

Machine learning phase transitions in a scalable manner on classical and quantum processors

ETH Zürich marinama@ethz.ch

in collaboration with:

Machine Learning for High Energy Physics, on and off the Lattice, ECT Trento

MARINA MARINKOVIC

ARTURO DE GIORGI

27 September 2021

Applications of ML in Lattice Gauge Theories

lattice QCD paradigm

Machine Learning for High Energy Physics, on and off the Lattice, ECT Trento

* Ever-increasing amounts of data, but also insufficiently efficient algorithms call for alternative approaches to conventional

Applications of ML in Lattice Gauge Theories

lattice QCD paradigm

Machine Learning for High Energy Physics, on and off the Lattice, ECT Trento

* Ever-increasing amounts of data, but also insufficiently efficient algorithms call for alternative approaches to conventional

Suport Vector Machine applications to phase separation

- [Carrasquilla&Melko, 1605.01735, Giannetti et al. 1812.06726, Woloshyn, 1905.08220, Liu et al. 1905.05125]
- dynamics —-> See talk by J. Carrasquila
- in 2d

* Some examples of machine learning application in condensed matter and particle physics: Support Vector Machines

* Other learning approaches used for successful classification e.g. Restricted Boltzmann Machines, Convolutional Neural Networks, deep learning autoencoders etc. [Cosu et al. 1810.11503, Hu et al. 1704.00080, Alexandrou et al., 1903.03506]

* Phase separation in systems with fermion sign problem using CNN [Broecker et al, arXiv: 1608.07848] and real time

* SVM used for phase classification and determination of critical parameters in the Ising and Potts models, also ϕ^4 theory

Suport Vector Machine applications to phase separation

- [Carrasquilla&Melko, 1605.01735, Giannetti et al. 1812.06726, Woloshyn, 1905.08220, Liu et al. 1905.05125]
- dynamics —-> See talk by J. Carrasquila
- in 2d

* Some examples of machine learning application in condensed matter and particle physics: Support Vector Machines

* Other learning approaches used for successful classification e.g. Restricted Boltzmann Machines, Convolutional Neural Networks, deep learning autoencoders etc. [Cosu et al. 1810.11503, Hu et al. 1704.00080, Alexandrou et al., 1903.03506]

* Phase separation in systems with fermion sign problem using CNN [Broecker et al, arXiv: 1608.07848] and real time

SVM used for phase classification and determination of critical parameters in the Ising and Potts models, also ϕ^4 theory

- Supervised SVM successful for phase classification in two dimensions
- * For higher-dim: large training sets for accurate results; serial classical codes take very long

Option I) Parallelize the code

Option 2) Speed-up the learning

- Supervised SVM successful for phase classification in two dimensions
- * For higher-dim: large training sets for accurate results; serial classical codes take very long

Option 2) Speed-up the learning

Machine Learning for High Energy Physics, on and off the Lattice, ECT Trento

- Supervised SVM successful for phase classification in two dimensions
- * For higher-dim: large training sets for accurate results; serial classical codes take very long

Option I) Parallelize the code

Option 2) Speed-up the learning \rightarrow quantum kernels

Machine Learning for High Energy Physics, on and off the Lattice, ECT Trento

a) Resort to publicly available parallel libraries
b) Physics problems: custom-made solutions

- Supervised SVM successful for phase classification in two dimensions
- * For higher-dim: large training sets for accurate results; serial classical codes take very long

Support Vector Machine Algorithm

vs-logistic-regression-94cc2975433f

- to one of two classes
- vectors

Machine Learning for High Energy Physics, on and off the Lattice, ECT Trento

* Linear SVM: training the construction of **d-1** dimensional hyperplane from **M** samples of **d** dimensional vectors, belonging

* Correctly separates the classes while maximizing the Euclidean distance between the hyperplane and nearest training

Support Vector Machine Algorithm

* Data set:
$$\left\{ (\overrightarrow{x_j}, y_i) : \overrightarrow{x_j} \in \mathbb{R}^d, y_j = \pm 1 \right\}_{j=1...M}$$

- minimize $\frac{1}{2} |\vec{w}|^2$ subject to constraints $y_j(\vec{w} \cdot \vec{x_j} + b) \ge 1$

