Critical Temperature from (Un)supervised Deep Learning Autoencoders arxiv: 1903.03506

Srijit Paul

Johannes Gutenberg University, Mainz

Machine Learning for High Energy Physics, on and off the lattice ECT* Trento

> < = > < = >

Outline

Motivation

- Deep Learning autoencoders
 Introduction
- Ising Model
 - Ising with Autoencoder
 - Results
- 4 Further extensions
 - 3D Ising
 - 4D Ising
 - Potts Model

5 Summary & Outlook

프 > < 프

- Ising Model
 - Ising with Autoencoder
 - Results

Further extensions

- Potts Model

Summary & Outlook

Physics goals

- Conventional MCMC algorithms \rightarrow Critical slowing down. \rightarrow Difficulty in pinpointing T_C .
- Observables with Finite Volume effects.

Algorithmic goals

- Understand domain of applicability of autoencoders.
- Limitations.

Physics goals

- Conventional MCMC algorithms \rightarrow Critical slowing down. \rightarrow Difficulty in pinpointing T_C .
- Observables with Finite Volume effects.

Algorithmic goals

- Understand domain of applicability of autoencoders.
- Limitations.

Deep Learning autoencoders Introduction

- 3 Ising Model
 - Ising with Autoencoder
 - Results

4 Further extensions

- 3D Ising
- 4D Ising
- Potts Model

Summary & Outlook

Deep Learning Autoencoders

Objective: Learning features in a given dataset hierarchically.

• Autoencoders (AE): Dimensionality reduction.

• Variational Autoencoders (VAE): Learn parameters of $X = P(\phi)$ distribution.

S. Wetzel's talk]

• VAE with convolutional layers.

[M. Cristoforetti's talk]

< 口 > < 同

Deep Learning Autoencoders

Objective: Learning features in a given dataset hierarchically.

• Autoencoders (AE): Dimensionality reduction.

• Variational Autoencoders (VAE): Learn parameters of $X=P(\phi)$ distribution.

S. Wetzel's talk]

• VAE with convolutional layers.

[M. Cristoforetti's talk]

Deep Learning Autoencoders

Objective: Learning features in a given dataset hierarchically.

• Autoencoders (AE): Dimensionality reduction.

• Variational Autoencoders (VAE): Learn parameters of $X=P(\phi)$ distribution.

[S. Wetzel's talk]

• VAE with convolutional layers.

[M. Cristoforetti's talk]

Paul (JGU, Mainz)

Autoencoders

Typical Neural Network

в

- Deep Learning autoencodersIntroduction
- Ising Model
 - Ising with Autoencoder
 - Results

4 Further extensions

- 3D Ising
- 4D Ising
- Potts Model

Summary & Outlook

臣

Ising Model

- 1D Not so interesting: No phase transition ٠ (never magnetised)
- 2D more interesting: There is a phase transition
- Simplest Description of Ferromagnetism ٠

Hamiltonian:

$$H = -J\sum_{\substack{i,j=nn(i)\\ \blacklozenge}}^N s_i s_j - \mu h \sum_{i=1}^N s_i$$
 Nearest neighbors

Observables:

Magnetization is the order parameter:

$$m = \frac{1}{N} \sum_{i=1}^{N} |s_i|$$

The 2D Ising model has a second order phase transition (magnetization is continuous)

(4) E (1) (1) (2) (4)

٠ Magnetic susceptibility

$$\chi = \frac{N}{T} \left(\langle m^2 \rangle - \langle m \rangle^2 \right)$$

Heat Capacity

$$C = \frac{\partial \langle E \rangle}{\partial T}$$

Paul (IGU, Mainz)

Autoencoders

Э Sep 2021 6/21

Sac

Ising Model

- 1D Not so interesting: No phase transition ٠ (never magnetised)
- 2D more interesting: There is a phase ٠ transition
- Simplest Description of Ferromagnetism ٠

Hamiltonian

$$H = -J\sum_{\substack{i,j=nn(i)}}^N s_i s_j - \mu h \sum_{i=1}^N s_i$$
 Nearest neighbors

Observables (near criticality $\sim T_c$):

Magnetization is the order parameter:

$$m = \frac{1}{N} \sum_{i=1}^{N} |s_i| \qquad m(T) \sim |T - T_c|^b$$

The 2D Ising model has a second order phase transition (magnetization is continuous)

