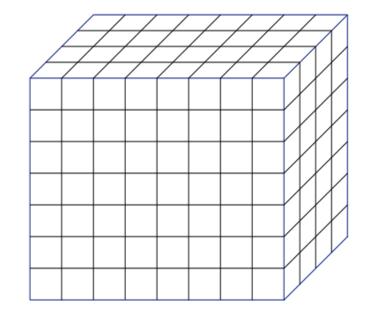
- Monte-Carlo integration
 - Integration variable *U* is huge

$$N_s^3 \times N_t \times 4 \times 8 \sim 10^9$$

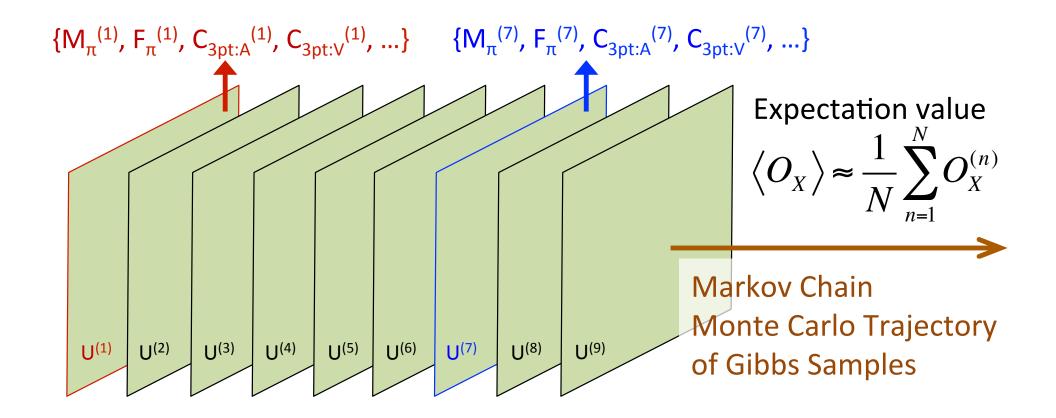
- Generate Markov chain of gauge configurations ${\it U}$
- Calculate average as expectation value

$$\langle O \rangle \approx \frac{1}{N} \sum_{i}^{N} O_i \left(\frac{U}{V}, \left(D + m_q \right)^{-1} \right)$$

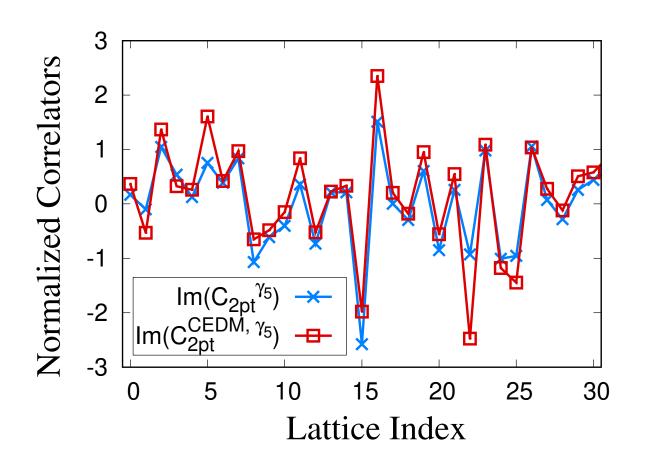
- Calculation of $O_i\left(\frac{U}{U}, \left(\frac{D}{D} + m_q\right)^{-1}\right)$: measurement
- $(D + m)^{-1}$ is computationally expensive



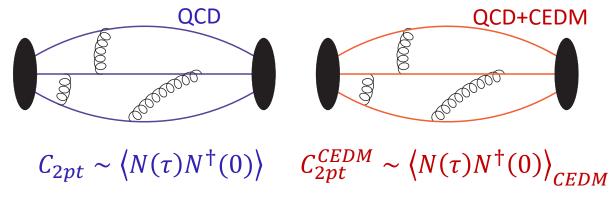
Lattice QCD Observables are Correlated



Correlation Map of Nucleon Observables

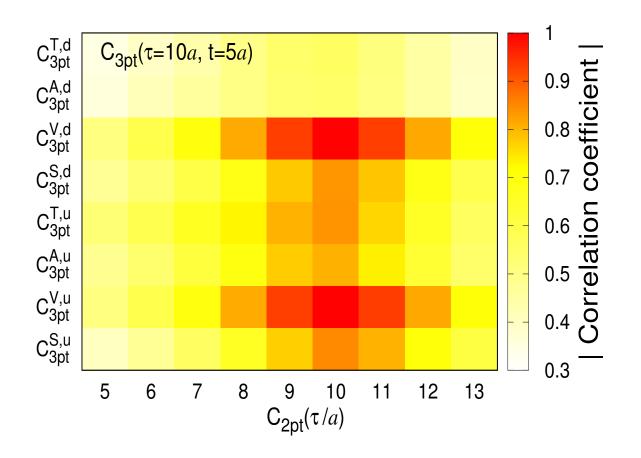


Correlation between proton(uud)
 2-pt correlation function and that calculated in presence of CEDM interaction

