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Correlations in Lattice QCD Observables
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Lattice QCD
• Non-perturbative approach to solving QCD

on discretized Euclidean space-time
- Hypercubic lattice
- Lattice spacing 𝑎
- Quark fields placed on sites
- Gluon fields on the links between sites; 𝑈!

• Numerical lattice QCD calculations 
using Monte Carlo methods

- Computationally intensive
- Use supercomputers

• Continuum results are obtained in 𝑎 → 0
• Has been successful for many QCD observables 

- Some results are with less than 1% error

𝐿 ∼ 4×10"#$m

𝑎

𝑈!

𝑞
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Lattice QCD
• Correlation functions

𝑂 = 𝑍!"∫ 𝑑𝑈𝑑𝑞𝑑+𝑞 𝑂 𝑈, 𝑞, +𝑞 𝑒!#! !$% &'(" %

= 𝑍!"∫ 𝑑𝑈 𝑂 𝑈, 𝐷 +𝑚%
!"

𝑒!#! det 𝐷 +𝑚%

• Monte-Carlo integration
- Integration variable 𝑈 is huge 

𝑁'(×𝑁)×4×8 ∼ 10*
- Generate Markov chain of gauge configurations 𝑈
- Calculate average as expectation value

𝑂 ≈
1
𝑁
.
+

𝑂+ 𝑈, 𝐷 +𝑚,
"#

- Calculation of 𝑂+ 𝑈, 𝐷 +𝑚,
"#

: measurement
- 𝐷 +𝑚 "# is computationally expensive
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Lattice QCD Observables are Correlated

U(1)	 U(2)	 U(3)	 U(4)	 U(5)	 U(6)	 U(7)	 U(8)	 U(9)	

{Mπ
(7),	Fπ

(7),	C3pt:A
(7),	C3pt:V

(7),	…}		{Mπ
(1),	Fπ

(1),	C3pt:A
(1),	C3pt:V

(1),	…}		

Markov	Chain		
Monte	Carlo	Trajectory	
of	Gibbs	Samples	

OX ≈
1
N

OX
(n)

n=1

N

∑
ExpectaQon	value	
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Correlation Map of Nucleon Observables

• Correlation between proton(uud)
2-pt correlation function and that 
calculated in presence of CEDM 
interaction

𝐶!"# ∼ 𝑁 𝜏 𝑁$(0) 𝐶!"#%&'( ∼ 𝑁 𝜏 𝑁$ 0 %&'(

• QCD:              𝐷0123
QCD+CEDM: 𝐷0123 +

4
5
𝜀𝜎67𝛾8𝐺67

QCD QCD+CEDM
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Correlation Map of Nucleon Observables

• Correlation between proton(uud)
3-pt and 2-pt correlation functions

𝐶!"# ∼ 𝑁 𝜏 𝑁$(0) 𝐶)"#
*,,,-,. ∼ 𝑁 𝜏 𝑂 𝑡 𝑁$(0)

• Using these correlations, 
𝐶;<= can be estimated from 𝐶5<= on 
each configuration 

C3pt
S,u

C3pt
V,u

C3pt
A,u

C3pt
T,u

C3pt
S,d

C3pt
V,d

C3pt
A,d

C3pt
T,d

5 6 7 8 9 10 11 12 13
C2pt(τ 

/a)

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

| 
C

o
rr

e
la

ti
o
n
 c

o
e
ff
ic

ie
n
t 
|C3pt(τ=10a, t=5a)

!

"

8



Prediction of Lattice QCD Observables using ML

Measured and computationally cheap observables
→ Prediction of unmeasured and computationally expensive observables
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Prediction of Lattice QCD Observables using ML
• Assume M indep. measurements
• Common observables 𝑿4 on all M

Target observable 𝑂4 on first N

Machine

𝐹

Input: 𝑿! = (𝑜!", 𝑜!#, 𝑜!$, … )

Output:      𝑂!

1) Train machine F to yield 𝑂! from 𝑿!
on the Labeled Data

2) Predict 𝑂! of the Unlabeled data from 𝑿!
𝑭(𝑿!) = 𝑂!" ≈ 𝑂!

