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WHY USE MACHINE LEARNING
FOR QUANTUM PHYSICS?
COMMON STRUCTURE




THE PROBLEM OF HIGH DIMENSIONALITY IN QUANTUM MECHANICS

» Generic specification of a quantum
state requires resources
exponentially large in the number of
degrees of freedom N

» Today's best supercomputers can
solve the wave equation exactly for
systems with a maximum of ~45
spins.

> Yet, technologically relevant
problems in chemistry, condensed
matter physics, and quantum
computing are much larger than 45.

» \We have to exploit structure of the
problem




THE PROBLEM OF HIGH DIMENSIONALITY IN QUANTUM MECHANICS

» Amount of information smaller than W) vector with oN
the maximum capacity — problems QMC

o Low entanglement
have structure and we exploit it

MPS and other TN
» Quantum Monte Carlo: stochastic o T
exploration of most important &
regions of the gigantic state space. ||

........

> Tensor Networks: quantum states ~ --c¢3c&5 | | | | | | |
realized in nature have little r \
entanglement H

» Both techniques have led to
profound implications to our
understanding of quantum many-
body physics

QMC

K Tensor networks J




THERE IS STILL HOPE FOR CLASSICAL ALGORITHMS

» Machine learning (ML):

ML

community deals with highly
structured problems arising in

natural datasets.

» |nsight: both quantum and ML

problems have a lot of shared

structure and symmetry.

» What are these commonalities

and are they important beyond

mere resemblance?

‘\If> vector with 2N

QMC Low entanglement
MPS and other TN
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DIMENSIONALITY OF QUANTUM SYSTEMS VS NEURAL MACHINE TRANSLATION

'T) vector with 2 » Language translation
models live in very high
dimensional spaces too
(example from “Attention is
all you need”)

» Today's best
supercomputers can solve
the wave equation exactly
for systems with a Vocab. SiZeMaX length of sentence
maximum of ~45 spins.

8000190 ~ 2.03 x 103

QN ~ 3.5 % 1013 Very large state space



2. COMMONALITY IN SOME THE MATHEMATICAL OBJECTS

» In unsupervised learning researchers are interested, e.g. in
understanding the underlying probability of a dataset. For
instance images of handwritten digits
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IN ML PEOPLE STUDY P(IMAGE), IN STAT MECH ?

» Boltzmann distribution
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ML and statistical (and quantum) physics are
interested in similar high dimensional
distributions and wavefunctions


https://www.thispersondoesnotexist.com/

CORRELATIONS AND SYMMETRIES WITH STRIKINGLY SIMILAR STRUCTURE

» (Critical correlations:

» Natural language and natural
images

» Music

» Flocks of animals

» All exhibit power-law decaying
correlations identical to a (classical
or quantum) at a critical point

» Translational, rotational, reflection,
and other symmetries— rich
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Statistical Thermodynamics of Natural Images
PRL 110,018701 (2013)
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cale-free correlations in starling
flocks. PNAS 107 (26) 11865-11870




WHAI ARE
AUTOREGRESSIVE
MODELS?
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PROBABILISTIC AUTOREGRESSIVE MODELS

» The term autoregressive originates from time-series models:
observations from the previous time-steps are used to predict
the value at the current time step.

» Consider a probability distribution P(6) = P(6y, 05, ...,0y),

P(0-170-27°°'70-N) :P(O-l)P(O-Qlo-l)P(O-ZS‘O-l)O-Q)"'P(O-N‘O-170-27"°70-N—1)

t |

» To specify P in a tabular form requires exponential resources

» To alleviate this exponential issue: parametrize the
conditionals

P(Uz'|(7<7;) — P@(O-i‘0-<z')



