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Correlations in Lattice QCD Observables



Lattice QCD

* Non-perturbative approach to solving QCD
on discretized Euclidean space-time

Hypercubic lattice

Lattice spacing a

Quark fields placed on sites

Gluon fields on the links between sites; Uu

e Numerical lattice QCD calculations
using Monte Carlo methods

- Computationally intensive
- Use supercomputers

 Continuum results are obtainedina — 0

* Has been successful for many QCD observables
- Some results are with less than 1% error
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Lattice QCD

e Correlation functions
(0)=Z71[ dUdqdgq 0(U,q,q)e 9 ~q(D+mq)q

=271 du |0 (U, (D +mg)" ) e~ det(D +my)|

* Monte-Carlo integration

- Integration variable U is huge [T T T T T 77
2 9 A A A A A
NZXNx4x8 ~ 10 e s ey ay sy ey d
- Generate Markov chain of gauge configurations U ;/;
- Calculate average as expectation value e
1 -1 /1
(0)~ = 0;(U,(D+mg) ") "5
j %
. l _1 /
- Calculation of 0; (U, (D + mq) ): measurement 4

(D + m)~1is computationally expensive



Lattice QCD Observables are Correlated
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Normalized Correlators

Correlation Map of Nucleon Observables

Lattice Index
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 Correlation between proton(uud)
2-pt correlation function and that
calculated in presence of CEDM
Interaction

QCD

B

Copt ~ (N(TNT(0))

QCD+CEDM

CCEDM _

ot~ (N(@NT(0)) .

* QCD: Dciov
QCD+CEDM: D, + %ea’“’yS Gy



Correlation Map of Nucleon Observables

C3pt(T= 1 Oa, t=5a)
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 Correlation between proton(uud)
3-pt and 2-pt correlation functions

S

Cope ~ (NCONT(0)) 50" ~ (N(DO@NT(0))

e Using these correlations,
C3p¢ Ccan be estimated from €5, 0N
each configuration



Prediction of Lattice QCD Observables using ML

Measured and computationally cheap observables

— Prediction of unmeasured and computationally expensive observables



Prediction of Lattice QCD Observables using ML

_____________________________________________________

* Assume M indep. measurements § 1 2 3
* Common observables X; on all M

Target observable O; on first N — =
‘[Labeled Data] [Unlabeled Data] | |
| N M-N _ Machine

Xl K o
1) Train machine F to yield O; from X;

on the Labeled Data @
2) Predict 0; of the Unlabeled data from X; | Output: 0,
F(X;) =0; = 0 S



Prediction Bias
* F(X;) = 0] = 0;
e Simple average
_ 1
0 =+ 2 0;
i€Unlabeled
is not correct due to prediction bias

Low Variance High Variance

* Prediction = TrueAnswer + Noise + Bias

* ML prediction may have bias
(0") #(0)
Bias = (OF) — (0)

High Bias

Low Bias
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Bias Correctlcn and Error Quantlflcatlcn

e ittt R

[Bias Correction (BC) Data]

[Trammg Data] [Unlabeled Data]
' Ny Ny M ,
(Xi' OL) (Xu Ol) (Xl) |

U

* Split labeled data N = N, + N,

* Average of predictions on test data with bias correction
1

GBC=M z 0P+_2(0—0P)
i€Unlabeled LEBC

e Expectation value, (Og-) = (07) + (0 — 07) =(0)
* BC term converts systematic error of prediction to statistical uncertainty
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Incorporating Labeled Data

Include directly measured values O; from labeled data

s 1 1 1
oggp=w1><<ﬁ Z 0i>+w2><<M z 0{’+N—bZ(0i—0{°)>

i €Labeled i €Unlabeled LEBC

w1, Wo: weights determined based on the (co)variance of two terms

If you need more than just a simple average in data analysis
- two different data, 0; on labeled and 0/ on unlabeled samples
- simultaneous fit on these two data sets with the same fit parameters

- 0; and 0! have the same mean after BC but may have different variance
Statistical errors can be estimated using Bootstrap resampling

Binning and BC for each bin is another option for complicated data analysis

1 | | W | —

Bin-1 Bin-2 Bin-3 Bin-4 Bin-5 ...
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Quality of Prediction

