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❖ Ever-increasing amounts of data, but also insufficiently efficient algorithms call for alternative approaches to conventional 
lattice QCD paradigm

❖ Areas of lattice applications so far :

➡ Generation of gauge configurations

➡ Taming signal-to-noise ratio

➡ Reducing sign problem by contour deformation

➡ Phase separation, order parameters

➡ …

Applications of ML in Lattice Gauge Theories

[Credit: https://vas3k.com/blog/machine_learning/]
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For a recent overview, see plenary by 
Sebastien Racaniere @LATTICE 21

[Hacket et al. 2107.00734 , Albergo et al. 2106.05934 ]
[Del Debbio et al. 2105.12481]

[Yoon et al. 1807.05971]

[Aarts et al. 2007.00355, Boyda et al 2009.10971, Wetzel et al. 1705.05582]

[Nicoli et al. 2007.07115]

[Lawrence et al. 2101.05755, Detmold et al 2009.10971, 
Alexandru et al. 1709.01971, Mori et al. 1705.05605]
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See talk by  
G. Kanwar 

See talks by           
S. Wetzel, S. Paul N. 

Sale and S. Funai

See talk by   
W. Detmold 

https://vas3k.com/blog/machine_learning/
https://arxiv.org/abs/2107.00734
https://arxiv.org/abs/2106.05934
https://arxiv.org/abs/2007.00355
https://arxiv.org/abs/2009.10971
https://arxiv.org/abs/1705.05582
https://arxiv.org/abs/2007.07115
https://arxiv.org/abs/2101.05755
https://arxiv.org/abs/2009.10971
https://arxiv.org/abs/1709.01971
https://arxiv.org/abs/1705.05605
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Suport Vector Machine applications to phase separation
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❖ Some examples of machine learning application in condensed matter and particle physics: Support Vector Machines 
[Carrasquilla&Melko, 1605.01735, Giannetti et al. 1812.06726, Woloshyn, 1905.08220,  Liu et al. 1905.05125]

❖ Other learning approaches used for successful classification e.g. Restricted Boltzmann Machines, Convolutional Neural 
Networks, deep learning autoencoders etc. [Cosu et al. 1810.11503, Hu et al. 1704.00080,  Alexandrou et al., 1903.03506]

❖ Phase separation in systems with fermion sign problem using CNN [Broecker et al, arXiv:1608.07848] and real time 
dynamics —-> See talk by J. Carrasquila 

❖ SVM used for phase classification and determination of critical parameters in the Ising and Potts models, also  theory 
in 2d

ϕ4

https://arxiv.org/abs/1605.01735
https://arxiv.org/abs/1812.06726
https://arxiv.org/abs/1905.08220
https://arxiv.org/abs/1905.05125
https://arxiv.org/abs/1810.11503
https://arxiv.org/abs/1704.00080
https://arxiv.org/abs/1903.03506
https://arxiv.org/abs/1608.07848
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❖ For higher-dim: large training sets for accurate results; serial classical codes take very long

Option 1) Parallelize the code

Option 2) Speed-up the learning

6

❖ Supervised SVM successful for phase classification in two dimensions

SVM application to characterise phase transions
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❖ Supervised SVM successful for phase classification in two dimensions

SVM application to characterise phase transions

a) Resort to publicly available parallel libraries

b) Physics problems: custom-made solutions{
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Support Vector Machine Algorithm

❖ Linear SVM:  training the construction of d-1 dimensional hyperplane from M samples of d dimensional vectors, belonging 
to one of two classes 

❖ Correctly separates the classes while maximizing the Euclidean distance between the hyperplane and nearest training 
vectors 

[Source: https://towardsdatascience.com/support-vector-machine-
vs-logistic-regression-94cc2975433f]
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https://towardsdatascience.com/your-beginner-guide-to-basic-classification-models-logistic-regression-and-svm-b7eef864ec9a
https://towardsdatascience.com/your-beginner-guide-to-basic-classification-models-logistic-regression-and-svm-b7eef864ec9a
https://towardsdatascience.com/your-beginner-guide-to-basic-classification-models-logistic-regression-and-svm-b7eef864ec9a
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Support Vector Machine Algorithm