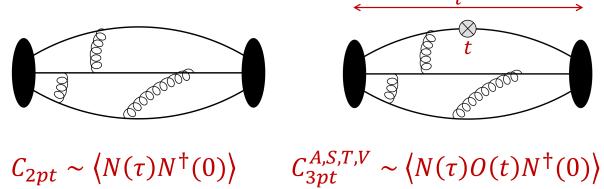


• QCD:
$$D_{clov}$$
 QCD+CEDM: $D_{clov} + \frac{i}{2} \varepsilon \sigma^{\mu\nu} \gamma_5 G_{\mu\nu}$

Correlation Map of Nucleon Observables



Correlation between proton(uud)
 3-pt and 2-pt correlation functions



• Using these correlations, C_{3pt} can be estimated from C_{2pt} on each configuration

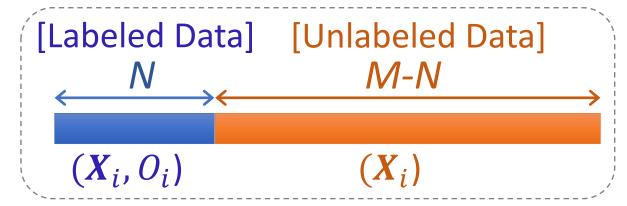
Prediction of Lattice QCD Observables using ML

Measured and computationally cheap observables

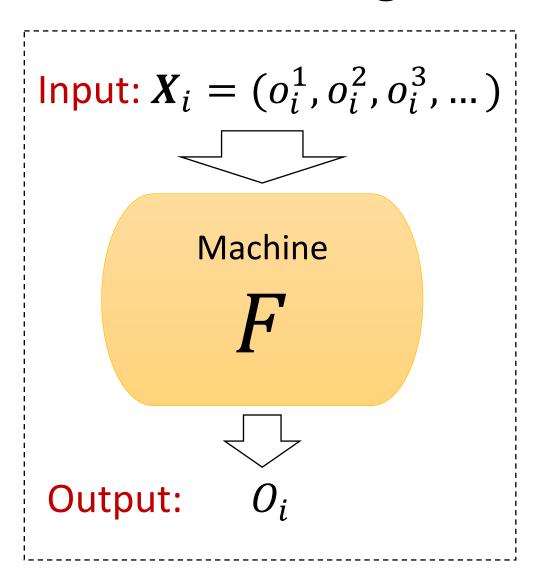
→ Prediction of unmeasured and computationally expensive observables

Prediction of Lattice QCD Observables using ML

- Assume *M* indep. measurements
- Common observables X_i on all MTarget observable O_i on first N



- 1) Train machine F to yield O_i from X_i on the Labeled Data
- 2) Predict O_i of the Unlabeled data from X_i $F(X_i) = O_i^P \approx O_i$



Prediction Bias

- $F(X_i) = O_i^P \approx O_i$
- Simple average

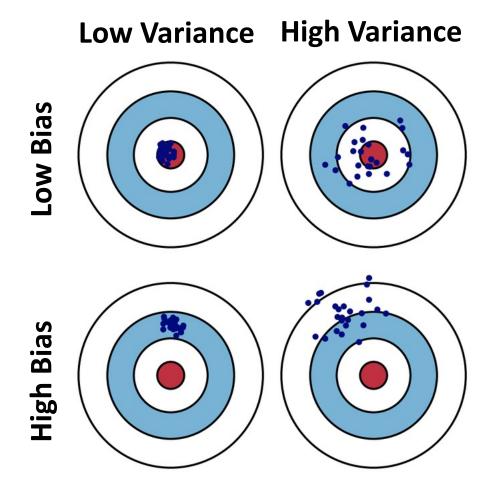
$$\bar{O} = \frac{1}{M} \sum_{i \in \text{Unlabeled}} O_i^P$$

is not correct due to prediction bias

- Prediction = TrueAnswer + Noise + Bias
- ML prediction may have bias

$$\langle O^P \rangle \neq \langle O \rangle$$

Bias = $\langle O^P \rangle - \langle O \rangle$



Bias Correction and Error Quantification

[Bias Correction (BC) Data]
[Training Data]
$$\begin{array}{c}
N_t & N_b \\
N_t & N_b
\end{array}$$

$$\begin{array}{c}
(X_i, O_i) & (X_i, O_i)
\end{array}$$

$$\begin{array}{c}
(X_i, O_i) & (X_i, O_i)
\end{array}$$

- Split labeled data $N = N_t + N_b$
- Average of predictions on test data with bias correction

$$\bar{O}_{BC} = \frac{1}{M} \sum_{i \in \text{Unlabeled}} O_i^P + \frac{1}{N_b} \sum_{i \in BC} (O_i - O_i^P)$$

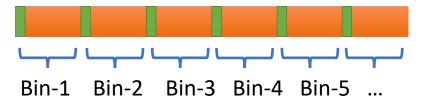
- Expectation value, $\langle \bar{O}_{BC} \rangle = \langle O^P \rangle + \langle O O^P \rangle = \langle O \rangle$
- BC term converts systematic error of prediction to statistical uncertainty

