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Applications of ML in Lattice Gauge Theories

+ Bver-increasing amounts of data, but also insufficiently efficient aleorithms call for alternative approaches to conventional
attice QCD paradigm

CLASS|ICAL MACHINE LEARNING

Data is pre-categorized Data is not labeled
or numerical N any way

* Areas of lattice applications so far:
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Applications of ML in Lattice Gauge Theories

+ Bver-increasing amounts of data, but also insufficiently efficient aleorithms call for alternative approaches to conventional
attice QCD paradigm

* Areas of lattice applications so far:

See talk by
G. Kanwar

See talk by
W. Detmold

See talks by

S.Wetzel, S. Paul N.
Sale and S. Funai

-

-

Generation of gauge configurations
[Hacket et al. 2107.00734 ,Albergo et al. 2106.05934 ]

[Del Debbio et al. 2105.
Taming signal-to-n
[Yoon et al. 1807.05971]

12481]
olse ratio
[Nicoli et al. 2007.07115]

Reducing sign pro

[Lawrence et al. 2101.05755, Detmold et al 2009.10971,

Alexandru et al. 1709.01971, Mori et al. 1705.05605]

Phase separation, order parameters
[Aarts et al. 2007.00355, Boyda et al 2009.10971,Wetzel et al. 1705.05582]

" CLASSIFICATION™,

blem by contour deformation

CLASS|ICAL MACHINE LEARNING

Data is Pre-categoriy
or numerical
SUPERVISED

Predict
a category

Predict
a number

«Divide the socks by color» ¥

REGRESSION

«Divide the ties by length»

For a recent overview, see plenary by
Sebastien Racaniere @LATTICE 21
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Data is not labeled
n any way

UNSUPERVISED

Divide
by similarity

CLUSTERING

«Split up similar clothing
into Stacks»

|dentify Sequences

Find hidden
dependencies

ASSOC|ATION

«Find What clothes | often
wear together»

DIMENS|ON
REDUCTION

(generalization)
«Make the best outfits from the given clothes»

[Credit: https://vas3k.com/blog/machine learning/]
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Suport Vector Machine applications to phase separation

* Some examples of machine learning application in condensed matter and particle physics: Support Vector Machines
[Carrasquilla&Melko, 1605.01735, Giannetti et al. 1812.06726,VVoloshyn, 1905.08220, Liu et al. 1905.05125]

+ Other learning approaches used for successful classification e.g. Restricted Boltzmann Machines, Convolutional Neural
Networks, deep learning autoencoders etc. [Cosu et al. 1810.11503, Hu et al. 1704.00080, Alexandrou et al., 1903.03506]

* Phase separation in systems with fermion sign problem using CNN [Broecker et al, arXiv:1608.07848] and real time
dynamics —-> See talk by |. Carrasquila

+ SVM used for phase classification and determination of critical parameters in the Ising and Potts models, also gb4 theory
in 2d
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SVM application to characterise phase transions

« Supervised SVM successful for phase classification in two dimensions

* For higher-dim: large training sets for accurate results; serial classical codes take very long

Option |) Parallelize the code

Option 2) Speed-up the learning
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SVM application to characterise phase transions

« Supervised SVM successful for phase classification in two dimensions

* For higher-dim: large training sets for accurate results; serial classical codes take very long

a) Resort to publicly avallable parallel libraries
Option |) Parallelize the code

C.b) Physics problems: custom-made solutions

——— —

R

Option 2) Speed-up the learning —— quantum kernels
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SVM application to characterise phase transions

« Supervised SVM successful for phase classification in two dimensions

* For higher-dim: large training sets for accurate results; serial classical codes take very long

a) Resort to publicly avallable parallel libraries
Option |) Parallelize the code

b) Physics problems: custom-made solutions

—— ————— S ————a

7~ quantum kernels

Option 2) Speed-up the learning
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Support Vector Machine Algorithm

. Maximum.
hEN /margin
® N
N\

[Source: https://towardsdatascience.com/support-vector-machine-
vs-logistic-regression-94cc29 /543 31]

« Linear SVM: training the construction of d-l dimensional hyperplane from M samples of d dimensional vectors, belonging
to one of two classes

« Correctly separates the classes while maximizing the Euclidean distance between the hyperplane and nearest training
vectors

Machine Learning for High Energy Physics, on and off the Lattice, ECT Trento
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Support Vector Machine Algorithm

. — g d —_
» Data set: {(xj,y,-) - Aj SN V) = + l}jzlmM

- minimize 5\7\/’\2 subject to constraints y(w - X; +b) > 1

* Equivalent to a maximization problem:

