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N
Forward vs inverse problems

Forward problem (Statistical Physics): The goal is to provide a
macroscopic description of Nature by deriving observable quantities from
underlying laws.

- Ising model forward problem: Obtain observables such as

magnetisation, energy, correlations, given the Hamiltonian and its
parameters

Inverse problem: Starting point are observations (data), the goal is to infer
microscopic properties of the system

- Estimate Ising interactions directly from data



Interaction In science
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Interactions:
The Ising Model & RBM



Ising model

1 = S
pD(s) = Z(J. h) e~ Hun(s)

Hin=—Y Jisisi— Y hisi , Z(J,h)=>) e )
i, i s

MC simulation of the 2D Ising
model at various temperatures

f generate a sample
Ak D= {s!,s? ...}, Np ~ 10°

Onsager 1944
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Machine Learning: Restricted Boltzmann Machine

Restricted Boltzmann Machine

Eg(v, h) = — Z Z W,'jh,'\/j = Z C,'h,' == Z bJVJ
== =1 =i
L Efwi)
Prem(V, h|0) = & =e
ZRBM

p(v)

— Z (Qdata (V) log (qdata (V)) — Qdata (V) log (pQ(V)) )

Dk (qdata(V)HPH(")) = D Gaata(v) log (qdata(V)>

Max likelihood <= min KL divergence
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Contrastive Divergence

Olog L(6|v)
8W,’j

= p(hi = 1lv)v; — (p(h; = 1’V/)Vj>p(v,) -
—> Contrastive Divergence
Estimate p(h; = 1|v)v; — (p(h; = l\v’)vj>p(v,) , Vi, j as:

k
p(hi = 1v®@)y; — p(h; = 1u®))y (¥

m k : Gibbs sampling step, typically set k =1
m Initialised with a training example v(0)

m Each step t involves sampling h(t) ~ pgrew(hi = 1|v(D), 6), then
sampling v{t+1) ~ Prav (V] = 1|h(t) )
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RBM: 2D Ising, monitoring the training procedure

Loss vs number of epochs Reconstruction error vs number of epochs
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Cossu et. al., Physical Review B (2018)



2D Ising model observables

i JIE
<m>:L2<ZSI >7
=1

2
o) = = ((m?) — (m)?).
(E) = le <ZSf$j>a
(i )

(€)= 5 ((E2) - (E?).
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RBM: 2D Ising, monitoring the training procedure

Magnetisation vs number of epochs Energy vs number of epochs
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RBM: 2D Ising, monitoring the training procedure
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RBM Prediction: n-point interactions

® A non pair-wise treatment
® Higher order couplings

® Not accessible via standard statistical techniques

E(v) = - ijvj - Z (Z “fgi)Wij> Vj — %Z (Z 5§2)WikWij> VjvE + -
J 0

J ik i

——

Re-sum the entire series to obtain 2-point coupling!!




-
Derivation of n-point interactions in closed form

E(v) =1n Z g

h
_— ln Z e Zj bj Uj_zi c-l-hi—Z,i,j hiI/V,l.jUj
h

ZUEED ST DI SCLELE
J i

h;
= — Z bjvj — Z anq(h,i)e”“ : t = Zj Wijv; and q(h;) = ecihi
7 7 h;

Cumulant generating function:

(n) n
| e
Ki(t) =In)_q(hi)e™ =Y = iy = P K (1) =0
hz‘ .

n

A hioch_ hiac 1avw _varitance introdiicetion o machine learnino for nhveciricte hy Maeahta ot al Phvicri~rc RPornnrte (DO10)



-
Derivation of n-point interactions in closed form

(2)

S SUCRISLLED SELE Z”}lt?

0

e ZKEO) =2 (bj + anl) VVij) vj — % 2 (Z ’iz(:Q)WijIWin) Vjy Vg —

j jlsj? 1

n . -+
Vi =5 n € 7

e.g. 2-point interaction:

;53 (SR ()t ) o

n>1 O<l<:<n317'5.72 v

| (1 4 eoi+ Wi +Wiss ) (1 4 %)
Hj1j2 — 5 Zln cit W - it W.-
8 (1 4+ e“™Widn ) (1 + e%™Widz)

1

Closed form expression!