N M-N

(𝑿4 , 𝑂4) (𝑿4)

[Labeled Data] [Unlabeled Data]
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Prediction Bias
• 𝑭(𝑿4) = 𝑂4> ≈ 𝑂4
• Simple average

+𝑂 =
1
𝑀

;
4∈@ABCDEBEF

𝑂4>

is not correct due to prediction bias

• Prediction = TrueAnswer + Noise + Bias

• ML prediction may have bias
𝑂> ≠ 𝑂

Bias = 𝑂> − 𝑂

Hi
gh

 B
ia

s
Lo

w
 B

ia
s

Low Variance High Variance
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Bias Correction and Error Quantification

• Split labeled data N = Nt + Nb
• Average of predictions on test data with bias correction

3𝑂-. =
1
𝑀

.
+∈012345256

𝑂+7 +
1
𝑁8

.
+∈-.

𝑂+ − 𝑂+7

• Expectation value, +𝑂GH = 𝑂> + 𝑂 − 𝑂> = 𝑂
• BC term converts systematic error of prediction to statistical uncertainty

Nt M

(𝑿4 , 𝑂4) (𝑿4)

[Training Data]
Nb

[Bias Correction (BC) Data]

(𝑿4 , 𝑂4)

[Unlabeled Data]
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Incorporating Labeled Data
• Include directly measured values 𝑂+ from labeled data

$𝑂/%
012 = 𝑤3×

1
𝑁

M
4∈6789:9;

𝑂4 + 𝑤!×
1
𝑀

M
4∈<=:789:9;

𝑂4> +
1
𝑁?

M
4∈/%

𝑂4 − 𝑂4>

• 𝑤#, 𝑤9: weights determined based on the (co)variance of two terms
• If you need more than just a simple average in data analysis

- two different data, 𝑂+ on labeled and 𝑂+7on unlabeled samples
- simultaneous fit on these two data sets with the same fit parameters
- 𝑂+ and 𝑂+7 have the same mean after BC but may have different variance

• Statistical errors can be estimated using Bootstrap resampling
• Binning and BC for each bin is another option for complicated data analysis

Bin-1    Bin-2    Bin-3   Bin-4   Bin-5   …
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Quality of Prediction
• Bias-corrected average

$𝑂/% =
1
𝑀

M
4∈<=:789:9;

𝑂4> +
1
𝑁?

M
4∈/%

𝑂4 − 𝑂4>

• Statistical error of the unbiased average

𝜎:;!"
9 ≈ #

<𝜎;#
9 + #

=$%
𝜎;";#
9

≈ >&
'

<
1 + <

=$%

>
&(&#
'

>&
' ≡ >𝑶

'

<
1 + <

=$%
𝑄9 ;         𝑄9 ≡

>
&(&#
'

>&
'

approximations (≈) for small correlation between the two terms and
a good prediction algorithm that gives 𝜎@! ≈ 𝜎@!

!

>*&!"
'

>*&
' ≈ 1 + <

=$%
𝑄9;

>*&!"
>*&

≈ 1 + <
9=$%

𝑄9

• Q-value shows the expected error-increase due to the ML prediction error
• In practice, BC data have less autocorrelation than full data, because of the many 

measurements per configuration, so 𝜎 :;!" gives smaller error than expected above

Q Error Increase

0.5 62.5%

0.3 22.5%

0.1 2.5%

for Nbc / M = 0.2
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Statistical Error Increase for Different Q-values

• The statistical error increase is 

proportional to 𝑄9 ≡
>
&(&#
'

>&
'

• For independent data, the error 
increase ratio due to bias correction 
is expected to be  1 + ?

9@+,
Q9

• Correlation between the data 
samples makes it 1 + 𝛼 ?

9@+,
Q9

with 0 < 𝛼 < 1
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Neutron EDM and CP Violation
•Measures separation between 

centers of (+) and (-) charges
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Effective CPV Lagrangian

LCPV
d≤6 = −

gs
2

32π 2 θG !G

−
i
2

dqq
q=u,d,s
∑ (σ ⋅F)γ5q

−
i
2

!dq gsq
q=u,d,s
∑ (σ ⋅G)γ5q

+ dw
gs
6
G !GG

+ Ci
(4q)Oi

(4q)

i
∑

dim=4  QCD θ-term

dim=5  Quark EDM (qEDM)

dim=5  Quark Chromo EDM (CEDM)

dim=6  Weinberg 3g operator 

dim=6  Four-quark operators
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Quark Chromo EDM (cEDM)
• Simulation in presence of CPV cEDM interaction