* Bias-corrected average

53c=% Z 0P+—Z(0 0;)

i€Unlabeled IEBC
e Statistical error of the unbiased average

2 o 1 o2
90pc ~ M2 0" +Nbc o= -oF

) o-oP 20_5( M 2).
NM(1+Nbc 0'5 )_M 1+Nch ’

approximations (=) for small correlation between the two terms and

a good prediction algorithm that gives o5 ~ O'gp

QZ O-aBC ~ 1+ QZ

Nbc 0'5 ZNbC

for N,./ M =0.2

| Q | Error Increase.
0.5 62.5%
0.3 22.5%
0.1 2.5%

* Q-value shows the expected error-increase due to the ML prediction error

* In practice, BC data have less autocorrelation than full data, because of the many
measurements per configuration, so 0, . gives smaller error than expected above
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Statistical Error Increase for Different Q-values

* The statistical error increase is
2
. O, _AP
proportional to Q% = 00—20
0o

* For independent data, the error
increase ratio due to bias correction
M QZ

2Npc

e Correlation between the data

samples makes it 1 + 212/[ Q*
bc
with) <a <1

is expected to be 1 +
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Neutron EDM and CP Violation

* Measures separation between

centers of (+) and (-) charges
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Effective CPV Lagrangian

2

L5 = — S(Zg;rz 6GG dim=4 QCD 6-term
—%q%sdqq(a-F)ysq dim=5 Quark EDM (qEDM)

.......... _%q;ﬂqgsq(gc;)ysqdlm:sQuarkChromOEDM(CEDM)

+dw%GéG ...................................... d|m=6wemberg3goperator .......................
+ ECI.(”)OI.(‘“” dim=6 Four-quark operators
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Quark Chromo EDM (cEDM)

* Simulation in presence of CPV cEDM interaction

S = SQCD + ScEDM

i . _ pees
SCED = _Efd4x dngQ(G.G)YSq @ P 3¢ @
e Schwinger source method L EE —~d
Include cEDM term in valence quark propagators = dr - d

by modifying Dirac operator

D clov —D clov + iSGMV)/SGuv p P’
* cCEDM contribution to nEDM can be obtained % :,( JO:
by calculating vector form-factor F; with 9 - /\:j

propagators including cEDM & O, = qysq d-
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Prediction of ngy from €y,

Predict C;,; for cEDM and y5 insertions

from C5,; without CPV
Pregular

CPV interactions =2 phase in neutron mass
(ipyy, + me 2175 )uy =0

* At leading order, a can be obtained from
Cfpt = Tr(yS(NNJr))
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Prediction of ngy from €y,

* Training and Test performed for
- a=0.12fm, M, = 305 MeV
- Measurements: 400 confs X 64 srcs

40

30

* # of training data: 70 confs
# of BC data: 50 confs
# of unlabeled data: 280 confs
cEDM Cz?,iv'— <C22LV|> - Vs
Cz?;yl - sz;ed _—
| 1=10a 1 Q=0.18 Q=0.40

Frequency
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Prediction of ngy from €y,

0.065 a (cEDM)
0.060 | CEPM o 4 DM: 0.0527(17)
0.055 | bp o S ﬂ?@:&l]‘ * Prediction: 0.0525(18)
0.050 ¢t % [ I A H—
0.045 | ™ e cas (¥s)

= Labeled Data —=— | 5 (Vs

- Direct Meas —&— : i,
-0.135 ¢ & ML Prediction —e— - DM'_ _ 0'1463(14)
.0.140 | b L Prediction: -0.1460(17)
0.145 | D L
-0.150 | v ) F AL A »DM: DM on 400 confs
-0.155 “~ ‘ | — » Prediction: DM on 120 confs

2 4 6 T /a 8 10 12 + ML prediction on 280 confs

BY, Tanmoy Bhattacharya, Rajan Gupta, PRD 100, 014504 (2019)
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BY, Tanmoy Bhattacharya, Rajan Gupta, PRD 100, 014504 (2019)
Rui Zhang, Zhouyou Fan, Ruizi Li, Huey-Wen Lin, BY, PRD 101, 034516 (2020)

Other Applications
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ML Regression Algorithm
using D-Wave Quantum Annelaer



ML Regression using D-Wave Quantum Annealer

* Most ML algorithms involve optimization problems; many of them
rely on stochastic approaches, but expensive for large problems