Cossu et. al., Physical Review B (2018)
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Derivation of n-point interactions in closed form

(2),2

iju ~ Y kO Z Wy _ Z’%Q!’f

0

- _ Zh:,go) — Z (bj + Z’{El)wij) v; — % Z (

j jlsj? L

Z .(2) :
K; ‘/Vijl Wijg VU4, —

v =wv; , neZ"

<o

e.g. 2-point interaction:

Z Z Zﬁgn) (Z) W’lelwn : Uj, Vs,

n>1 O<k:<n317£]2 /)

e.g. 3-point interaction: I

1 (1+ eCit Wi +Wij, +Wij, )(1 + eci-i-Wijl)(l + eci+Wij2)(1 4+ ec,-+Wij3) _
_Z (1 + eV Wi Y1 4 et Wiy ) (1 4 et Wi Wi )(1 4 e41) Closed form expression!

Cossu et. al., Physical Review B (2018)
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RBM Predictions: Couplings Jij

Ising Model RBM prediction

0.35

- 0.30

0.25

0.20

0.15

0.10



Couplings during training

epoch = 10

0.20

0.15

0.10

0.05

0.00




N
RBM Predictions: Couplings (normalised)
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Small number of training examples

T =22
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L essons Learnt

- Understand well the training criteria from RBMs: Log-likelihood, Loss,
free energy, reconstruction error +
moments generated by the machine
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- RBMs are successful at prediction (higher-order) interactions in a given
system of binary variables
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e
L essons Learnt

- Understand well the training criteria from RBMs: Log-likelihood, Loss,
free energy, reconstruction error +
moments generated by the machine

- RBMs are successful at prediction (higher-order) interactions in a given
system of binary variables

- Generally, need lots of training examples

AND

- Still need to deal with potentially very large numbers of variables (e.g.
Gene Networks)

- RBMs are not particularly convenient to train ... (e.g. including time on
hyper parameter tuning)
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Interaction In science
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From the Question to defining the target quantity of interest

Aim: Formulate the target quantity of interest:

not as a property of a parametric statistical model

The target quantity can often be identified without ever specifying the
functional or distributional form of the model: model-independent

Judea Pearl (2010), Mark van der Laan (2011)



From the Question to defining the target quantity of interest

Aim: Formulate the target quantity of interest:

not as a property of a parametric statistical model

The target quantity can often be identified without ever specifying the
functional or distributional form of the model: model-independent

Why is this important?

1) Be clear about what we are actually after.

2) Don’t waste computational, analytical and data resources on irrelevant
aspects of a problem

3) Focus on what is relevant: answering questions we actually care about!
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Example

Define: Express the target quantity of interest, interaction, as a function
that can be computed for any model, i.e. model-independent

Y (G3|G1, G2) = ap + a1G1 + axGa + 71G1Go
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Example

Define: Express the target quantity of interest, interaction, as a function
that can be computed for any model, i.e. model-independent

Y (G3|G1, Go) = ap + a1G1 + a2G2 +9G1Go

% (G3|G1,Ga) = ap + a1G1 + aaGy +vG1Ga + ' G3Go
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Example

Define: Express the target quantity of interest, interaction, as a function
that can be computed for any model, i.e. model-independent

Y (G3|G1, Go) = ap + a1G1 + a2G2 +9G1Go

% (G3|G1,Ga) = ap + a1G1 + aaGy +vG1Ga + ' G3Go

1
1+ ecota1GitazGa+vG1G2

o (G3|G1,G2) =




.
Example

Define: Express the target quantity of interest, interaction, as a function
that can be computed for any model, i.e. model-independent

Y (G3|G1, Go) = ap + a1G1 + a2G2 +9G1Go

% (G3|G1,Ga) = ap + a1G1 + aaGy +vG1Ga + ' G3Go

1
1+ ecota1GitazGa+vG1G2

1

> _ 2272
0 (G3‘G17 GZ) 1 _|_ 6a0+a1G1—|—a2G2

o (G3|G1,Ge) =




Model-independent formulation of interactions

Key: function that can be computed for any model. Function of the
distribution without needing to specity its parametric form.

Average Treatment Effect (ATE):
ATEqg(Y)=Ew [E(Y |G=1,W)—-E(Y | G=0,W)]

/ ™~ -

Outcome: Treatment:
-Cancer/not -mutation/not Confounder
-Health outcome -Drug O or 1

Beentjes & Khamseh, Physical Review E (2020)



Model-independent formulation of interactions

Key: function that can be computed for any model. Function of the
distribution without needing to specity its parametric form.