• Schwinger source method
Include cEDM term in valence quark propagators 
by modifying Dirac operator

• cEDM contribution to nEDM can be obtained
by calculating vector form-factor F3 with
propagators including cEDM & O#A = 𝑞𝛾$𝑞

S = SQCD + ScEDM

ScEDM = −
i
2

d 4x !dqgsq(σ ⋅G)γ5q∫

Dclov →Dclov + iεσ
µνγ5Gµν

u"

d"

d"

u"
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Prediction of 𝑪𝟐𝒑𝒕𝐂𝐏𝐕 from 𝑪𝟐𝒑𝒕

𝑃STUV 𝑃B-

𝑃C5DE23C

• Predict 𝐶5<= for cEDM and 𝛾8 insertions
from 𝐶5<= without CPV

• CPV interactions è phase in neutron mass
𝑖𝑝6𝛾6 +𝑚𝑒!54WX# 𝑢Y = 0

• At leading order, 𝛼 can be obtained from
𝐶5<=> ≡ Tr 𝛾8 𝑁𝑁Z
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Prediction of 𝑪𝟐𝒑𝒕𝐂𝐏𝐕 from 𝑪𝟐𝒑𝒕

Boosted
Decision Tree

Regression

Input:
𝑿4 = {Re, Im[𝐶5<=

#,> 0 ≤ 𝜏/𝑎 ≤ 16 ]}

Output:   Im 𝐶#%&
' ()*+,, .") 𝜏

• Training and Test performed for
- 𝑎 = 0.12 fm, 𝑀F = 305 MeV
- Measurements: 400 confs ⨉ 64 srcs

• # of training data:         70 confs
# of BC data:                  50 confs
# of unlabeled data:   280 confs
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Prediction of 𝑪𝟐𝒑𝒕𝐂𝐏𝐕 from 𝑪𝟐𝒑𝒕
• 𝜶 (𝐜𝐄𝐃𝐌)

DM:             0.0527(17)
Prediction: 0.0525(18)

• 𝜶𝟓 (𝜸𝟓)
DM:             -0.1463(14)
Prediction: -0.1460(17)

ØDM:              DM on 400 confs
ØPrediction:  DM on 120 confs

+ ML prediction on 280 confs
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ML Prediction

BY, Tanmoy Bhattacharya, Rajan Gupta, PRD 100, 014504 (2019)
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Other Applications
BY, Tanmoy Bhattacharya, Rajan Gupta, PRD 100, 014504 (2019)

Rui Zhang, Zhouyou Fan, Ruizi Li, Huey-Wen Lin, BY, PRD 101, 034516 (2020)

(a) Labeled Data (b) DM (c) Pred.[C2pt] (d) Pred.[C2pt,C3pt(12)]
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ML Regression Algorithm 
using D-Wave Quantum Annelaer
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ML Regression using D-Wave Quantum Annealer

• Most ML algorithms involve optimization problems; many of them 
rely on stochastic approaches, but expensive for large problems

• D-Wave quantum annealer can be used as a fast and accurate
optimizer for ML optimization problems
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D-Wave Quantum Annealer
• Hamiltonian

𝐻 = −
𝐴 𝑠
2

M
4

𝜎̀A
4

+
𝐵 𝑠
2

M
4

ℎ4𝜎̀B
4 +M

4CD

𝐽4,D𝜎̀B
4 𝜎B

(D)

• ℎ+, 𝐽+,N: biases and coupling strengths  that 
user can set to their problem parameters
• After annealing at < 15 mK, QPU returns low-

energy solution (spin up/down of quantum 
bits) of the Ising model Hamiltonian
• Large number of reads is required to obtain 

minimum energy solution for large problems, 
but each read takes 𝑂 10 𝜇𝑠
• ML typically needs only near-optimal solution

25
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Sparse Coding

• Unsupervised ML algorithm
• Find dictionary 𝚽 ∈ ℝ&×Y" and sparse representation 𝑎⃗ d ∈ ℝY" from 

which input data 𝑋⃗ d ∈ ℝ& can be reconstructed by  
𝑋⃗ 1 ≈ 𝚽𝑎⃗ 1 = 𝑎"