PROBABILISTIC AUTOREGRESSIVE MODELS AND WAVE FUNCTIONS

v/ Can be exactly sampled easily

v/ Computing the probability of a configuration
P(6) = P(6,0,,...,0y) is easy

v/ Can be defined in any spatial dimension

v/ Easy to encode mean-field theories (e.g. Gutzwiller mean-
field theory)

v/ We can impose symmetry and other inductive biases useful
for physical problems

v These properties remain true for autoregressive models of
the quantum state



A CANONICAL EXAMPLE:
THE RECURRENT NEURAL
NETWORK
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RECURRENT NEURAL NETWORKS (RNN)
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RNNs are universal function approximators. Schifer and Zimmermann (2006)



https://link.springer.com/chapter/10.1007/11840817_66

BUT THERE ARE MORE AND LIST IS LONG

» Transformers

» Neural autoregressive density estimators
» Autoregressive flows

» PixelRNN

» PixelCNN

» Wavenet



TODAY'S TALK:

» Probabilistic formulation of the quantum
state

» [earning quantum states and their
quantum dynamics

» Recurrent neural network wavefunctions

» Variational neural annealing



PROBABILISTIC
SIMULATION OF
QUANTUM MECHANICS
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FEYNMAN 1981:

Simulating Physics with Computers

Richard P. Feynman

5. CAN QUANTUM SYSTEMS BE PROBABILISTICALLY
SIMULATED BY A CLASSICAL COMPUTER?

Now the next question that I would like to bring up is, of course, the
interesting one, i.e., Can a quantum system be probabilistically simulated by
a classical (probabilistic, I'd assume) universal computer? In other words, a
computer which will give the same probabilities as the quantum system
does. If you take the computer to be the classical kind I've described so far,
(not the quantum kind described in the last section) and there’re no changes
in any laws, and there’s no hocus-pocus, the answer is certainly, No! This<
called the hidden-variable problem: it is impossible to represent the results
of quantum mechanics with a classical universal device. To learn a little bit
about it, I say let us try to put the quantum equations in a form as close as

Feynman concludes:

the great difficulty. The only difference between a probabilistic classical
world and the equations of the quantum world is that somehow or other it
appears as 1if the probabilities would have to go negative, and that we do not
know, as far as I know, how to simulate. Okay, that’s the fundamental
problem. I don’t know the answer to it, but I wanted to explain that if I try
my best to make the equations look as near as possible to what would be
imitable by a classical probabilistic computer, I get into trouble.

Motivated the field

of quantum computing

This is all still true today and
is fundamentally linked to
the notion of quantum speed-
up in quantum computing.

WE CAN'T SIMULATE
QUANTUM DYNAMICS EXACTLY
USING PROBABILITY, BUT CAN

WE DO IT APPROXIMATELY

WITH ML MODELS?




PROBABILISTIC
REPRESENTATION OF
QUANTUM MECHANICS



HOW IS A QUANTUM STATE TRADITIONALLY DESCRIBED?

» Traditionally, a quantum state is represented through a
a density matrix describes the statistical state of a system
in quantum mechanics. Everything we can possibly know
about a quantum system is encoded in the density matrix.

» For one qubit, all the states live in the Bloch sphere.

» But there are alternative representations. Are these useful?




HOW TO REPRESENT A
QUANTUM STATE WITH
ONLY PROBABILITY?



MEASUREMENTS: POSITIVE OPERATOR-VALUED MEASURE (POVM)

> Born Rule P (a) = Tr pM?® quantum theory <&)experiment
> POVM elements M = {M@ | a € {1,...,m}}

> Positive semidefinite operators » M@ =1

INFORMATIONALLY COMPLETE MEASUREMENTS <&

*The measurement statistics P(a) l
contains all of the information about @
—

the state.
® |

*Relation between p and distribution

P(a) can be inverted



GRAPHICAL NOTATION AND INVERSE
BORNRULE P (a) = TrpMm? = - %

INFORMATIONALLY COMPLETENESS —>THIS RELATION CAN BE INVERTED

a') M@ » Unitary evolution

» Schrodinger equation

=31
» Linblad equation

H - » Measurements
» Etc

izt = o LD (] ) 7




INSIGHT: PARAMETRIZE STATISTICS OF MEASUREMENTS AND INVERT

Instead of parameterizing p, create P ( a) _ TI, ,0 Ma

an autoregressive model of P(a)