Average Treatment Effect (ATE):
ATEqg(Y)=Ew [E(Y |G=1,W)—-E(Y | G=0,W)]

/ Treatment: / 1

-mutation/not Confounder
-Drug O or 1

Outcome:
-Cancer/not
-Health outcome

Interactions between variables i and | leading to outcome Y:

I} =[E(Y | Gy = (1,1),G=0) —E(Y | G4; = (0,1),G
—[E(Y | Gi; = (1,0),G =0) —E(Y | G;; = (0,0),G

0
0

).
)]

Beentjes & Khamseh, Physical Review E (2020)
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Model-independent formulation of interactions

Key: function that can be computed for any model. Function of the
distribution without needing to specity its parametric form.

Average Treatment Effect (ATE):

ATE(Y)=E(Y |G=1)-E(Y | G =0)

Interactions between variables i and | leading to outcome Y:

t,J

12, AEY | Gy =

Spiniis up (1) or down (0)
Spin j up (1)

Beentjes & Khamseh, Physical Review E (2020)
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Model-independent formulation of interactions

Key: function that can be computed for any model. Function of the
distribution without needing to specity its parametric form.

Average Treatment Effect (ATE):

ATE(Y)=E(Y |G=1)-E(Y | G =0)

Interactions between variables i and | leading to outcome Y:

0)
0)].

I’icfj :[4:()/ G’ij — (171)7Q — O) — 4:(Y G’ij — (07 1)7
_ :«ﬂ(Y G'ij — (1,0),G - O) — 4:(Y Gij - (O’ O)’

G
G

N

Spiniis up (1) or down (0)
Spin j down (0)




Model-independent formulation of interactions

Key: function that can be computed for any model. Function of the
distribution without needing to specity its parametric form.

Average Treatment Effect (ATE):

ATE(Y)=E(Y |G=1)-E(Y | G =0)

Interactions between variables i and | leading to outcome Y:

I’icfj ::4:(Y Gij = (1,1),G =0) - EY Gij = (0,1)
_:4Z(Y Gi;; =(1,0),G=0)—-E(Y | G;; = (0,0)

0)
0)].

"Does variable i influence outcome differently, depending on the status of variable j?”

IZG:J — 8Gi8Gj . (Y‘Gh e GN)

G
G

Beentjes & Khamseh, Physical Review E (2020)
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Model-independent formulation of interactions

Key: function that can be computed for any model. Function of the
distribution without needing to specity its parametric form.

Average Treatment Effect (ATE):

ATE(Y)=E(Y |G=1)-E(Y | G =0)

Interactions between variables i and | leading to outcome Y:

I’icfj ::4:(Y Gij = (1,1),G =0) - EY Gij = (0,1)
_:43(Y Gi;; =(1,0),G=0)—-E(Y | G;; = (0,0)

).
)|

0
0

G
G

Generalised to higher-order interaction, e.g.,

“Does the interaction between variable | and variable j influence outcome

- = - ’)!!
differently, depending on the status of variable k* Beentjes & Khamseh, Physical Review E (2020)



Model-independent formulation of interactions

Key: function that can be computed for any model. Function of the
distribution without needing to specity its parametric form.

Average Treatment Effect (ATE):

ATE(Y)=E(Y |G=1)-E(Y | G =0)

All order interactions:

Y EY|Gr=el,G= o))

JCI: £(J)=k

Where €5 = (e, .-, ¢i,,,) is a tuple of elements taking values 0 or 1 (K)

Beentjes & Khamseh, Physical Review E (2020)
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Example: Linear regression

Recall: Our definition of interaction is non-parametric and model-independent

However, when applied to a particular parametric fit P6 , we obtain the
expression of n-point interaction in that parametric model (in terms of 6)

Y = 87y C¥1T1 Qf2T2 ’}/TlTQ

EY | i =1,Ta=1)=ap+a; +az+7
EY | T =1, =0)=ap + a1

EY | T: =0T, =1) = oy + a2

E(Y | T: =0,T5 = 0) = ag

ATETI(Y |T2=1):C¥1 —I—’Y, ATET2(Y |T1 :1)=C¥2 -l-’}’,
ATET1 (Y | Tz = 0) = 1 ATET2 (Y | T1 = O) = (9

a _TQa
1,2—7—12,1
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Numerical example: Linear regression

Y =ap+ o111 + ads + 313 + a12T1Ts + 131113 + apsTaT3 + yI1113T3 + €

Without loss of generality, set v = 20° =2 12,013,023 = 5.0,—2.5,0
a1, 02,03 — —2, 10,0 , &0 = —1.5