1 𝑣⃗" + 𝑎5
d 𝑣5 +⋯+ 𝑎"

d 𝑣"
• The representation is sparse because the 𝜆-term enforces a minimal set of 

dictionary elements for the reconstruction of a given input data
• Optimization in 𝑎⃗ d of 𝑙e-norm function is a highly non-convex problem

min
O

.
PQ#

R

min
S(/)

1
2
𝑋 P −𝚽𝑎⃗ P

9 + 𝜆 𝑎⃗ P
T
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Sparse Coding on D-Wave quantum annealer

• The sparse coding problem can be mapped onto D-Wave by

𝐻 ℎ,𝑸, 𝑎⃗ =,
!

𝑎!ℎ! +,
!"#

𝑄!#𝑎!𝑎#

ℎ = −𝚽$𝑋 + 𝜆 +
1
2 , 𝑸 =

1
2Φ

$Φ

• On D-Wave, 𝑎+ is restricted to binary: 𝑎⃗ P ∈ 0,1 =1

• D-Wave finds 𝑎⃗ P minimizing 𝐻

• Optimization for Φ is performed offline (on classical computers)

min
O

.
PQ#

R

min
S(/)

1
2
𝑋 P −𝚽𝑎⃗ P

9 + 𝜆 𝑎⃗ P
T
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Inpainting

• Inpainting: restorative conservation where damaged, deteriorating, or missing parts of 
an artwork are reconstructed as it was originally created
• Sparse coding works as an inpainting algorithm because the reconstruction
𝑋 P ≈ 𝚽𝑎⃗ P fills up the missing pixels based on the correlation pattern 𝚽 learned

Ground Truth Data with Missing Pixels Inpainted Results

Nvidia AI Playground - Inpainting

28



Sparse Coding Regression on D-Wave

• Goal: prediction of 𝑦 from 𝒙 = {𝑥#, 𝑥9, … , 𝑥U}
• Procedure:

1) Obtain 𝚽𝟎 ∈ ℝ'×I" of 𝒙 from unlabeled data
2) Extend 𝚽𝟎 to 𝚽 ∈ ℝ('J3)×I" and encode correlation 

between 𝒙 and 𝑦 in Φ using augmented vector {𝒙, 𝑦}
3) For unknown 𝑦, reconstruct new vector {𝒙, $𝑦} using Φ; 

reconstruction replaces $𝑦 with its prediction

• This approach is a semi-supervised learning as it 
utilizes unlabeled data to improve prediction

• D-Wave is used for optimization in 𝑎⃗ P
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on D-Wave 2000Q

Q = 0.178 + 0.40 ⋅ exp[-0.0264⋅Nq]
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Prediction of 𝑪𝟐𝒑𝒕𝐂𝐏𝐕 from 𝑪𝟐𝒑𝒕

• Currently, the performance is limited by the maximum number of qubits available 
on D-Wave, but the predictions applied on lattice QCD data look promising

Nga Nguyen, Garrett Kenyon, BY, Sci. Rep. 10, 10915 (2020)
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Lossy Data Compression Algorithm 
for Lattice QCD Data
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Lossy Data Compression for Lattice QCD

• Modern lattice QCD simulations produce
O(PetaBytes) of data that need to be stored for future analysis

• Exploiting correlation between the data components 
can reduce storage requirement → Machine learning

• Reconstruction error sufficiently smaller than the observables statistical 
fluctuation is good enough for most of the analysis → Lossy compression
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Lossy Data Compression Algorithm
• Goal: find 𝚽 ∈ ℝU×=1 and 𝑎⃗ P ∈ 0,1 =1 precisely reconstructing 

input vectors 𝑋 P ∈ ℝU such that 𝑋 P ≈ 𝚽𝑎⃗ P ≡ 𝑋′ P
Ø𝚽 is common for all 𝑘 = 1,2,3, … , 𝑁, so memory usage is small
ØEach vector 𝑎⃗ % can be stored in 𝑁& bits

ØStoring 𝑎⃗ %
%'(
)

, 𝚽 for 𝑋 %
%'(

)
: compression of 𝐷 floating-point numbers into 𝑁& bits

ØCorrelation between 𝑋!, encoded in 𝚽, allows precise reconstruction with 𝑁& ≪ 32𝐷

• Such solutions of 𝚽 and 𝑎⃗ P can be obtained by solving

min
K

M
LM3

I

min
N($)

𝑋⃗ L −𝚽𝑎⃗ L !