• Magnetic susceptibility

$$\chi = \frac{N}{T} \left(\langle m^2 \rangle - \langle m \rangle^2 \right) \quad \chi(T) \sim |T - T_c|^{-\gamma}$$

< 口 > < 同 >

в

Heat Capacity

$$C = \frac{\partial \langle E \rangle}{\partial T} \qquad \chi(T) \sim |T - T_c|^{-\alpha}$$

Paul (IGU, Mainz)

Autoencoders

э Sep 2021 6/21

Sac

Ising with Autoencoder

Paul	(JGU,	Mainz)
------	-------	--------

A B > A B >

• Imagine 0 layers, 1 latent dimension. T = 1, 2.25, 4. Identity Activation function.

- Imagine 0 layers, 1 latent dimension. T = 1, 2.25, 4. Identity Activation function.
- Typical Latent dimension for T=1-2.

Same network can't be trained over a range of (ア) (@) (문) (문) (문) (문) (문) (문)

Paul (JGU, Mainz)

Autoencoders

- Imagine 0 layers, 1 latent dimension. T = 1, 2.25, 4. Identity Activation function.
- Typical Latent dimension for T=1-2.
- Same network can't be trained over a range of T
- Need Activation to switch on and off a particular neuron for configurations of different temperatures.

- Imagine 0 layers, 1 latent dimension. T = 1, 2.25, 4. Identity Activation function.
- Typical Latent dimension for T=1-2.
- Same network can't be trained over a range of T
- Need Activation to switch on and off a particular neuron for configurations of different temperatures.

Ising with Autoencoder

Paul (JGU, Mainz)

Autoencoders

Ising with Autoencoder

< 口 > < 同 >

Sac

Our setup

40,000 configs, 2/3 training, 1/3 validation.

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > <

Paul (JGU, Mainz)

Autoencoders

Sep 2021 11/21

Order parameter & Pseudo-order parameter

Paul (IGU, Mainz)

Autoencoders

3 Sep 2021 12/21

nan

イロト イポト イヨト イヨト

Susceptibility & Latent Susceptibility

Paul (JGU, Mainz)

Autoencoders

Extracting the T_C

Paul (JGU, Mainz)

Sep 2021 14/21

DQC

Extracting the T_C

- Noisy Binder Cumulant ratios, first indication that issues in Finite Size Scaling.
- Extracted T_C from $\chi_{\tilde{z}}$ peaks.

Paul (JGU, Mainz)

nac

Takebacks

$T_c(L) - T_c(L = \infty) \propto L^{-1/\nu}$				
Susceptibility	$T_c(L=\infty)$	ν	$\chi^2/~{ m dof}$	
Magnetic	2.265(8)	1.08(20)	0.15	
Latent	2.266(4)	1.60(14)	0.41	

- Critical temperature can be extracted to adequate accuracy.
- Observed \mathcal{Z}_2 symmetry broken.
- Configurations from latent dimension are from a different universaity class, but share the same $T_C(\infty)$.
- Latent dimension suffers from small finite volume effects, can help in constructing observables with small FV effects.

- Deep Learning autoencodersIntroduction
- 3 Ising Model
 - Ising with Autoencoder
 - Results

Further extensions

- 3D Ising
- 4D Ising
- Potts Model

臣

3D Ising Model

 $T_C = 4.511$, Second order.

[Talapov & Blöte 1996]

Paul (JGU, Mainz)

$4 \mathrm{D}$ Ising Model

 $T_C = 6.65.$

[Lundow & Markström 2012]

Potts Model

 $T_C = 1.005. \ q \le 4$ second order, q > 4 first order.

[Wu 1982]

- Deep Learning autoencodersIntroduction
- 3 Ising Model
 - Ising with Autoencoder
 - Results

4 Further extensions

- 3D Ising
- 4D Ising
- Potts Model

5 Summary & Outlook

E

Summary

- Autoencoders detect broken center symmetry of the underlying group.
- Significant effects of the choice of activation functions on the order of the phase transition.

Outlook

- Need to test on theories whose order parameters are not a moment of the field variable.
- Investigate energy dependent loss functions.
- Looking forward to gauge theories.

Thanks to all my collaborators: Andreas, Dina, Charis, A. Apseros, C. Havadjia, S. Shiakas and D. Vadacchino.