Generate data: €~ N(0,0?%), 0° =1, T} ~ Binom(p = 0.4)
T> ~ Binom(p = 0.7) , T5 ~ Binom(p = 0.5)

Obtain estimates using the TL additive formulation
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Numerical example: Linear regression

Two-point interactions vs sample size, noise = 1

Three-point interaction vs sample size, noise = 1
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.
Multiplicative formulation of interactions

Alternatively: Do not wish to specify an outcome, instead ask how spins
being up/down influence their joint probability? e.g. interactions amongst
spins in a network

(/

G; =1 0
Start with 1 spin: I" =1In (p( y 3

S
Q
||
allle
||

‘odds ratio’: What is the likelihood of spini being1vs 0

Beentjes & Khamseh, Physical Review E (2020)



.
Multiplicative formulation of interactions

Alternatively: Do not wish to specify an outcome, instead ask how spins
being up/down influence their joint probability? e.g. interactions amongst
spins in a network

G,=1|G=0
Start with 1 spin: I =1n @EG% _— é - O;)
‘odds ratio’: What is the likelihood of spini being1vs 0
" p(Gi; = (0,1) | G =0) p(Gi; = (0,0) | G =0)
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Multiplicative formulation of interactions

Alternatively: Do not wish to specify an outcome, instead ask how spins
being up/down influence their joint probability? e.g. interactions amongst
spins in a network

0
! 0

G; =1
Start with 1 spin: I" =1In (p( y

S
Q
||
allle
||

‘odds ratio’: What is the likelihood of spini being1vs 0

" p(Gi; = (0,1) | G =0) p(Gi; = (0,0) | G =0)
‘odd ratio’ of spin i ‘odd ratio’ of spin i

with spin j being 1 with spin j being 0



.
Multiplicative formulation of interactions

Alternatively: Do not wish to specify an outcome, instead ask how spins
being up/down influence their joint probability? e.g. interactions amongst

spins in a network

Start with 1 spin:  I,”" = In

)

S
Q
||
-
allle
||

)

0
0

‘odds ratio’: What is the likelihood of spini being1vs 0

p(Gi; = (1,1)

)

[[": =1In
7 <P(Gz‘j = (0,1)

Q@

‘odd ratio’ of spin i
with spin j being 1

0
0)

o

p(Gi; = (1,0)

p(Gi; = (0,0)

QA

‘odd ratio’ of spin i
with spin j being 0

|
oo

‘generalised odds ratio’: Does the likelihood of spin i being 1 increase/decrease
depending on whether spin j is 1/0.



.
Multiplicative formulation of interactions

Alternatively: Do not wish to specify an outcome, instead ask how spins
being up/down influence their joint probability? e.g. interactions amongst
spins in a network

Start with 1 spin: I =1n @EG% — 0 é — O;)
‘odds ratio’: What is the likelihood of spini being1vs 0
Y \p(Gy = (0,1) |G =0) p(Gij = (0,0) | G=0)
If two spins are independent: P(Gz‘, Gj) — p(Gz‘)P(Gj)

There is no interaction: f[’; =0
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Multiplicative formulation of interactions

Alternatively: Do not wish to specify an outcome, instead ask how spins

being up/down influence their joint probability? e.g. interactions amongst
spins in a network

)

0
0

(/

G; =1
Start with 1 spin: I" =1In (p( y

Q1A

‘odds ratio’: What is the likelihood of spini being1vs 0

Higher-order interactions:

IZL ..... i = ﬁ ( H p(GI — egn) | G = ())(1)”’k)

k=0 \JCI: £(J)=k

Where €5 = (e, .-, €i,1,) is a tuple of elements taking values 0 or 1 (K)

Beentjes & Khamseh, Physical Review E (2020)
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Challenge: Large number of dependent variables

Estimating intricate interaction structure amongst many genes

Certain approximation no longer possible: p(Gi, Gj) 7 p(Gi)p(Gj)

]

Estimate conditional dependencies directly from data, using efficient
causal discovery algorithms (e.g. PC, Score-based MCMC)

Number of variables >> data, (and high temperatures)

™ _1n (p(Gz’j = (1, 1)|| G =0)p(Gy; = (0,0)
= p(Gij = (0,1) | G = 0)jp(Gi; = (1,0)

QIR

0
0

Nothing comes for free! These come with their own assumptions/bias
Keep in mind to be conservative.