Autoregressive models (RNNs and
transformer)




EXAMPLE: LEARN A
QUANTUM STATE FROM
MEASUREMENTS
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NEED TO GO BEYOND STANDARD QUANTUM STATE TOMOGRAPHY

*Prepare an unknown quantum state

* Apply a measurement that probes
enough information about the
quantum state

* Repeat and collect the statistics of the
measurement

e Infer a reconstruction of the state p* —
consistent with the measurement
outcomes

Carrasquilla, Torlai, Melko, Aolita. Nature Machine Intelligence 1, 200 (2019)



LEARNING GROUND STATES OF LOCAL HAMILTONIANS FROM DATA (RNN)
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Carrasquilla, Torlai, Melko, Aolita. Nature Machine Intelligence 1, 200 (2019)



EXPERIMENTAL DEMONSTRATION
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FIG. 5. Benchmarking AQT (a) to MLE tomography offered
by IBM’s Qiskit library (b) for a noisy 3-qubit QHZ state
data generated on the IBMQ_OURENSE quantum computer.

Each bar represents the absolute value of a density matrix
(DM) element.

GHZ state with 3 qubits
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Peter Cha, Paul Ginsparg, Felix Wu, Juan Carrasquilla, Peter L. McMahon, Eun-Ah Kim.

arXiv:2006.12469 (2020)



https://arxiv.org/search/?searchtype=author&query=Cha%2C+P
https://arxiv.org/search/?searchtype=author&query=Ginsparg%2C+P
https://arxiv.org/search/?searchtype=author&query=Wu%2C+F
https://arxiv.org/search/?searchtype=author&query=Carrasquilla%2C+J
https://arxiv.org/search/?searchtype=author&query=McMahon%2C+P+L
https://arxiv.org/search/?searchtype=author&query=Kim%2C+E
https://arxiv.org/abs/2006.12469

SIMULATION OF QUANTUM
CIRCUITS WITH
AUTOREGRESSIVE MODELS

/
@? ’
A




CIRCUITS IN THE PROBABILISTIC LANGUAGE

pu =UpU’

Unitary matrices U

BORN RULE
Evolution of probability is almost Py(a’) = Z P(a")Oqs ar
classical (e.g. similar to MCMC) a’

Probabilistic gates: Somewhat (or Owar =y TH(UMSUTMENT L,
quasi-) stochastic matrices a




APPLY ONE GATE

PU(a//) — a a’’

‘ Take an initial dlStI‘lbuthn‘

‘ Multiply it by a somewhat stochastic matrix ‘

Results in an evolved distribution Pu(a) ‘




APPLY ONE GATE

Introduce a model Fy(a)

Compute a divergence between model and evolved Fp; (a)
through sampling

Minimize the distance

Dk (Pul|Py) = Z Py (a ((z))

Dy, (Pul|Py) = H(Pu, Py) — H(FPy)

H(Py, Py) = Z Py (a)ln Py (a Z P (a') Opa In Py (a)




RESULTS: STATE PREPARATION FOR SIMPLE STATES

CNOT = cX =

c/ =

O O = O
O = O O
o O O

oo o —




TRAINING DYNAMICS OF THE BELL/GRAPH STATE PREPARATION
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Based on a small transformer

FClassical — Z \/P(G)Pmodel(a')
Juan Carrasquilla, Di Luo, Felipe Pérez, Ashley Milsted, Bryan a

K. Clark, Maksims Volkovs, and Leandro Aolita
Phys. Rev. A 104, 032610 F(p,0) =Tr [ Vpo \/ﬁ]



SCALING TO A LARGER NUMBER OF QUBITS

] —— Graph state (16 hidden)
\ Graph state (32 hidden)
—&— GHZ state (16 hidden)

10 20 30) A0) 50 60
gubits
arXiv:1912.11052



RECURRENT NEURAL
NETWORK
WAVEFUNCTIONS

Mohamed Hibat-Allah, Martin Ganahl, Lauren E. Hayward, Roger G.
Melko, and Juan Carrasquilla / o ® @ . .
)