* D-Wave quantum annealer can be used as a fast and accurate
optimizer for ML optimization problems
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D-Wave Quantum Annealer

e Hamiltonian 7
6;

A(s) (i
H = ——2 <Z aﬁ” )
B(s) L N N
+ 5 (Z hiUz(l) + ZIi,jUz(l)ffz(])) . |
7

i>)

* h;, J; j: biases and coupling strengths that a4l
user can set to their problem parameters 3

e After annealing at < 15 mK, QPU returns low-
energy solution (spin up/down of quantum
bits) of the Ising model Hamiltonian 2r

* Large number of reads is required to obtain
minimum energy solution for large problems,
but each read takes O(10)us | |

0 0.2 0.4 0.6 0.8 1

* ML typically needs only near-optimal solution s
Annealing Time
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Sparse Coding

K

. . 1 v ~ 1
oY mip 317 - 01, + 2
=1

e Unsupervised ML algorithm

e Find dictionary @ € RP*Na and sparse representation @) € RMa from
which input data X € R can be reconstructed by

X® ~ q® = a5, + a3, + - + a3,

* The representation is sparse because the A-term enforces a minimal set of
dictionary elements for the reconstruction of a given input data

* Optimization in d®) of 1°-norm function is a highly non-convex problem
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Sparse Coding on D-Wave quantum annealer

D a(c)
k=1

minz mln[ | X% — ®d||, +A||a(k)||]

* The sparse coding problem can be mapped onto D-Wave by

H(h Q, a) Eah +zQUaa]

i<j
1

h = —¢TX+</1+2) Q=50

« On D-Wave, q; is restricted to binary: @) € {0,1}"a
* D-Wave finds %) minimizing H

* Optimization for @ 1s performed offline (on classical computers)
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Inpainting

Nvidia Al Playground - Inpainting

Ground Truth | DataW|th M|ssmg PIXE|S‘ - Inpalnted R'esults

* |Inpainting: restorative conservation where damaged, deteriorating, or missing parts of
an artwork are reconstructed as it was originally created

* Sparse coding works as an inpainting algorithm because the reconstruction
X&) =~ da™ fills up the missing pixels based on the correlation pattern ® learned
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Sparse Coding Regression on D-Wave

Goal: prediction of y from x = {x4, x5, ..., xp} Prediction of CS5Y from C,,,
0.45 T T T T T
Procedure: Q=0.233+0.63 - exp[-0.0515-N, |

1) Obtain ®y € RP*Na of X from unlabeled data . Q=0.178+0.40 - exp[-0.0264-N]

2) Extend ®y to P € R(P+DXNg and encode correlation
between X and y in ® using augmented vector {X, y}

3) For unknown y, reconstruct new vector {X, y} using ®;
reconstruction replaces y with its prediction

Prediction Error (Q)
o
w
a

Prediction for agpy |
0.25 | on D-Wave 2000Q = |

This approach is a semi-supervised learning as it
utilizes unlabeled data to improve prediction 20 30 40 50 60 70
Number of qubits (N q)

D-Wave is used for optimization in @

Currently, the performance is limited by the maximum number of qubits available
on D-Wave, but the predictions applied on lattice QCD data look promising

Nga Nguyen, Garrett Kenyon, BY, Sci. Rep. 10, 10915 (2020)
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Lossy Data Compression Algorithm
for Lattice QCD Data



Lossy Data Compression for Lattice QCD

* Modern lattice QCD simulations produce
O(PetaBytes) of data that need to be stored for future analysis

* Exploiting correlation between the data components
can reduce storage requirement - Machine learning

* Reconstruction error sufficiently smaller than the observables statistical
fluctuation is good enough for most of the analysis - Lossy compression
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Lossy Data Compression Algorithm

e Goal: find ® € RP*Na and @ € {0,1}M4 precisely reconstructing
input vectors X e RP such that X0 ~ g = x'(0
»® is common forall k = 1,2,3, ..., N, so memory usage is small
> Each vector @'®) can be stored in N, bits

LN
> Storing ({&(")}Zzl, CD) for {X(k)}kzl: compression of D floating-point numbers into N, bits

» Correlation between X;, encoded in @, allows precise reconstruction with N, < 32D