M

- 1

M ACHES

* Get hyperplane parameters:

[Credit: https://commons.wikimedia.org/w/index.php!?
curid=73710028]

M
—_ —_— > > .
W—Zajxj, b—yj—w-x]- for j where a; # 0

J=1

Machine Learning for High Energy Physics, on and off the Lattice, ECT Trento 11



Support Vector Machine Algorithm

» Data sets that are not linearly separable:

= tranformation of a non-linear problem Into a linear (f)
one by moving to higher dim. space /_\x
Feature Map: ¢ : RY— RP X = Px;) = @, -----------------

Kernel: k:R°XR” = R; K;=k(x,x) = ;-

Input Space Feature Space

[Credit: MIT OpenCourseVWare]

+ Data enters in L(@') only through (x; - x;)

- knowledge of the kernel Is sufficient:

M

L 1 i .
L(a) = Z Vi — > oK; oy — y(x) = sign( Z a; k(x;, x°) + b>
j=1 1 j=1

Jok=

Machine Learning for High Energy Physics, on and off the Lattice, ECT Trento 12



SVM application to characterise phase transions

* Some examples of machine learning application in condensed matter and particle physics: Support Vector Machines

[Carrasquilla&Melko, 1605.01735, Giannetti et al. 1812.06726,Woloshyn, 1905.08220, Liu et al. 1905.05125]

* Train machine learning algorithm (SVM and NNs) away from the critical region (training at T=0.5;T=5; testing AT = 0.1)

* Few test configurations needed for reliable prediction of the phase transition parameters

¢ H=-J)Y 6(0i,0)
(i) |
O'i —_— 0,1,...,q — 1
:
* g =73 Potts Model "

g e p——

L=12,q=3,N=5

Classifier
- Neural Net: Logistic

RBF SVM
SVM: d=1
e SVM: d=2
e SVM: d=3
w— SVM: d=4
w—— SVM: d=5

050 0.75

1.00 125 150 175 200 2.25
Temoperature

Prob.

1.0

0.8 1

0.6 1

0.4 4

0.2 1

0.0
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L=12,q=3,N=10

Classifier
-~ Neural Net: Logistic
RBF SVM
SVM: d=1
e SVM: d=2
SVM: d=3
— SVM: d=4
e SVM: d=5
Label
— 0
—=e ]

050 075 1.00 125 150 175 2.00 2.25
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Prob.

1.0
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0.4 1

0.2 1

0.0 1

L=12,q=3,N= 20

Classifier

-~ Neural Net: Logistic
RBF SVM
SVM: d=1

— SVYM: d=2

e SVM: d=3

— SVM: d=4

— SVM: d=5
Label

— 0

e |

0.50 0.75 1.00 1.25 1.50 175 200 225
Temoperature

[DeGiorgi, Marinkovic, in preparation]
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SVM with Conjugate Gradient

» Maximization function:  F(a)=a’ — %aTHa

Hij = Vi (xi°xj) Y;

= subject to constraints: 0<a<c

y'a=0.

» Karush-Kuhn Tucker (KKT) conditions for optimal o

« Sparse: a; = () for most training vectors

+ Conjugate Gradient algorithm can be used to solve the
optimization problem for o

Machine Learning for High Energy Physics, on and off the Lattice, ECT Trento

Initialize o« = 0, r = 1;

Initialize P’ for some initial active set sampling from both classes:

while 3 < 0 or Pr # 0 do
Set H.P.# and é&:

if Boundary Conditions
end

a=aoa+ P (Pa):
r=r— H(P'(P&)):

Calculate 3:

Update H,P,y:

end

Solve active set problem with CG:

Violated then

Remove entry from active set;

Relax at most [ active constraints with most negative /3;.:

[Wen et al,, 2001, 10.1090/conm/323/05708]
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Parallel version of the SVM algorithm

» Multi-CPU Conjugate Gradient Implementation + Profiling and optimization of H H;=y; (x;-x) y;
(minimal storage and maximal efficiency)

* Data Set d |V| ded dCrross mu |t| p | €N Od €S All Processes, Accumulated Exclusive Time per Function
300s 200 s 100s Os

ST scpendUpdate

read_file
39.941s partialHupdate

38.305 s [ readline
. 10.513 s M updateAlphaR
: 0.86 s | count_entries
0.35 s | calculateBeta
0.222 s | findWorstAdd

* Hybrid approach: MPI + openMP Separable data:

+ One sided communications (RMA) beneficial

All Processes, Accumulated Exclusive Time per Function
3,090 s 1,5Q0 s O.s

[SASSSO7STI appendUpdate
updateAlphaR
» Typical datasets with 200'000-400'000 entries =°°'ﬁ°'“"°d°'e