Phys. Rev. Research 2, 023358 (2020) ‘ ' ‘h
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RECURRENT NEURAL NETWORK WAVEFUNCTIONS
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Symmetries: Spin inversion, mirror reflection, Sz. Sign: different Marshall signs for the J1-J2 model can be encoded

Mohamed Hibat-Allah, Martin Ganahl, Lauren E. Hayward, Roger G. Melko, and Juan Carrasquilla Phys. Rev. Research 2, 023358 (2020)



RECURRENT NEURAL NETWORK WAVEFUNCTIONS IN 2 DIMENSIUNS

........................................................................................................
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Very accurate and compact: orders of magnitude less parameters than DMRG,

pixel CNN. Unlike PEPS, the 2d RNN is tractable.

Mohamed Hibat-Allah, Martin Ganahl, Lauren E. Hayward, Roger G. Melko, and Juan Carrasquilla. Phys. Rev. Research 2, 023358 (2020)



VARIATIONAL NEURAL
ANNEALING

Mohamed Hibat-Allah, Estelle M. Inack, Roeland S e D ‘4"'.‘,“ S
Wiersema, Roger G. Melko, Juan Carrasquilla. ‘ a ‘ "_ \‘ “‘
Variational neural annealing. arXiv:2101.10154 . ,”.r | h



https://arxiv.org/abs/2101.10154

Combinatorial optimization

e Many important challenges in science and
technology can be cast as optimization problems.

e Areas include artificial intelligence, machine
learning, auction theory, software
engineering, applied mathematics and theoretical
computer science

e Traveling salesman problem, nurse scheduling
problem, Vehicle routing problem, factoring, chip
placement, etc


https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Auction_theory
https://en.wikipedia.org/wiki/Software_engineering
https://en.wikipedia.org/wiki/Software_engineering
https://en.wikipedia.org/wiki/Applied_mathematics
https://en.wikipedia.org/wiki/Theoretical_computer_science
https://en.wikipedia.org/wiki/Theoretical_computer_science

Combinatorial optimization
by simulated annealing

e Deep connection between materials science and optimization.
S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by
simulated annealing,” Science 220, 671-680 (1983).

* Annealing in materials and metallurgy: a crystalline solid is
heated, kept at high temperature for a while, and then slowly
cooled down to its lowest energy state— enables control of
the properties of the material.

e “We show how the Metropolis algorithm for approximate
numerical simulation of many-body system at a finite
temperature provides a natural tool for bringing techniques of
statistical mechanics to bear on optimization”.



Combinatorial optimization
by simulated annealing

e SA mirrors the analogous

annealing process in materials
g p T\\erma\ Q\U&c*quﬁi)nﬁt\

science and metallurgy c A

e The SA algorithm explores an f\
optimization problem's energy
landscape via a gradual decrease

in thermal fluctuations generated ( .
by the Metropolis-Hastings + S

State (G)

algorithm.

 Temperature is reduced slowly
according to some user-defined
schedule.



Combinatorial optimization
by quantum annealing

Thermal ﬂucjrucﬁion,s t\

- AN
¢ Quantum annealing: Solve an m
optimization problem using @WJN K J

quantum effects: ( tanaelin
H() = Htarget + f(nH, v —

e |tis possible to emulate
quantum annealing using
quantum Monte Carlo—
simulated quantum annealing

Imaginary Time

p—

T G2 05 . = O
Space direction



CAN WE SIMULATE THESE
OPTIMIZATION TECHNIQUES
VARIATIONALLY?

ibat-Allah, Estelle M. Inack, Roeland p
i : . Melko, Juan Carrasquilla.
|ati I I ling. V: 1.10154 f
Y,



https://arxiv.org/abs/2101.10154

Variational classical
annealing

e How to train the model Py(6) so that it mimics the annealing of
the Boltzmann distribution?