.
Model-independent interaction estimator on 2D Ising

Back to Ising ...

L —Hinls)
Z(J, h)

Hin=—Y Jjsisi— Y hisi , Z(J,h)y=) e )

Ising 2-point interactions per spin pair, L=8, 100K samples expectation

pp(s) =
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l 0.20+ ? ¢ ¢ ¢

0.15 ' - - ' - - -

0 20 40 60 80 100 120

Spin



.
Interactions: Numerical Results using CI

Statistical physics system: Ising model in 2D, 64 variables

Ising 2-point interactions per spin pair, L=8, 100K samples expectation

5o it aub At bl H++

hu 4++m * h +l F *h g b &
AR

+++ 3 ' + +

| w——T=1.8 ground truth
T=2.2 ground truth

o
w
o

I
N
Ul

©
(-
(93

2-point interaction
o o
= N
o o

0.051 = T1=3.0 ground truth
0 20 40 60 80 100 120
Spin
o 1
—H
O — Z Jij8i8; p(s) = 7 )

Beentjes & Khamseh, Physical Review E (2020)
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Interactions: Numerical Results

Statistical physics system: Ising-type model, 4-point interactions

Interactions (spin average) vs coupling constant, conditioned on parents of spins

—— ground truth: 1.0
1.10- 4 TL1pt
% TL2pt
0 ¢ TL3pt
S 1.05- b TL4pt
-|: o
O
5 R ik }
g 1.00— vt ¢ £l o
E +
0.95-
0.10 0.12 0.14 0.16 0.18 020 022 024 0.26
Coupling constant
® 6 060 0 0O
® © © 0 0 o
. . .. ..... ’ . .
o O -0 O o
® © 0 0 0 o
®© 606 © 0 O

Beentjes & Khamseh, Physical Review E (2020)



Recall: Restricted Boltzmann Machine
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Recall: Restricted Boltzmann Machine

n m n m
G = 303 Wy — Y- 3 by
= =i i=1 j=1
1 Ey(w,h)
PRBM(Va h|9) = g =
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1 7/ boy T s
Marginal:  P(v|0) = Z0) H (eb57) H (1—|—e T wig a)

Asymptotic expansion, resummation, ... »

Analytical closed-form expression for n-point interactions, e.g. 2-point:
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Restricted Boltzmann Machine
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Restricted Boltzmann Machine

n m n m
Eg(v,h) — —Z W,'jh,'\/j —ZC;/‘); —ijvj
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1 Ey(w,h)
Prem(V, h|0) = &
Zrem
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No asymptotic expansion and resummation required ...
Applies to other energy based models
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Improving estimation via conditional independence

Conditioning on parent spins to isolate pairs from the rest of the system
(Markovian). Run time: Few seconds per temperature.

2-point interactions (spin average) vs temp: [; conditioned on nn

I . RBM, 100K
0.28 * Ising 1/2T theoretical
g | $ TL conditioned on nn, 100K
2 0.26- T
@) T
g 0.24 :
2 |
£ 0.22 | } .
e |
= T4
5 0.20 ! b l
N .18 Pt T l t
0.16 !
| 1.8 20 22 2.4 2.6 2.8 3.0

Temperature

100K samples



S
Improving estimation via conditional independence

Conditioning on parent spins to isolate pairs from the rest of the system
(Markovian). Run time: Few seconds per temperature.

2-point interactions (spin average) vs temp: /;; conditioned on nn

| ¢ RBM, 100K
0.28- v Ising 1/2T theoretical
g l ¥ TL conditioned on nn, 10K
= 0.26- ]
S ;
GL)O.24 ;
=
— 0.22- ¢ * ¢
e !
I P
N 0.18- Py ? l !
R
0.16- , , , , , , l
1.8 2.0 2.2 2.4 2.0 2.8 3.0
Temperature

10K samples



N
Gene Networks: Independence and interactions
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Causal Discovery in Gene Networks: An example
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Conclusions

We have provided a non-parametric solution to the inverse problem of
estimating n-point interactions for binary (and categorical) variables

Fully model-independent and unbiased
(no specific probability distribution is assumed)

Can extract interaction for any parametric model
(e.g. energy based neural networks)

Estimators consist of only computing expectation values over the data,
run time: few minutes on a local machine

Maximal use of data by targeting the quantity of interest directly
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