ØFinding binary solution of 𝒂 𝒌 is an NP-hard problem but can be solved using D-Wave
ØFinding 𝚽 is done on classical computers with stochastic optimizer
ØIterate 𝑎⃗ % - and 𝚽-optimizations until it reaches the minimum reconstruction error
ØNeed standardization of 𝑋 % beforehand if the data exhibits heteroskedasticity
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Bias Correction of Lossy Reconstruction
• Lossy reconstruction introduces error 𝑋 P ≠ 𝚽𝑎⃗ P ≡ 𝑋′ P

Simple average is a biased estimator 𝑓(𝑋) ≠ #
=
∑P 𝑓 𝑋′ P

• Unbiased estimator of 𝑓(𝑋) can be defined using small portion of original data

sO =
1
𝑁
M
LM3

I

𝑓 𝑋⃗′ L +
1
𝑁?O

M
LM3

I&'

𝑓 𝑋⃗ L − 𝑓 𝑋⃗′ L

• Quality of lossy-compression on statistical data

Q! ≡
1
𝐷
M
4M3

' 𝜎P(QP()
!

𝜎P(
!

ØSmaller Q+ indicates the better compression

ØIncrease of statistical error due to bias correction is proportional to  ,
+,)*

Q+

Øeg) With 10% of bias correction data (𝑁-./𝑁=0.1) and compression of Q+ = 0.01, 
original data is typically reconstructed within 5% statical error increase
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Comparison with other Algorithms

34

• Binary compression using D-Wave
• Find a set of vectors (Φ) and their binary coefficients (𝒂(L))  reconstructing 𝑿 L

min
K
M
L

min
𝒂($)

M
4

𝑋4
L − Φ𝒂 L

4

!

• Bottle-neck Autoencoder (AE)
• Fully connected NN with ReLU
• Encoder: (16, 128, 64, 32, Nz)
• Decoder: (Nz, 32, 64, 128, 16)

• Principal Component Analysis 
(PCA)
− Compression by saving the first Nz

coefficients of the principal components



Compression of Lattice QCD data
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• Compression of “4 timeslices ⨉ 4 src-sink separations” 
of vector and axial-vector nucleon 3pt correlators

• Compression performance of the new algorithm 
outperforms those based on principal component 
analysis (PCA) or neural-network autoencoder

• Results from D-Wave simulated annealing; real QPU gives 
worse performance due to noise in h and J parameters

• PCA and NN-Autoencoder with single-precision (32bits) codes
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BY, Nga Nguyen, Jason Chang, Chia Cheng Chang, Ermal Rrapaj, will appear on arXiv soon 35



Estimated Error Increase
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• 2#$%&'$()
2(&*+

= 1 + 𝛼 3
#3#$

Q# with 0 < 𝛼 < 1

• With 10% of bias correction data (N/Nbc = 10) and 
𝛼 = 0.5, expected error increase is 1 + 2.5Q!

• When Q! = 10"!, expected error increase is 2.5%
• When Q! = 10"#, expected error increase is 0.25%

• For good lossy compression algorithms, error 
increase due to bias correction is negligibly small
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• Outlier detection
• An input data with large reconstruction error can be marked anomalous
• Could find events of new physics or data corruption

• Cheaper operations in 𝒂-space (𝑋⃗ d ≈ 𝚽𝑎⃗ d )
• Operations on floating-point numbers 𝑋 $ can be replaced by those on 

single-bit coefficients 𝑎⃗ $ with much cheaper computational cost
• eg 1) sum of vectors

• eg 2) sum of 𝑙!-norm squares

More Use of Binary Compression Algorithm
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Summary

•Machine learning (ML) is employed to predict unmeasured 
observables from measured observables
(Expensive lattice QCD calculation → Cheap ML estimators)

• Bias correction is used to quantify the ML prediction error

• Developed a new regression algorithm utilizing quantum 
annealer and showed promising prediction ability

• Developed a new ML-based compression algorithm using 
quantum annealer for binary optimization
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