Incorporating Labeled Data

• Include directly measured values O_i from labeled data

$$\bar{O}_{BC}^{\text{imp}} = w_1 \times \left(\frac{1}{N} \sum_{i \in \text{Labeled}} O_i\right) + w_2 \times \left(\frac{1}{M} \sum_{i \in \text{Unlabeled}} O_i^P + \frac{1}{N_b} \sum_{i \in BC} \left(O_i - O_i^P\right)\right)$$

- w_1 , w_2 : weights determined based on the (co)variance of two terms
- If you need more than just a simple average in data analysis
 - two different data, O_i on labeled and O_i^P on unlabeled samples
 - simultaneous fit on these two data sets with the same fit parameters
 - O_i and O_i^P have the same mean after BC but may have different variance
- Statistical errors can be estimated using Bootstrap resampling
- Binning and BC for each bin is another option for complicated data analysis



Quality of Prediction

Bias-corrected average

$$\bar{O}_{BC} = \frac{1}{M} \sum_{i \in \text{Unlabeled}} O_i^P + \frac{1}{N_b} \sum_{i \in BC} (O_i - O_i^P)$$

Statistical error of the unbiased average

$$\sigma_{\bar{O}_{BC}}^{2} \approx \frac{1}{M} \sigma_{O^{P}}^{2} + \frac{1}{N_{bc}} \sigma_{O-O^{P}}^{2}
\approx \frac{\sigma_{O}^{2}}{M} \left(1 + \frac{M}{N_{bc}} \frac{\sigma_{O-O^{P}}^{2}}{\sigma_{O}^{2}} \right) \equiv \frac{\sigma_{O}^{2}}{M} \left(1 + \frac{M}{N_{bc}} Q^{2} \right); \qquad Q^{2} \equiv \frac{\sigma_{O-O^{P}}^{2}}{\sigma_{O}^{2}}$$
for $N_{bc}/M = 0.2$

approximations (\approx) for small correlation between the two terms and a good prediction algorithm that gives $\sigma_O^2 \approx \sigma_{OP}^2$

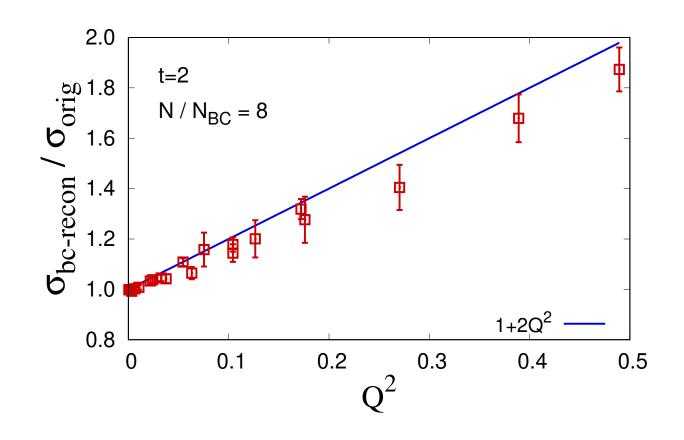
$\frac{\sigma_{\overline{O}_{BC}}^2}{\sigma_{BC}} \sim 1 \perp$	$M O^2$	$\sigma_{\overline{O}_{BC}} \sim 1 \perp$	M	Ω^2
$\frac{\sigma_{\overline{O}_{BC}}}{\sigma_{\overline{O}}^2} \approx 1 + \frac{1}{2}$	$\overline{N_{bc}}$ Q ,	$\frac{\sigma_{\bar{O}_{BC}}}{\sigma_{\bar{O}}} \approx 1 +$	$\overline{2N_{bc}}$	Q

Q	Error Increase
0.5	62.5%
0.3	22.5%
0.1	2.5%

- Q-value shows the expected error-increase due to the ML prediction error
- In practice, BC data have less autocorrelation than full data, because of the many measurements per configuration, so $\sigma_{\bar{O}_{BC}}$ gives smaller error than expected above

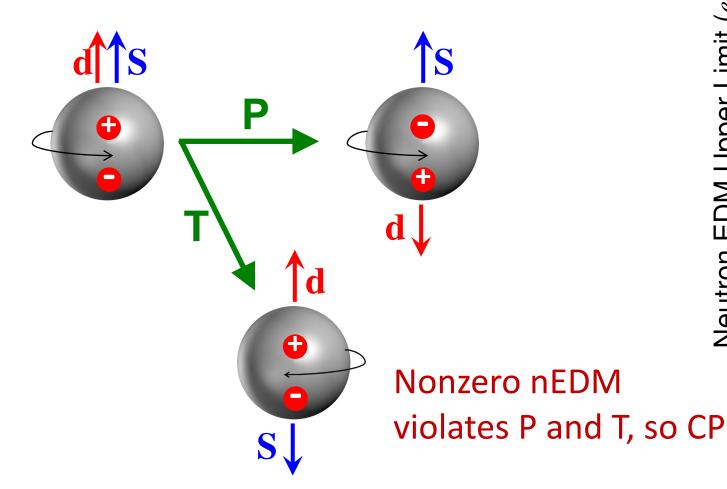
Statistical Error Increase for Different Q-values