❖ Data set: 

➡ minimize   subject to constraints  

❖ Equivalent to a maximization problem: 

     

❖ Get hyperplane parameters: 

,      for  where 

{( ⃗xj , yi) : ⃗xj ∈ ℝd, yj = ± 1}j=1...M

1
2 | ⃗w |2 yj( ⃗w ⋅ ⃗xj + b) ≥ 1

L( ⃗α ) =
M

∑
j=1

yjαj − 1
2

M

∑
j,k=1

αjαk( ⃗xi ⋅ ⃗xj )

⃗w =
M

∑
j=1

αj ⃗xj b = yj − ⃗w ⋅ ⃗xj j αj ≠ 0

[Credit: https://commons.wikimedia.org/w/index.php?
curid=73710028]
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❖ Data sets that are not linearly separable:

➡ tranformation of a non-linear problem into a linear 
one by moving to higher dim. space

❖ Data enters in  only through 

➡ knowledge of the kernel is sufficient:

L( ⃗α ) (xi ⋅ xj)
[Credit: MIT OpenCourseWare]
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Support Vector Machine Algorithm

Feature Map:                   

Kernel:     

ϕ : ℝd ↦ ℝD; xi ↦ ϕ(xi) ≡ ϕi

k : ℝD × ℝD ↦ ℝ; Kij ≡ k(xi, xj) ≡ ϕi ⋅ ϕj

                         L( ⃗α ) =
M

∑
j=1

yjαj − 1
2

M

∑
j,k=1

αjKi,jαk ⟹ y( ⃗x ) = sign(
M

∑
j=1

αj k( ⃗xj , ⃗x ) + b)
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SVM application to characterise phase transions
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❖ Some examples of machine learning application in condensed matter and particle physics: Support Vector Machines 
[Carrasquilla&Melko, 1605.01735, Giannetti et al. 1812.06726, Woloshyn, 1905.08220,  Liu et al. 1905.05125] 

❖ Train machine learning algorithm (SVM and NNs) away from the critical region (training at T=0.5; T=5; testing )

❖ Few test configurations needed for reliable prediction of the phase transition parameters

ΔT = 0.1

❖  

❖     Potts Modelq = 3

[DeGiorgi, Marinkovic, in preparation]

https://arxiv.org/abs/1605.01735
https://arxiv.org/abs/1812.06726
https://arxiv.org/abs/1905.08220
https://arxiv.org/abs/1905.05125
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❖ Maximization function:

➡ subject to constraints: 

❖ Karush-Kuhn Tucker (KKT) conditions for optimal 

❖ Sparse:  for most training vectors 

❖ Conjugate Gradient algorithm can be used to solve the 
optimization problem for 

α

αi = 0

α

SVM with Conjugate Gradient

[Wen et al., 2001,  10.1090/conm/323/05708]
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Hij = yi (xi ⋅ xj) yj

Hij =

https://doi.org/10.1090/conm/323/05708
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❖ Multi-CPU Conjugate Gradient Implementation

❖ Data set divided across multiple nodes

❖ Hybrid approach: MPI + openMP

❖ One sided communications (RMA) beneficial

❖ Typical datasets with 200’000-400’000 entries

Parallel version of the SVM algorithm

❖ Profiling and optimization of H
(minimal storage and maximal efficiency)

Separable data:

Non-separable 
data:

[J. Cormican, MSc theses, TCD, 2019]

[J. Cormican, MKM, PASC21]

15

Hij = yi (xi ⋅ xj) yj



 Machine Learning for High Energy Physics, on and off the Lattice, ECT Trento                                                                                     

❖ Profiling with Vampir and Score-P)

❖ [J. Cormican, MSc theses, TCD, 2019; J. Cormican, MKM, PASC21]

no RMA with RMA

Results on multiple CPUs

16

https://vampir.eu/
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❖ Benchmarks on Lonsdale cluster @TCPHC)