Equivalent to a maximization problem:

$$L(\overrightarrow{\alpha}) = \sum_{j=1}^{M} y_j \alpha_j - \frac{1}{2} \sum_{j,k=1}^{M} \alpha_j \alpha_k(\overrightarrow{x_i} \cdot \overrightarrow{x_j})$$

Get hyperplane parameters:

$$\overrightarrow{w} = \sum_{j=1}^{M} \alpha_j \overrightarrow{x_j}, \quad b = y_j - \overrightarrow{w} \cdot \overrightarrow{x_j} \text{ for } j \text{ where } \alpha_j$$

Machine Learning for High Energy Physics, on and off the Lattice, ECT Trento

[Credit: https://commons.wikimedia.org/w/index.php? curid=73710028]

Support Vector Machine Algorithm

- Data sets that are not linearly separable:
 - tranformation of a non-linear problem into a linear one by moving to higher dim. space

 $\phi: \mathbb{R}^d \mapsto \mathbb{R}^D; x_i \mapsto \phi(x_i) \equiv \phi_i$ Feature Map:

Kernel: $k : \mathbb{R}^D \times \mathbb{R}^D \mapsto \mathbb{R}$; $K_{ij} \equiv k(x_i, x_j) \equiv \phi_i \cdot \phi_j$

- * Data enters in $L(\vec{\alpha})$ only through $(x_i \cdot x_j)$
 - knowledge of the kernel is sufficient:

$$L(\overrightarrow{\alpha}) = \sum_{j=1}^{M} y_j \alpha_j - \frac{1}{2} \sum_{j,k=1}^{M} \alpha_j K_{i,j} \alpha_k$$

Machine Learning for High Energy Physics, on and off the Lattice, ECT Trento

[Credit: MIT OpenCourseWare]

$$y(\overrightarrow{x}) = \operatorname{sign}\left(\sum_{j=1}^{M} \alpha_j \ k(\overrightarrow{x_j}, \overrightarrow{x}) + b\right)$$

- [Carrasquilla&Melko, 1605.01735, Giannetti et al. 1812.06726, Woloshyn, 1905.08220, Liu et al. 1905.05125]
- * Few test configurations needed for reliable prediction of the phase transition parameters

*
$$H = -J \sum_{\langle ij \rangle} \delta(\sigma_i, \sigma_j)$$

 $\sigma_i = 0, 1, \dots, q - 1$
* $q = 3$ Potts Model

Machine Learning for High Energy Physics, on and off the Lattice, ECT Trento

* Some examples of machine learning application in condensed matter and particle physics: Support Vector Machines

* Train machine learning algorithm (SVM and NNs) away from the critical region (training at T=0.5;T=5; testing $\Delta T = 0.1$)

[DeGiorgi, Marinkovic, in preparation]

SVM with Conjugate Gradient

- * Maximization function: $F(\alpha) = \alpha^T \frac{1}{2}\alpha^T H\alpha$ $H_{ij} = y_i (x_i \cdot x_j) y_j$ subject to constraints: $0 \leq oldsymbol{lpha} \leq oldsymbol{c}$ $\mathbf{y}^{\mathsf{T}} \boldsymbol{\alpha} = \mathbf{0}.$
- * Karush-Kuhn Tucker (KKT) conditions for optimal α
- * Sparse: $\alpha_i = 0$ for most training vectors
- Conjugate Gradient algorithm can be used to solve the optimization problem for α

Machine Learning for High Energy Physics, on and off the Lattice, ECT Trento

Initialize $\alpha = 0, r = 1;$ Initialize P' for some initial active set sampling from both classes; while $\beta < 0$ or $P\hat{r} \neq 0$ do Set $\hat{H}, \hat{P}, \hat{r}_0$ and $\hat{\alpha}$; Solve active set problem with CG; if Boundary Conditions Violated then Remove entry from active set; end $\boldsymbol{\alpha} = \boldsymbol{\alpha} + P'(P\hat{\boldsymbol{\alpha}});$ $\boldsymbol{r} = \boldsymbol{r} - H(P'(P\hat{\boldsymbol{\alpha}}));$ Calculate β ; Relax at most l active constraints with most negative β_i .; Update $H, P, \hat{\boldsymbol{y}};$ end