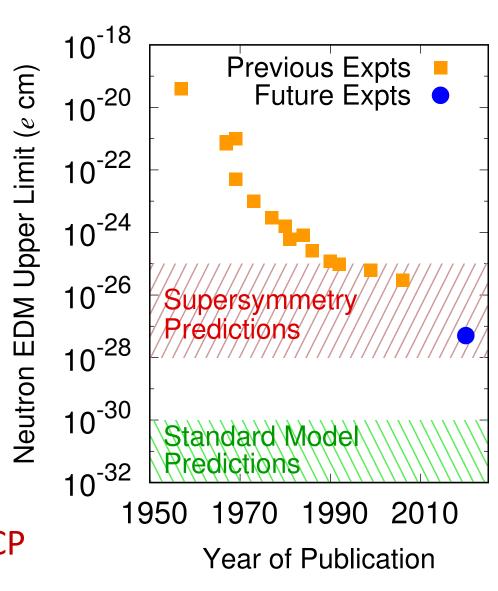
- The statistical error increase is proportional to $Q^2 \equiv \frac{\sigma_{O-O}^2 P}{\sigma_O^2}$
- For independent data, the error increase ratio due to bias correction is expected to be $1 + \frac{M}{2N_{bc}}Q^2$
- Correlation between the data samples makes it $1+\alpha\frac{M}{2N_{bc}}Q^2$ with $0<\alpha<1$



Neutron EDM and CP Violation

 Measures separation between centers of (+) and (-) charges





Effective CPV Lagrangian

$$\mathcal{L}_{\text{CPV}}^{d \leq 6} = -\frac{g_s^2}{32\pi^2} \bar{\theta} G \tilde{G} \qquad \text{dim=4 QCD θ-term}$$

$$-\frac{i}{2} \sum_{q=u,d,s} d_q \bar{q} (\sigma \cdot F) \gamma_5 q \qquad \text{dim=5 Quark EDM (qEDM)}$$

$$-\frac{i}{2} \sum_{q=u,d,s} \tilde{d}_q g_s \bar{q} (\sigma \cdot G) \gamma_5 q \qquad \text{dim=5 Quark Chromo EDM (CEDM)}$$

$$+d_w \frac{g_s}{6} G \tilde{G} G \qquad \text{dim=6 Weinberg 3g operator}$$

$$+\sum_i C_i^{(4q)} O_i^{(4q)} \qquad \text{dim=6 Four-quark operators}$$

Quark Chromo EDM (cEDM)

Simulation in presence of CPV cEDM interaction

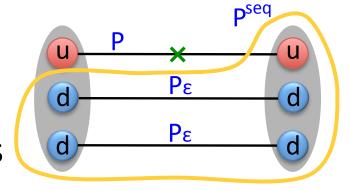
$$S = S_{QCD} + S_{cEDM}$$

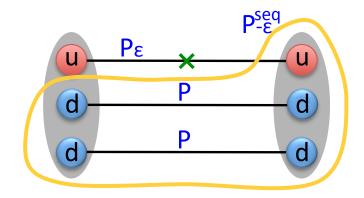
$$S_{cEDM} = -\frac{i}{2} \int d^4 x \ \tilde{d}_q g_s \overline{q} (\sigma \cdot G) \gamma_5 q$$

 Schwinger source method Include cEDM term in valence quark propagators by modifying Dirac operator

$$D_{\rm clov} \to D_{\rm clov} + i\varepsilon \sigma^{\mu\nu} \gamma_5 G_{\mu\nu}$$

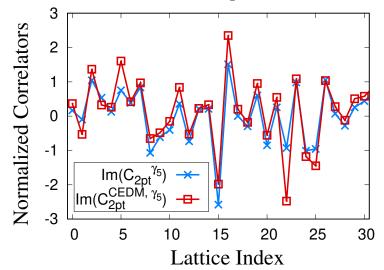
• cEDM contribution to nEDM can be obtained by calculating vector form-factor F_3 with propagators including cEDM & $O_{\gamma_5} = \overline{q} \gamma_5 q$

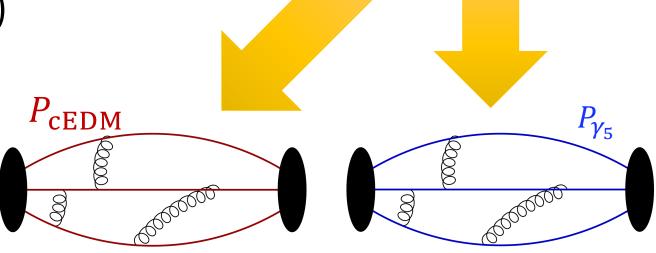




Prediction of C_{2pt}^{CPV} from C_{2pt}

- Predict C_{2pt} for cEDM and γ_5 insertions from C_{2pt} without CPV
- CPV interactions \rightarrow phase in neutron mass $(ip_{\mu}\gamma_{\mu} + me^{-2i\alpha\gamma_{5}})u_{N} = 0$
- At leading order, α can be obtained from $C_{2pt}^P \equiv {\rm Tr} \big(\gamma_5 \langle NN^\dagger \rangle \big)$

