

Interpreting Artificial Neural Networks in the Context of Theoretical Physics

Canada

NRC·CNRC

DERIMETER

NSTITUTE

PIQUIL

Sebastian Johann Wetzel

Success of Artifical Neural Networks

Image Classification (Convolutional Network)

Generative Modelling / Anomaly Detection (Autoencoders)

Similarity Detection (Siamese Network)

(Supervised) Machine Learning with Neural Nets

"Machine learning is the subfield of computer science that gives computers the ability to learn without being explicitly programmed." - Wikipedia

Training Data

(Supervised) Machine Learning with Neural Nets

"Machine learning is the subfield of computer science that gives computers the ability to learn without being explicitly programmed." - Wikipedia

Training Data

 What does the Neural Network actually learn?
Consthis Kneudeders hale in Opiontifie

2) Can this Knowledge help in Scientific Discovery?

?

Cats

Dogs

Dog

Overview

- X Artificial Neural Networks
- x Interpretation Techniques
- x Interpretation of Convolutional Neural Networks
- x Interpretation of Autoencoders
- x Interpretation of Siamese Networks

Artificial Neural Networks

Feed forward neural network

Input: Data $X = (\vec{x}_1, ..., \vec{x}_n)$, Label $Y = (y_1, ..., y_n)$ Output: $Y_{pred} = F(X, w_{ij}^L, b_i^L)$

Goal: choose w_{ij}^L and b_i^L such that $Y_{pred} \approx Y$

Interpretation Techniques

Bottleneck Interpretation +Correlation Probing Neural Network

Looking at the weights

× No, works but only for the most simple problems.

Influence Functions

Phase Detection with Neural Networks: Interpreting the Black Box

Anna Dawid,^{1,2} Patrick Huembeli,² Michał Tomza,¹ Maciej Lewenstein,^{2,3} and Alexandre Dauphin²

- * Remove specific datapoints or features and measure the effect on the performance
- * Largest change in performance indicates the most influential data point or feature

Dark Matter

Discovering Symbolic Models from Deep Learning with Inductive Biases

Miles Cranmer ¹	Alvaro Sanchez-Gonzalez ²	Peter Battaglia ²	Rui Xu 1
Kyle Cranmer	³ David Spergel ^{4,1}	Shirley Ho	4,3,1,5

× Simulate Dark Matter

* Apply symbolic regression at the output of a graph neural network to recover force equation

Cranmer et al., Neurips 2020

Condensed Matter+Correlator Network

Correlator Convolutional Neural Networks: An Interpretable Architecture for Image-like Quantum Matter Data

Cole Miles,¹ Annabelle Bohrdt,^{2, 3, 4} Ruihan Wu,⁵ Christie Chiu,^{2, 6, 7} Muqing Xu,² Geoffrey Ji,² Markus Greiner,² Kilian Q. Weinberger,⁵ Eugene Demler,² and Eun-Ah Kim¹

* Explicit feature engineering layer that probes for correlations

* Dominant features correspond to dominant correlations in condensed matter system

Miles et al., Arxiv 2020

Physical Concepts

Discovering physical concepts with neural networks

Raban Iten,^{*} Tony Metger,^{*} Henrik Wilming, Lídia del Rio, and Renato Renner *ETH Zürich, Wolfgang-Pauli-Str.* 27, 8093 Zürich, Switzerland. (Dated: January 24, 2020)

× Interpretation of autoencoder latent representation

× Ask physical questions to be extractable from latent space

Iten et al., PRL 2020

Bottleneck Interpretation +Correlation Probing Neural Network

Bottleneck Interpretation

Interpretation is often difficult since information is spread over several neurons and layers

If the neuron contains the information of <u>one</u> single — quantity/obervable Q(S)

- Idea: identify or enforce bottlenecks in the network
- Perform regression on the output of the bottleneck neuron

The output of the neuron can be mapped via a bijective function to the observable

F(S) = f(Q(S))

Supervised Learning 2d Ising Model

- > Data: Monte Carlo samples
- Training at well known points in phase diagram
- Labels: Phase

- Testing in interval containing phase transition
- > Estimate within 1% of exact value $T_c = \frac{2}{\ln(1+\sqrt{2})}$

Artificial Neural Networks

Output: $Y_{pred} = F(X, w_{ij}^L, b_i^L)$

Goal: choose w_{ij}^L and b_i^L such that $Y_{pred} \approx Y$

Interpretation of Neural Network 2d Ising Model

- Correlation Probing Net interpolates between a general NN and a minimal optimal NN which has the same performance
- Interpretation by reducing the NN capacity in an ordered manner until one observes a performance drop
- > Inspired by intensive/extensive quantities (averaging layer probes for translational invariance of the quantity Q(S))

Interpretation of Neural Network 2d Ising Model

Decision functions $F(S) = \operatorname{sigmoid}(w Q(S) + b)$

$$\succ Q(S) = |1/N\sum_{i} s_i|$$

$$\Rightarrow Q(S) = \frac{1}{N} \sum_{\langle i,j \rangle_{nn}} s_i s_j$$

Deduction visually confirmed:

Note:

1x2 Network also has the Magnetization minimum which is easier to find!

Receptive Field Size	Train Loss	Validation Loss
28×28	6.1588e - 04	0.0232
1 imes 2	$1.2559\mathrm{e}\text{-}04$	$1.2105\mathrm{e} extsf{-}07$
1 imes 1	0.2015	0.1886
baseline	0.6931	0.6931

Magnetization

Expected Energy per site

SU(2) Lattice Gauge Theory

Quarks on heavy static lattice sites.