[Wen et al., 2001, <u>10.1090/conm/323/05708]</u>]

Parallel version of the SVM algorithm

- Multi-CPU Conjugate Gradient Implementation
- Data set divided across multiple nodes
- Hybrid approach: MPI + openMP
- One sided communications (RMA) beneficial
- Typical datasets with 200'000-400'000 entries

Machine Learning for High Energy Physics, on and off the Lattice, ECT Trento

 Profiling and optimization of H $H_{ii} = y_i (x_i \cdot x_j) y_j$ (minimal storage and maximal efficiency)

All Processes, Accumulated Exclusive Time per Function 3,000 s 1,500 s 0 s appendUpdate 3,495.507 s updateAlphaR ,155.508 s partialHupdate 06.804 119.939 s read_file 50.273 s readline 29.366 s updateGamma constraint_projection 26.519 s

> []. Cormican, MSc theses, TCD, 2019] []. Cormican, MKM, PASC21]

22.977 s calc_Hrho

Separable data:

Non-separable data:

Results on multiple CPUs

- Profiling with <u>Vampir and Score-P</u>)
- [J. Cormican, MSc theses, TCD, 2019; J. Cormican, MKM, PASC21]

Results on multiple CPUs

- * Benchmarks on Lonsdale cluster @TCPHC)
- node = 8 CPUs with 2.30GHz clock speed, no GPU *
- * [J. Cormican, MSc theses, TCD, 2019; J. Cormican, MKM, PASC21]

Machine Learning for High Energy Physics, on and off the Lattice, ECT Trento

Quantum Suport Vector Machines

- Dimension of the feature space (N), and the size of the training set (M)
- * Execution time for a given accuracy lengthy for big feature spaces and large statistics: $\Delta t \sim O(\text{poly}(N, M))$

Quantum Suport Vector Machines

- * Dimension of the feature space (N), and the size of the training set (M)
- * Execution time for a given accuracy lengthy for big feature spaces and large statistics: $\Delta t \sim O(\text{poly}(N, M))$

- Can quantum do it exponentially faster? In some cases yes.
- * Quantum algorithm: $\Delta t \sim O(\log M N)$ [Rebentrost et al., Phys. Rev. Lett. 113 (2014)]

Quantum Suport Vector Machines

- * Dimension of the feature space (N), and the size of the training set (M)
- * Execution time for a given accuracy lengthy for big feature spaces and large statistics: $\Delta t \sim O(\text{poly}(N, M))$

- Can quantum do it exponentially faster? In some cases yes.
- * Quantum algorithm: $\Delta t \sim O(\log M N)$ [Rebentrost et al., Phys. Rev. Lett. 113 (2014)]
- * Quantum-Enhanced SVM: the kernel is computed as quantum, but a classical SVM algorithm is followed
- [Schuld et al., Phys. Rev. A 101 (2020), Schuld et al. Phys. Rev. Lett. 122 (2019), Havlicek et al., Nature. vol. 567 (2019)] **

Quantum-Enhanced SVM approach

[Schuld et al., Phys. Rev. A 101 (2020), Schuld et al. Phys. Rev. Lett. 122 (2019), Havlicek et al., Nature. vol. 567 (2019)]

Machine Learning for High Energy Physics, on and off the Lattice, ECT Trento

Map Classical Data to Quantum States

Retrieve from States the Scalar Product / Kernel

Quantum-Enhanced SVM approach

 $K(\vec{x}, \vec{z}) = |\langle \Phi(\vec{x}) | \Phi(\vec{z}) \rangle|^2$ * Define the **kernel** function as:

* Define the **feature map** by the unitary circuit family:

$$egin{aligned} U_{\Phi(ec{x})} &= \expigg(i\sum_{S\subseteq [n]} \phi_S(ec{x}) \prod_{i\in S} P_i igg) & S\in \{inom{n}{k}\} & S\in$$

Machine Learning for High Energy Physics, on and off the Lattice, ECT Trento

 $P_i \in \{I, X, Y, Z\}$ combinations, $k = 1 \dots n$

 $\ket{\Phi(oldsymbol{x})} = \mathcal{U}_{\Phi(oldsymbol{x})} \ket{0}^{\otimes n}$ $\ell_{\Phi(ec{x})}^{+}\mathcal{U}_{\Phi(ec{z})}|\,0^n
angle|^2$

Quantum-Enhanced SVM in Qiskit

What can Qiskit do

Qiskit accelerates the development of quantum app providing the complete set of tools needed for intera withquantum systems and simulators.