e Use variational principle and optimize model’s free energy
Fy(1) = (Hyarget)g — 1(1) S(Py) 2 F(1)

o F(7) is the true free energy of the system at temperature T(t).
o S(Py) is the entropy of the model Py(6)

e Asin SA, temperature is decreased from an initial value 7, to O
using a linear schedule function 7(¢) = Ti,(1 — 1), where ¢ € [0,1]

Mohamed Hibat-Allah, Estelle M. Inack, Roeland Wiersema, Roger G. Melko, Juan Carrasquilla. Variational neural annealing. arXiv:2101.10154.
Dian Wu, Lei Wang, Pan Zhang. Solving Statistical Mechanics Using Variational Autoregressive Networks. Phys. Rev. Lett. 122, 080602 (2019)


https://arxiv.org/abs/2101.10154

Variational quantum
annealing

We can extended this idea to simulated quantum annealing

Promote RNN to a quantum state: Py(6) — Yy(0)

Modify the cost function:
Fy(t) = (Htarget)o — T(1) S(Py) — Ey = (Y| Htarget |Wo) — T(){¥ | Hariver | P

ﬁdriver = Z o; typical choice in quantum annealing
i

Slowly decrease quantum tunnelling I'() = I'(1 — ), where

r e [0,1]



Variational neural annealing

a b
P Warm-up Annealing ° Warm-up Annealing
Step ; Step Step
E First-Excited [ Jd E(Xo,t = 0t)
i E(r.t=0) State Level ,'4
o T~
Grotir;ille?tate T 4 1:
0 1 ot
F Training End of Training PY End of
Step Annealing Step Annealing

Figure 2. Variational neural annealing protocols. (a) The variational classical annealing (VCA) algorithm steps. A warm-up
step brings the initialized variational state (green dot) close to the minimum of the free energy (cyan dot) at a given value of
the order parameter M. This step is followed by an annealing and a training step that brings the variational state back to the
new free energy minimum. Repeating the last two steps until 7'(t = 1) = 0 (red dots) produces approximate solutions to Hiarget
if the protocol is conducted slowly enough. This schematic illustration corresponds to annealing through a continuous phase
transition with an order parameter M. (b) Variational quantum annealing (VQA). VQA includes a warm-up step, followed by
an annealing and a training step, which brings the variational energy (green dot) closer to the new a ground state energy (cyan
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dot). We loop over the previous two steps until reaching the target ground state of Htarget (red dot) if annealing is performed

slowly enough.



Ising chains
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Figure 3. Variational neural annealing on a random Ising
chain. Here we represent the residual energy per site €res/N
vs the number of annealing steps Nannealing for both VQA and
VCA. The system sizes are N = 32,64, 128. We use random
positive couplings J; ;+1 € [0,1) (see text for more details).
The error bars represent the one s.d. statistical uncertainty
calculated over different disorder realizations [28].
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Ising chains

QA — [eres]SA ~ In"?ye,7 * with 7o, = 6.5

SA — [eras] ART ~ In~Cyr*withy = 0.13, ¢ = 3.4

QA imaginary time — 1/71>720+

VQA 1/7 and VCA 1/¢!°>~17

Numerics suggest a speedup with respect to quantum
annealing and simulated annealing, close to QA - IT

* Tommaso Zanca and Giuseppe E. Santoro, “Quantum annealing speedup over
simulated annealing on random ising chains,” Phys. Rev. B 93, 224431 (2016).

* T. Caneva, R. Fazio, and G. E. Santoro, Phys. Rev. B 76, 144427 (2007).



Edwards-Anderson Model

. target Z ;i0;0; In a 2-dimensional square lattice
)

. J;€[-1,1)

* We test no annealing (CQO), VCA, VQA and an entropy
. o~ A 2
regularized VQA: Fy(t) = (H(?))g — TS, seudol | Pol™)

where H(t) = Hyppo — T(0) ) 67
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Edwards-Anderson Model
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Benchmarking the two-dimensional Edwards-Anderson spin glass. (a) A comparison between VCA,

VQA, RVQA, and CQO on a 10 X 10 lattice by plotting the residual energy per site vs N, ,c,jino-

For

CQO, we report the residual energy per site vs the number of optimization steps Nsteps. (b)
Comparison between SA, SQA with P = 20 trotter slices, and VCA on a 40 X 40 lattice.