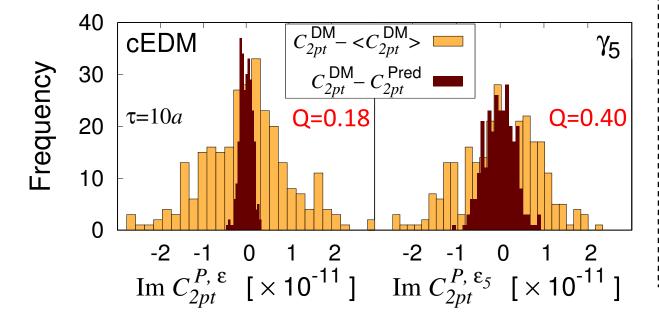




P_{regular}

Prediction of C_{2pt}^{CPV} from C_{2pt}

- Training and Test performed for
 - a = 0.12 fm, $M_{\pi} = 305$ MeV
 - Measurements: 400 confs × 64 srcs
- # of training data: 70 confs
 - # of BC data: 50 confs
 - # of unlabeled data: 280 confs



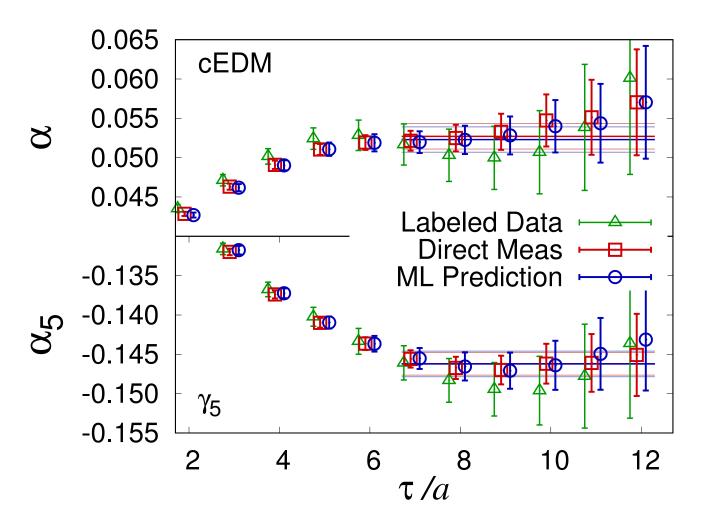
Input:

$$X_i = \{\text{Re, Im}[C_{2pt}^{S,P}(0 \le \tau/a \le 16)]\}$$

Boosted
Decision Tree
Regression

Output: Im $C_{2pt}^{P \text{ (cEDM, } \gamma_5)}(\tau)$

Prediction of C_{2pt}^{CPV} from C_{2pt}



• α (cEDM)

DM: 0.0527(17)

Prediction: 0.0525(18)

• α_5 (γ_5)

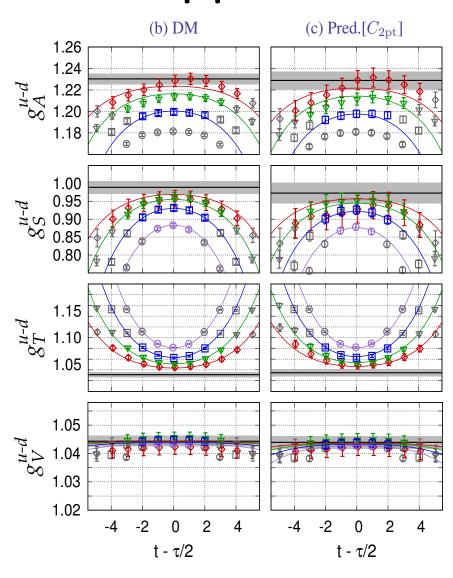
DM: -0.1463(14)

Prediction: -0.1460(17)

DM: DM on 400 confs

Prediction: DM on 120 confs+ ML prediction on 280 confs

Other Applications



Prediction of C_{3pt} from C_{2pt}

BY, Tanmoy Bhattacharya, Rajan Gupta, PRD 100, 014504 (2019) Rui Zhang, Zhouyou Fan, Ruizi Li, Huey-Wen Lin, BY, PRD 101, 034516 (2020)



Prediction of η_s distribution amplitude (upper) and Kaon quasi-PDF (lower) z=4 from z<4

ML Regression Algorithm using D-Wave Quantum Annelaer

ML Regression using D-Wave Quantum Annealer

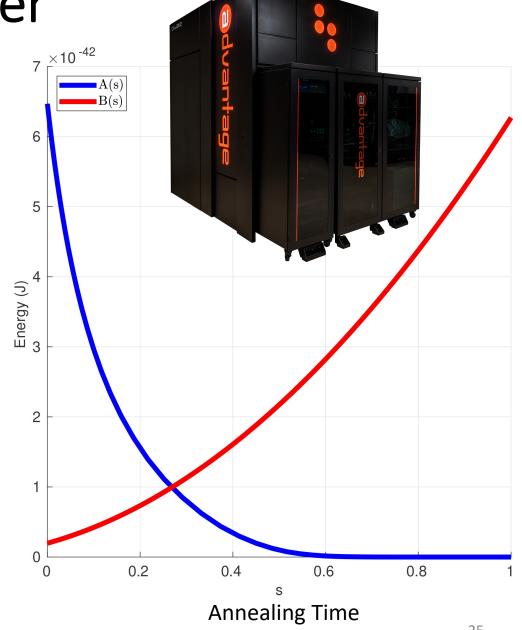
- Most ML algorithms involve optimization problems; many of them rely on stochastic approaches, but expensive for large problems
- D-Wave quantum annealer can be used as a fast and accurate optimizer for ML optimization problems