[Credit: https://giskit.org/documentation]

Distributions

Machine Learning for High Energy Physics, on and off the Lattice, ECT Trento

Neural Network Classifier & Regressor

Quantum Kernel Machine Learning

Torch Connector and Hybrid QNNs

* **Qiskit:** a **python** open-source software development kit for working with quantum computers at the level of circuits and algorithms

- * QML packages available
- Execution on superconducting qubits via IBM Quantum Experience

Quantum-Enhanced SVM in Qiskit

- 1. *FirstOrderExpansion* : $S \in \{0, 1, \dots, n-1\}$, so $\Phi_i(\boldsymbol{x}) =$
- 2. SecondOrderExpansion: $S \in \{0, 1, ..., n-1, (0, 1), (0, ..., n-1)\}$ and $\Phi_i(\boldsymbol{x}) = x_i, \ \Phi(\boldsymbol{x})_{ij} = (\pi - x_i)(\pi - x_j)$
- 3. PauliZExpansion: $S \in \{\binom{n}{k} \text{ combinations }, k = 1 \dots n\}$ $\Phi_S(\boldsymbol{x}) = x_i$ if k=1, $\Phi_S(\boldsymbol{x}) = \prod_S (\pi - x_j), j \in S$ otherwise

Machine Learning for High Energy Physics, on and off the Lattice, ECT Trento

[Havlicek et al., Nature. vol. 567 (2019)]

[https://qiskit.org/]

$$= x_i$$

$$2FeatureMap for the case $k = 1, P_0 = Z$

$$2) \dots (n-2, n-1)$$

$$ZZFeatureMap for the case $k = 2, P_0 = Z$
and $P_{0,1} = ZZ$

$$n$$
and wise$$$$

Phase Classification with Quantum ML

- * 2D Ising Model ($T_c \approx 2.27$)
- * 3x3 lattice, 32 samples for training at T=0.5 and 5; N test samples for each T in between ($\Delta T = 0.5$)

N = 20

Results obtained with IBM/Q machine ibmqx2 with 5 qubits

Machine Learning for High Energy Physics, on and off the Lattice, ECT Trento

N = 80

Phase Classification with Quantum ML

- * 2D Ising Model ($T_c \approx 2.27$)
- * 3x3 lattice, 32 samples for training at T=0.5 and 5; N = 20/80 test samples for each T in between ($\Delta T = 0.5$)

	Classifier	Score	Training Time [s]	Scoring Ti
0	ZFeatureMap	0.6750	46.124769	22.6
1	ZZFeatureMap	0.7000	59.400390	46.0
2	PauliFeatureMap	0.7125	136.765284	159.8
3	Classical: Linear	0.7375	0.003784	0.0

- * Work in progress, results obtained with IBM/Q machine ibmqx2 with 5 qubits
- Slightly better score for quantum than for classical kernels
- Timing comparison not informative, in the quantum case includes waiting times on IBM/Q

Machine Learning for High Energy Physics, on and off the Lattice, ECT Trento

ime [s]

- 618253
- 003702
- 346363
- 004894

Conclusions & Outlook

- physical systems
- * Development towards d-dimensions in progress: among other developments faster classification needed
- * For ϕ^4 neural networks more efficient than SVM, extend SVM-CG approach to parallelize generative networks

Parts of this work are supported by a grant from the Swiss National Supercomputing Centre (CSCS) under project ID c21.

Machine Learning for High Energy Physics, on and off the Lattice, ECT Trento

* Explore efficient execution of ML algorithms (starting from SVM) and apply it to learning critical parameters of the

* SVM used for phase classification and determination of critical parameters in the Ising, Potts Model and ϕ^4 in 2d

* Speed up the parallel implementation further by writing/importing and optimizing a GPU-friendly parallel-CG

We acknowledge use of the IBM Q for this work. The views expressed are those of the authors and do not reflect the official policy or position of IBM or the IBM Q team.