Variational annealing on fully
connected spin glasses

* Sherrington- Kirkpatrick (SK) model provides a
conceptual framework — role of disorder and frustration
in widely diverse systems ranging from materials to
combinatorial optimization and machine learning.

1 J..

l
O

Htarget — — 5 — — 0i0;
25N

o J;jis a symmetric matrix sampled from a gaussian

distribution with mean 0 and variance 1.

Mohamed Hibat-Allah, Estelle M. Inack, Roeland Wiersema, Roger G. Melko, Juan Carrasquilla. Variational
neural annealing. arXiv:2101.10154
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Variational annealing on fully
connected spin glasses

 Wishart planted ensemble (WPE): fully connected model

Firas Hamze, Jack Raymond, Chrisopher A. Pattison, atja iswas, and Helmut G. Katzgraber, “Wishart
planted ensemble: A tunably rugged pairwise ising model with a first-order phase transition,” Physical

Review E 101 (2020)
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Variational annealing on fully
connected spin glasses

e Wishart planted ensemble (WPE), which is a class of zero-field Ising models
with a first-order phase transition and tunable algorithmic hardness.

, Hiarget = — Z J;i6:0;
l#]

e J;; is a symmetric matrix. J% = J% — diag(J)

. 1 T
o J'=——W W, (Wishart)
N

o W isan N X |aN| random matrix satisfying W_trorro = 0 where
tierro = (+1, 4+ 1,..., 4+ 1) is the ferromagnetic state

Firas Hamze, Jack Raymond, Christopher A. Pattison, Katja Biswas, and Helmut G. Katzgraber, “Wishart
planted ensemble: A tunably rugged pairwise ising model with a first-order phase transition,” Physical

Review E 101 (2020)



Variational annealing on fully
connected spin glasses
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Figure 5. Benchmarking SA, SQA (P

Mohamed Hibat-Allah, Estelle M. Inack, Roeland Wiersema, Roger G. Melko, Juan Carrasquilla. Variational
neural annealing. arXiv:2101.10154
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= 100 trotter slices) and VCA on the Sherrington-Kirkpatrick (SK) model and the

Wishart planted ensemble (WPE). Panels (a),(b), and (c) display the residual energy per site as a function of Nannealing. (2)

The SK model with N = 100 spins.

(b) WPE with N = 32 spins and a = 0.5.

(c) WPE with N = 32 spins and o = 0.25.

Panels (d), (e) and (f) display the residual energy histogram for each of the different techniques and models in panels (a),(b),
and (c), respectively. The histograms use 25000 data points for each method. Note that we choose a minimum threshold of
10710 for €res /N, which is within our numerical accuracy.
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NEURAL AUTOREGRESSIVE MODELS FOR MANY-BODY PHYSICS

» We have explored quantum state reconstruction with RNNs (Nature
Machine Intelligence, vol. 1, 155-161 (2019)) and Transformers
(arXiv:2006.12469)

» Simulation of quantum circuits with transformers (arXiv:1912.11052)

» Recurrent neural network wavefunctions — extremely accurate ground
states, very compact representation in 1d and 2d (Phys. Rev. Research 2,
023358 (2020) )

» Variational neural annealing: produces very accurate solutions to challenging
spin glass problems beyond SA and SQA (arXiv:2101.10154)

» Neural Error Mitigation of Near-Term Quantum Simulations
(arXiv:2105.08086) (transformer)

» Simulation of open system dynamics (arXiv:2009.05580) (transformer)

» Transfer learning based on physical principles (arXiv:2003.02647) (RNN)


https://arxiv.org/abs/2006.12469
https://arxiv.org/abs/1912.11052
https://arxiv.org/abs/2101.10154
https://arxiv.org/abs/2105.08086
https://arxiv.org/abs/2003.02647