D-Wave Quantum Annealer

Hamiltonian

$$H = -\frac{A(s)}{2} \left(\sum_{i} \hat{\sigma}_{\chi}^{(i)} \right) + \frac{B(s)}{2} \left(\sum_{i} h_{i} \hat{\sigma}_{z}^{(i)} + \sum_{i>j} J_{i,j} \hat{\sigma}_{z}^{(i)} \sigma_{z}^{(j)} \right)$$

- h_i , $J_{i,i}$: biases and coupling strengths that user can set to their problem parameters
- After annealing at < 15 mK, QPU returns low- energy solution (spin up/down of quantum bits) of the Ising model Hamiltonian
- Large number of reads is required to obtain minimum energy solution for large problems, but each read takes $O(10)\mu s$
- ML typically needs only near-optimal solution



Sparse Coding

$$\min_{\Phi} \sum_{k=1}^{K} \min_{\vec{a}^{(k)}} \left[\frac{1}{2} \| \vec{X}^{(k)} - \Phi \vec{a}^{(k)} \|_{2} + \lambda \| \vec{a}^{(k)} \|_{0} \right]$$

- Unsupervised ML algorithm
- Find dictionary $\Phi \in \mathbb{R}^{D \times N_q}$ and sparse representation $\vec{a}^{(k)} \in \mathbb{R}^{N_q}$ from which input data $\vec{X}^{(k)} \in \mathbb{R}^D$ can be reconstructed by

$$\vec{X}^{(k)} \approx \Phi \vec{a}^{(k)} = a_1^{(k)} \vec{v}_1 + a_2^{(k)} \vec{v}_2 + \dots + a_1^{(k)} \vec{v}_1$$

- The representation is sparse because the λ -term enforces a minimal set of dictionary elements for the reconstruction of a given input data
- Optimization in $\vec{a}^{(k)}$ of l^0 -norm function is a highly non-convex problem

Sparse Coding on D-Wave quantum annealer

$$\min_{\mathbf{\Phi}} \sum_{k=1}^{K} \min_{\vec{a}^{(k)}} \left[\frac{1}{2} \| \vec{X}^{(k)} - \mathbf{\Phi} \vec{a}^{(k)} \|_{2} + \lambda \| \vec{a}^{(k)} \|_{0} \right]$$

The sparse coding problem can be mapped onto D-Wave by

$$H(\vec{h}, \mathbf{Q}, \vec{a}) = \sum_{i} a_{i} h_{i} + \sum_{i < j} Q_{ij} a_{i} a_{j}$$
$$\vec{h} = -\mathbf{\Phi}^{T} \vec{X} + \left(\lambda + \frac{1}{2}\right), \qquad \mathbf{Q} = \frac{1}{2} \Phi^{T} \Phi$$

- On D-Wave, a_i is restricted to binary: $\vec{a}^{(k)} \in \{0,1\}^{N_q}$
- D-Wave finds $\vec{a}^{(k)}$ minimizing H
- Optimization for Φ is performed offline (on classical computers)

Inpainting



Ground Truth

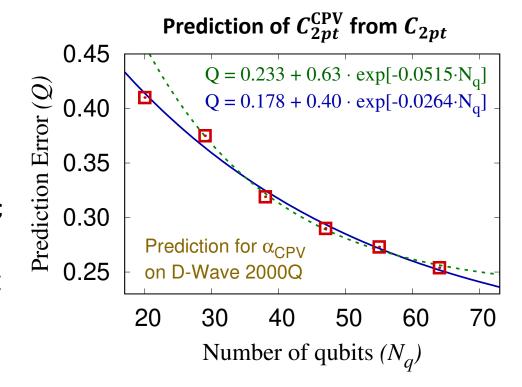
Data with Missing Pixels

Inpainted Results

- Inpainting: restorative conservation where damaged, deteriorating, or missing parts of an artwork are reconstructed as it was originally created
- Sparse coding works as an inpainting algorithm because the reconstruction $\vec{X}^{(k)} \approx \Phi \vec{a}^{(k)}$ fills up the missing pixels based on the correlation pattern Φ learned

Sparse Coding Regression on D-Wave

- Goal: prediction of y from $\vec{x} = \{x_1, x_2, ..., x_D\}$
- Procedure:
 - 1) Obtain $\mathbf{\Phi_0} \in \mathbb{R}^{D \times N_q}$ of \overrightarrow{x} from unlabeled data
 - 2) Extend Φ_0 to $\Phi \in \mathbb{R}^{(D+1)\times N_q}$ and encode correlation between \vec{x} and y in Φ using augmented vector $\{\vec{x}, y\}$
 - 3) For unknown y, reconstruct new vector $\{\vec{x}, \vec{y}\}$ using Φ ; reconstruction replaces \vec{y} with its prediction
- This approach is a semi-supervised learning as it utilizes unlabeled data to improve prediction
- D-Wave is used for optimization in $\vec{a}^{(k)}$