119.939 s N read_file
Non-separable 50273 5.1

data: 29.366 s | updateGamma

readline

26.519 s || constraint_projection
22.977 s || calc_Hrho

[J. Cormican, MSc theses, TCD, 2019]
[J. Cormican, MKM, PASC21]

Machine Learning for High Energy Physics, on and off the Lattice, ECT Trento
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Results on multiple CPUs

All Processes, Accumulated Exclusive Time per Function with RMA
All Processes, Accumulated Exclusive Time per Function [10O RMA 30s 20s 10s Os

400’ 200 s FOSEEE I ($omp for @kernels.c:229
_ MP_Barrier T IS readine

I$omp for @subproblem.c:256 5.17 s [ MPI_Win_fence
I$omp for @subproblem.c:156 4. 995 s I read_file
[M4845'S '$omp for @subproblem.c:178 3.874 s [ 1$0mp for @fullproblem.c:85
48.593 s I$omp for @kernels.c:229 313 s ™ MPI_Barrier
14.611= updateAlphaR 1.978 s . I$omp for @kernels.c:333
5 ~ 1.75 s [ 1$omp for @kernels.c:189
1178 s . I$omp for @subproblem.c:256

Timeline

200 s

Master thread:0 O3 O : : ) | | )
Master thread:1 oo™ e ' . (] ' . C
40.283 s

« Profiling with Vampir and Score-P)

[J. Cormican, MSc theses, TCD, 2019; J. Cormican, MKM, PASC21]
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Results on multiple CPUs

Problem Timing for increasing Number of Nodes Parallel Speed Up of PCG
n 45 -
o —&— Parallel Implemntation 81 —e— Reported Speed Up
g a0 - ; ~&— |deal Speed Up
E 3 -
: Ny
S 30
s 3p -
u 5 5-
£ &4
o 20 1
g ;-
S 15 ;
™~
e 2 -
“ 10 -
! 1-
'= L ! ! ! | | Ll 1 1 L L L I 1 L 1
1 2 3 - 5 B 7 8 1 2 3 - 5 b 7 8
Nodes Used on Lonsdale Number of Nodes

* Benchmarks on Lonsdale cluster @TCPHC)

* | node = 8 CPUs with 2.30GHz clock speed, no GPU

[J. Cormican, MSc theses, TCD, 2019; J. Cormican, MKM, PASC21]
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Quantum Suport Vector Machines

* Dimension of the feature space (N), and the size of the training set (M)

+ Execution time for a given accuracy lengthy for big feature spaces and large statistics: At ~ O(poly(N, M))

Machine Learning for High Energy Physics, on and off the Lattice, ECT Trento
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Quantum Suport Vector Machines

* Dimension of the feature space (N), and the size of the training set (M)

+ Execution time for a given accuracy lengthy for big feature spaces and large statistics: At ~ O(poly(N, M))

« Can quantum do it exponentially faster? In some cases yes.

« Quantum algorithm: At ~ O(log M N)  [Rebentrost et al., Phys. Rev. Lett. |13 (2014)]

Machine Learning for High Energy Physics, on and off the Lattice, ECT Trento
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Quantum Suport Vector Machines

* Dimension of the feature space (N), and the size of the training set (M)

+ Execution time for a given accuracy lengthy for big feature spaces and large statistics: At ~ O(poly(N, M))

« Can quantum do it exponentially faster? In some cases yes.

« Quantum algorithm: At ~ O(log M N)  [Rebentrost et al., Phys. Rev. Lett. |13 (2014)]

* Quantum-Enhanced SVM: the kernel is computed as quantum, but a classical SVM algorithm s followed

[Schuld et al., Phys. Rev.A 101 (2020), Schuld et al. Phys. Rev. Lett. 122 (2019), Havlicek et al., Nature. vol. 567 (2019)]

Machine Learning for High Energy Physics, on and off the Lattice, ECT Trento
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Quantum-Enhanced SVM approach

[Schuld et al.,, Phys. Rev.A 101 (2020), Schuld et al. Phys. Rev. Lett. 122 (2019), Havlicek et al., Nature. vol. 567 (2019)]

: how?
Classical
e
X M

Quantum Map Classical Data
I ?) to Quantum States

Classical Retrieve from States the
x,-x,,K Scalar Product / Kernel

Machine Learning for High Energy Physics, on and off the Lattice, ECT Trento 21



Quantum-Enhanced SVM approach

¢ Define the kernel function as: K(x,?) = | (CD(7) | (D(Z» ‘2

« Define the feature map by the unitary circurt family:

|
TR RS

P, e{l,X,Y, Z}

U 2 - ] X i
0 1 LY R

Sc iy combinations ,k =1...n}

U (Z) = Upz) HX"Ugpz) H®™ B (x)) = Up(z) [0)°"