❖ 1 node = 8 CPUs with 2.30GHz clock speed, no GPU

❖ [J. Cormican, MSc theses, TCD, 2019; J. Cormican, MKM, PASC21]

Results on multiple CPUs
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https://www.tchpc.tcd.ie/resources/clusters/lonsdale
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Quantum Suport Vector Machines
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❖ Dimension of the feature space (N), and the size of the training set (M)

❖ Execution time for a given accuracy lengthy for big feature spaces and large statistics:  Δt ∼ O(poly(N, M))
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Quantum Suport Vector Machines
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❖ Can quantum do it exponentially faster? In some cases yes.

❖ Quantum algorithm:     [Rebentrost et al., Phys. Rev. Lett. 113 (2014)]Δt ∼ O(log M N)

❖ Dimension of the feature space (N), and the size of the training set (M)

❖ Execution time for a given accuracy lengthy for big feature spaces and large statistics:  Δt ∼ O(poly(N, M))
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❖ Can quantum do it exponentially faster? In some cases yes.

❖ Quantum algorithm:     [Rebentrost et al., Phys. Rev. Lett. 113 (2014)]Δt ∼ O(log M N)

❖ Quantum-Enhanced SVM: the kernel is computed as quantum, but a classical SVM algorithm is followed

❖  [Schuld et al., Phys. Rev. A 101 (2020), Schuld et al. Phys. Rev. Lett. 122 (2019), Havlicek et al., Nature. vol. 567 (2019)]
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Quantum-Enhanced SVM approach
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[Schuld et al., Phys. Rev. A 101 (2020), Schuld et al. Phys. Rev. Lett. 122 (2019), Havlicek et al., Nature. vol. 567 (2019)]
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Quantum-Enhanced SVM approach
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[Havlicek et al., Nature. vol. 567 (2019)]

❖ Define the kernel function as:           

❖ Define the feature map by the unitary circuit family: 

K( ⃗x , ⃗z) = |⟨Φ( ⃗x ) |Φ( ⃗z)⟩ |2
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Quantum-Enhanced SVM in Qiskit
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❖ Qiskit: a python open-source 
software development kit for 
working with quantum 
computers at the level of 
circuits and algorithms

❖ QML packages available

❖ Execution on superconducting 
qubits via IBM Quantum 
Experience

[Credit: https://qiskit.org/documentation]

https://qiskit.org/documentation
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Quantum-Enhanced SVM in Qiskit
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[Havlicek et al., Nature. vol. 567 (2019)]

[https://qiskit.org/]

https://qiskit.org/
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Phase Classification with Quantum ML

❖ 2D Ising Model (
❖ 3x3 lattice, 32 samples for training at T=0.5 and 5;  test samples for each T in between ( )

Tc ≈ 2.27)
N ΔT = 0.5

25

N = 20 N = 80

❖ Results obtained with IBM/Q machine ibmqx2 with 5 qubits 
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❖ Work in progress, results obtained with IBM/Q machine ibmqx2 with 5 qubits 

❖ Slightly better score for quantum than for classical kernels

❖ Timing comparison not informative, in the quantum case includes waiting times on IBM/Q

Phase Classification with Quantum ML

26

❖ 2D Ising Model (
❖ 3x3 lattice, 32 samples for training at T=0.5 and 5;  test samples for each T in between ( )

Tc ≈ 2.27)
N = 20/80 ΔT = 0.5
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❖ Explore efficient execution of ML algorithms (starting from SVM) and apply it to learning critical parameters of the 
physical systems 

❖ SVM used for phase classification and determination of critical parameters in the Ising, Potts Model and  in 2d

❖ Development towards d-dimensions in progress: among other developments faster classification needed

❖ For  neural networks more efficient than SVM, extend SVM-CG approach to parallelize generative networks 

❖ Speed up the parallel implementation further by writing/importing and optimizing a GPU-friendly parallel-CG

ϕ4

ϕ4

Conclusions & Outlook
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