 Currently, the performance is limited by the maximum number of qubits available on D-Wave, but the predictions applied on lattice QCD data look promising

Lossy Data Compression Algorithm for Lattice QCD Data

Lossy Data Compression for Lattice QCD

- Modern lattice QCD simulations produce
 O(PetaBytes) of data that need to be stored for future analysis
- Exploiting correlation between the data components can reduce storage requirement → Machine learning
- Reconstruction error sufficiently smaller than the observables statistical fluctuation is good enough for most of the analysis → Lossy compression

Lossy Data Compression Algorithm

- Goal: find $\Phi \in \mathbb{R}^{D \times N_q}$ and $\vec{a}^{(k)} \in \{0,1\}^{N_q}$ precisely reconstructing input vectors $\vec{X}^{(k)} \in \mathbb{R}^D$ such that $\vec{X}^{(k)} \approx \Phi \vec{a}^{(k)} \equiv \vec{X}'^{(k)}$
 - $\triangleright \Phi$ is common for all k = 1,2,3,...,N, so memory usage is small
 - \triangleright Each vector $\vec{a}^{(k)}$ can be stored in N_q bits
 - \triangleright Storing $\left(\left\{\vec{a}^{(k)}\right\}_{k=1}^{N}, \Phi\right)$ for $\left\{\vec{X}^{(k)}\right\}_{k=1}^{N}$: compression of D floating-point numbers into N_q bits
 - \triangleright Correlation between X_i , encoded in Φ , allows precise reconstruction with $N_q \ll 32D$
- Such solutions of Φ and $\vec{a}^{(k)}$ can be obtained by solving

$$\min_{\Phi} \sum_{k=1}^{N} \min_{\vec{a}^{(k)}} \left[\left(\vec{X}^{(k)} - \Phi \vec{a}^{(k)} \right)^{2} \right]$$

- ightharpoonup Finding binary solution of $ec{a}^{(k)}$ is an NP-hard problem but can be solved using D-Wave
- \triangleright Finding Φ is done on classical computers with stochastic optimizer
- \triangleright Iterate $\vec{a}^{(k)}$ and Φ -optimizations until it reaches the minimum reconstruction error
- \triangleright Need standardization of $\vec{X}^{(k)}$ beforehand if the data exhibits heteroskedasticity

Bias Correction of Lossy Reconstruction

- Lossy reconstruction introduces error $\vec{X}^{(k)} \neq \Phi \vec{a}^{(k)} \equiv \vec{X}'^{(k)}$ Simple average is a biased estimator $\langle f(\vec{X}) \rangle \neq \frac{1}{N} \sum_{k} f(\vec{X}'^{(k)})$
- Unbiased estimator of $\langle f(\vec{X}) \rangle$ can be defined using small portion of original data

$$\overline{O} = \frac{1}{N} \sum_{k=1}^{N} f(\vec{X}'^{(k)}) + \frac{1}{N_{bc}} \sum_{k=1}^{N_{bc}} \left(f(\vec{X}^{(k)}) - f(\vec{X}'^{(k)}) \right)$$

Quality of lossy-compression on statistical data

$$Q^2 \equiv \frac{1}{D} \sum_{i=1}^{D} \frac{\sigma_{X_i - X_i'}^2}{\sigma_{X_i}^2}$$

- ➤ Smaller Q² indicates the better compression
- Increase of statistical error due to bias correction is proportional to $\frac{N}{2N_{hc}}Q^2$
- \triangleright eg) With 10% of bias correction data (N_{bc}/N =0.1) and compression of Q² = 0.01, original data is typically reconstructed within 5% statical error increase

Comparison with other Algorithms

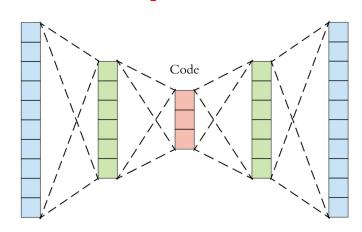
Binary compression using D-Wave

• Find a set of vectors (Φ) and their binary coefficients $(\mathbf{q}^{(k)})$ reconstructing $\mathbf{X}^{(k)}$

$$\min_{\Phi} \sum_{k} \min_{\boldsymbol{a}^{(k)}} \left[\sum_{i} \left(X_{i}^{(k)} - \left[\Phi \boldsymbol{a}^{(k)} \right]_{i} \right)^{2} \right]$$

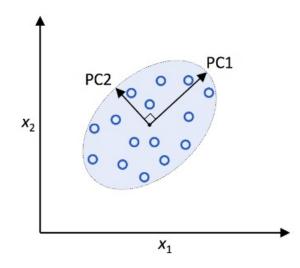
Bottle-neck Autoencoder (AE)

- Fully connected NN with ReLU
- Encoder: (16, 128, 64, 32, N_z)
- Decoder: (*N*₂, 32, 64, 128, 16)