(@@ [ @(Z) 2 = 0" UpzUaz|0™)

(Z)

Machine Learning for High Energy Physics, on and off the Lattice, ECT Trento

[Havlicek et al., Nature. vol. 567 (2019)]

TS =] [
|
|
|

a
|
|
|
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Quantum-Enhanced SVM in Qiskit

O qiskit 0.28.0
see release notes
& Qiskit

Q Jantum Machine Learning Tutorials » Qiskit: a python open-source
Development —— software development kit for

working with guantum
Qiskit [quiss-kit] is an open-source SDK for working @ @ computers at the level of
with quantum computers at the level of pulses,

o T circurts and algorithms
circuits, and application modules.

Open-Source

Quantum Neural Networks Neural Network Classifier & Quantum Kernel Machine
‘ Regressor Learning

B (Cuvadairve Orstrdndan bumtaw
R
-
a I I
—

Get started

X/
L X4

QML packages avallable

X/
%®

Execution on superconducting
qubrts via IBM Quantum

==

Experience
. . gGANs for Loading Random Torch Connector and Hybrid
What can Qiskit do Distributions QNNs
Qiskit accelerates the development of quantum app
providing the complete set of tools needed for inter:
withquantum systems and simulators. [Credit: https://qiskit.org/documentation]
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Quantum-Enhanced SVM in Qiskit

1. FirstOrderExpansion :S € {0,1,...n — 1}, s0 ®;(x) = z;

2. SecondOrderExpansion: S € {0,1,...n—1,(0,1),(0,2)...(n—2,n—1)}
and (I)Z(CB) = T, @(m)m = (7T = fIIz)(ﬂ' — CC]')

3. PauliZExpansion: S € {(Z) combinations,k =1...n} and
bs(x) = z;if k=1, Pg(x) = | [¢(m — z,), 7 € Sotherwise

Machine Learning for High Energy Physics, on and off the Lattice, ECT Trento

[Havlicek et al., Nature. vol. 567 (2019)]
[https://qgiskit.org/]

ZFeatureMap for the case k = 1, PO = 7

77FeatureMap forthecase k = 2, Py = Z
and Py, =27

24
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Phase Classification with Quantum ML

« 2D Ising Model <Tc ~ 2.27)
* 3%3 lattice, 32 samples for training at T=0.5 and 5; N test samples for each T in between (AT = 0.5)

1.0
- /
0.8 -
0.8 -
Classifier e
0.6 - —— ZFeatureMap Classifier
! —— Z/FeatureMap 0.6 - —— ZFeatureMap
S —— PauliFeatureMap 4 — ZZFe.atureMap
a o —— PauliFeatureMap
Label £
0.4 A — 0 04 Label
— . — 0
——= .}
0.2 A
0.2 -
0.0 \
T . . : . : | 0.0
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 T - T - - . -
Temperature 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Temperature

» Results obtained with IBM/Q machine ibmagx2 with 5 qubits

Machine Learning for High Energy Physics, on and off the Lattice, ECT Trento



Phase Classification with Quantum ML

« 2D Ising Model (T, =~ 2.27)
+ 3x3 lattice, 32 samples for training at T=0.5 and 5; N = 20/80 test samples for each T in between (AT = 0.5)

Classifier Score Training Time [s] Scoring Time [s]

0 ZFeatureMap 0.6750 46.124769 22.618253
1 ZZFeatureMap 0.7000 59.400390 46.003702
2 PauliFeatureMap 0.7125 136.765284 159.846363
3 Classical: Linear 0.7375 0.003784 0.004894

* Work In progress, results obtained with IBM/Q machine ibmax2 with 5 qubits
= Slightly better score for quantum than for classical kernels

* Timing comparison not informative, in the quantum case includes wairting times on IBM/Q

Machine Learning for High Energy Physics, on and off the Lattice, ECT Trento 26



Conclusions & Outlook

*

Explore efficient execution of ML algorithms (starting from SVM) and apply it to learning critical parameters of the
physical systems

¢ SVM used for phase classification and determination of critical parameters in the Ising, Potts Model and ¢* in 2d
* Development towards d-dimensions in progress: among other developments faster classification needed

¢+ For ¢p* neural networks more efficient than SVM, extend SYM-CG approach to parallelize generative networks

« Speed up the parallel implementation further by writing/importing and optimizing a GPU-friendly parallel-CG
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