Gluons on the connections between lattice sites are described by Matrices

SU(2) Lattice Gauge Theory

Data: Monte Carlo samples

$$S_{\text{Wilson}}[U] = \beta_{\text{latt}} \sum_{x} \sum_{\mu < \nu} \text{Re tr} \left(1 - U_{\mu\nu}^x \right)$$

- Training at well known points in phase diagram
- Labels: Phase

Find phase transition close to lattice calculation

Interpretation of Neural Network SU(2) Gauge Theory

Polyakov Loop

(Variational) Autoencoder 2d Ising Model

Objective: Minimize Reconstruction error

$$MSE = \frac{1}{N} \sum_{k} \left\| x_k - F(x_k) \right\|^2$$

- > Data: Monte Carlo samples
- > Train everywhere in phase diagram
- Labels: None

(Variational) Autoencoder 2d Ising Model

Ferromagnetic Ising model on the square lattice

Wetzel, PRE 2017

- Latent parameter corresponds to magnetization
- Identification of phases: Latent representations are clustered
- Location of phases: Magnetization, latent parameter and reconstruction loss show a steep change at the phase transition.

Siamese Neural Networks

- Input : Pair of data points
- Label : same / different
- Network pair contains identical neural networks with shared weights

Machine Learning Multi Class Classification

"Machine learning is the subfield of computer science that gives computers the ability to learn without being explicitly programmed." - Wikipedia

Machine Learning Infinite Class Classification

Reformulation of the Problem:

Teach a maching learning algorithm if two pictures show the same class.

Siamese Neural Networks Particle in Gravitational Potential

Problem:

Given two observations of positions and velocities, do they belong to the same particle trajectory?

SNN Solution:

Prepare Dataset of positive data where the pair is connected by solving the equations of motion

$$((x, y, v_x, v_y), (x', y', v'_x, v'_y))$$

- Prepare Negative Dataset by permuting positive dataset
- > Train SNN to distinguish between positive and negative pairs

Siamese Neural Networks Particle in Gravitational Potential

Results:

)

Training accuracy : 98% Test accuracy : 97%

Interpretation by polynomial regression on latent representation:

$$f(\mathbf{x}) \approx -403.71xv_y - 4.85x - 0.58xy -0.17xv_x - 0.02v_y^2 - 0.01v_xv_y +0.00v_y^2 + 0.01v_y + 0.02v_x +0.45x^2 + 0.66y^2 + 0.74 +0.99yv_y + 1.24y + 402.44yv_x \approx -403(xv_y - yv_x) = L_z$$

400

200

-10

-400

-200

0

intermediate output

Network has learned the angular momentum to infer its prediction.

Siamese Neural Networks Lorentz Transformation of Electromagnetic Fields

Problem:

Given two field configurations, can they be transformed into each other by a Lorentz transformation?

SNN Solution:

 Prepare Dataset of positive data where the pair is connected by a Lorentz Transformation

 $((E_x, E_y, E_z, B_x, B_y, B_z), (E'_x, E'_y, E'_z, B'_x, B'_y, B'_z))$

- Prepare Negative Dataset by permuting pointive dataset
- > Train SNN to distinguish between positive and negative pairs

Siamese Neural Networks Lorentz Transformation of Electromagnetic Fields

Results:

Training accuracy : 95% Test accuracy : 94%

Interpretation by polynomial regression on latent representation:

$$f(\mathbf{x}) \approx -170.53E_2B_2 - 170.22E_1B_1 - 170.20E_3B_3$$
$$-4.13B_3^2 + \dots + 4.92E_2^2 + 53.43$$
$$\approx -170\underbrace{(E_1B_1 + E_2B_2 + E_3B_3)}_{=E \cdot B} + 53$$

Network has learned the determinant of the field strength tensor to infer its prediction.

Summary

- * Interpretation of Artificial Neural Networks is hard because information is distributed among many layers and neurons
- * Interpretation is possible by identifying bottlenecks and performing regression
- * Interpretation is constructive and can give insight into the underlying physics:

Neural Networks applied to phase recognition learn order parameters or energies

Siamese Networks for similarity detection learn invariants or conserved quantities

Twin Neural Network Regression

Solution of the Original Regression Problem:

Bias-Variance Tradeoff

TNN implicit ensemble

$$y_i^{pred} = \frac{1}{m} \sum_{j=1}^m F(x_i, x_j^{train}) + y_j^{train} = \frac{1}{m} \sum_{j=1}^m \frac{1}{2} F(x_i, x_j^{train}) - \frac{1}{2} F(x_j^{train}, x_i) + y_j^{train}$$

- Get huge ensemble of twice the training data set size
- Ensemble is relatively uncorrelated, since the predicted differences are different by construction

Uncertainty Signal

Do ensemble members agree?

$$y_i^{pred} = \frac{1}{m} \sum_{j=1}^m F(x_i, x_j^{train}) + y_j^{train} = \frac{1}{m} \sum_{j=1}^m \frac{1}{2} F(x_i, x_j^{train}) - \frac{1}{2} F(x_j^{train}, x_i) + y_j^{train}$$

- Uncorrelated predictions make different mistakes
- Measure ensemble standard deviation

(additional uncertainty signal based on loop consistencies)

Semi-Supervised Learning

- Train to enforce loop consistency during training
- Loops can be used as training data even if the data points within them are unlabelled

$$0 = F(x_i, x_j) + F(x_j, x_k) + F(x_k, x_i)$$

It can be viewed as two predictions provide a suggested label for the third.