» Such solutions of ® and d@®) can be obtained by solving
N

- (70— pgo)
mjn ), min (¥ - @]
=1
» Finding binary solution of a'® is an NP-hard problem but can be solved using D-Wave

» Finding ® is done on classical computers with stochastic optimizer
> Iterate d)- and &d-optimizations until it reaches the minimum reconstruction error
> Need standardization of X®) beforehand if the data exhibits heteroskedasticity
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Bias Correction of Lossy Reconstruction

* Lossy reconstruction introduces error X = @@ = x'(®)
Simple average is a biased estimator (f()_())) * %Zk f()?’(k))

* Unbiased estimator of (f()?)) can be defined using small portion of original data

N Npc
_ 1 - 1 S S
0= ) fEO) + 5= > (F(X9) ~f(¥®))
N Ny,
k=1 k=1
* Quality of lossy-compression on statisticall)da;ca
2 — O-Xi_Xi,
- n 2
Do oy
> Smaller Q? indicates the better compression
» Increase of statistical error due to bias correction is proportional to N Q?
bc

> eg) With 10% of bias correction data (N,./N=0.1) and compression of Q% = 0.01,
original data is typically reconstructed within 5% statical error increase
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Comparison with other Algorithms

* Binary compression using D-Wave
* Find a set of vectors (®) and their binary coefficients (a®) reconstructing X

- - (k) 2
qu“Z e [Z (% - [0a®],) ]

i

* Bottle-neck Autoencoder (AE)

Fully connected NN with RelLU
Encoder: (16, 128, 64, 32, N,)
Decoder: (N,, 32, 64, 128, 16)

|

(T T IIT]
I TTTTL]
<
[TT]
//\/\\
SEEEEE
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* Principal Component Analysis
(PCA)

— Compression by saving the first IV,
coefficients of the principal components

A
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 Compression of “4 timeslices X 4 src-sink separations”
of vector and axial-vector nucleon 3pt correlators

 Compression performance of the new algorithm
outperforms those based on principal component
analysis (PCA) or neural-network autoencoder

e Results from D-Wave simulated annealing; real QPU gives
worse performance due to noise in h and J parameters

* PCA and NN-Autoencoder with single-precision (32bits) codes
BY, Nga Nguyen, Jason Chang, Chia Cheng Chang, Ermal Rrapaj, will appear on arXiv soon
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PCA ~o~ 7
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PCA o~ |
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Estimated Error Increase

i 10°
N 107!
Ohc—
o —berecon — 9 4 g Q% witho<a<1 10
Oorig 2Npc

With 10% of bias correction data (N/N,. = 10) and
a = 0.5, expected error increase is 1 + 2.5Q° sl

When Q% = 1072, expected error increase is 2.5% RS
umoer ol Storing DiIts

PCA o
_ Autoencoder - |
I?nnary Compressmn A ]

Reconstruction Error (Q
=

» When Q“ = 1072, expected error increase is 0.25% <& 10° ——
* For good lossy compression algorithms, error LI
increase due to bias correction is negligibly small S
(®)
-] _
S PCA o~ |
(&) L ; _ Autoencoder 8- |
Q 3| | | Binary Compression +~2—
T 10

816 32 64 96 128

Number of storing bits
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More Use of Binary Compression Algorithm

* Outlier detection
* An input data with large reconstruction error can be marked anomalous
* Could find events of new physics or data corruption

« Cheaper operations in d-space (X ¥) =~ @3k
* Operations on floating-point numbers XU can be replaced by those on

single-bit coefficients a) with much cheaper computational cost
 eg 1) sum of vectors ~

SX® w i ba® = ¢ (f: a(k))
k=1

k=1 k=1

* eg 2) sum of [%-norm squares

N N D [N 2
Z X2 ~ Yy (Y: ¢z’ja§'k))
k=1

k=1i=1 \j=1

i=1 | j=1 l<m \k=

D Nq N N
= [z o (S0 +25 (Soatly) mm]
k=1 k=1
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Summary

* Machine learning (ML) is employed to predict unmeasured

observables from measured observables
(Expensive lattice QCD calculation - Cheap ML estimators)

* Bias correction is used to quantify the ML prediction error

* Developed a new regression algorithm utilizing quantum
annealer and showed promising prediction ability

* Developed a new ML-based compression algorithm using
guantum annealer for binary optimization
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