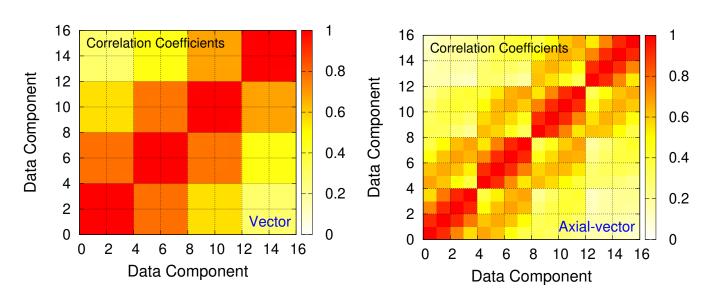


Principal Component Analysis (PCA)

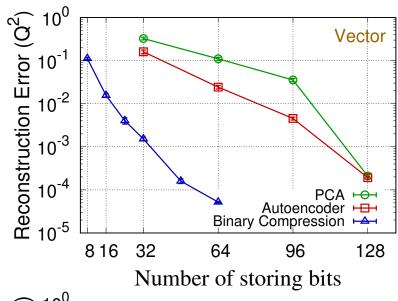
- Compression by saving the first N_z coefficients of the principal components

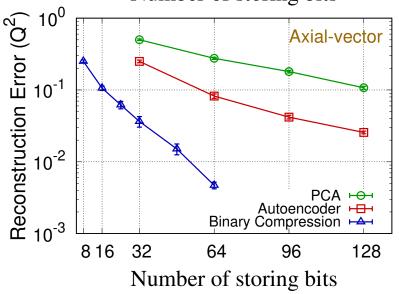


Compression of Lattice QCD data



- Compression of "4 timeslices X4 src-sink separations" of vector and axial-vector nucleon 3pt correlators
- Compression performance of the new algorithm outperforms those based on principal component analysis (PCA) or neural-network autoencoder
- Results from D-Wave simulated annealing; real QPU gives worse performance due to noise in *h* and *J* parameters
- PCA and NN-Autoencoder with single-precision (32bits) codes

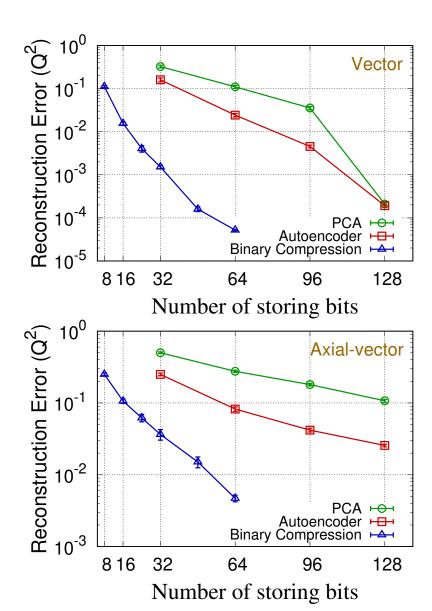




Estimated Error Increase

•
$$\frac{\sigma_{\text{bc-recon}}}{\sigma_{\text{orig}}} = 1 + \alpha \frac{N}{2N_{\text{bc}}} Q^2$$
 with $0 < \alpha < 1$

- With 10% of bias correction data (N/N_{bc} = 10) and $\alpha = 0.5$, expected error increase is $1 + 2.5Q^2$
- When $Q^2 = 10^{-2}$, expected error increase is 2.5%
- When $Q^2 = 10^{-3}$, expected error increase is 0.25%
- For good lossy compression algorithms, error increase due to bias correction is negligibly small



More Use of Binary Compression Algorithm

Outlier detection

- An input data with large reconstruction error can be marked anomalous
- Could find events of new physics or data corruption
- Cheaper operations in \vec{a} -space $(\vec{X}^{(k)} \approx \Phi \vec{a}^{(k)})$
 - Operations on floating-point numbers $\vec{X}^{(k)}$ can be replaced by those on single-bit coefficients $\vec{a}^{(k)}$ with much cheaper computational cost
 - eg 1) sum of vectors $\sum_{k=1}^{N} \mathbf{X}^{(k)} pprox \sum_{k=1}^{N} \boldsymbol{\phi} \boldsymbol{a}^{(k)} = \boldsymbol{\phi} \left(\sum_{k=1}^{N} \boldsymbol{a}^{(k)} \right)$
 - eg 2) sum of l^2 -norm squares

$$\sum_{k=1}^{N} ||\mathbf{X}^{(k)}||^2 \approx \sum_{k=1}^{N} \sum_{i=1}^{D} \left(\sum_{j=1}^{N_q} \phi_{ij} a_j^{(k)} \right)^2$$

$$= \sum_{i=1}^{D} \left[\sum_{j=1}^{N_q} \phi_{ij}^2 \left(\sum_{k=1}^{N} a_j^{(k)} \right) + 2 \sum_{l < m} \left(\sum_{k=1}^{N} a_l^{(k)} a_m^{(k)} \right) \phi_{il} \phi_{im} \right]$$

Summary

- Machine learning (ML) is employed to predict unmeasured observables from measured observables (Expensive lattice QCD calculation → Cheap ML estimators)
- Bias correction is used to quantify the ML prediction error
- Developed a new regression algorithm utilizing quantum annealer and showed promising prediction ability
- Developed a new ML-based compression algorithm using quantum annealer for binary optimization