
Quasi-real photoproduction 
in CLAS12-MesonEx



CLAS12-MesonEx
Meson Spectroscopy program with low-Q2 electroproduction (quasi-real photoproduction)

Advantages

• A
• B
• C

• Final state hadrons measured with the CLAS12 detector
• Scattered electron measured with the Forward Tagger detector



CLAS12 detector



Forward Tagger detector



Relevant kinematic variables:

Virtual photon polarization is defined event by event:

Q2 vs !"

Low Q2 electron scattering kinematics

#$ vs !"

Longitudinal polarization

Transverse linear polarization



Photoproduction amplitudes with low Q2 electron scattering

Resulting amplitude is the factorized into two terms:

• Emission of a quasi-real photon (m ~ 0) by the electron
• Photoproduction of the final state NX on the nucleon

Goal: in the low Q2 limit, develop an analysis framework where one can use photoproduction amplitudes, having the electron 
scattering part automatically included. 

In the one-photon-exchange approximation:

Summing over virtual photon helicity
(virtual photon pol. vectors completeness relation + current conservation):



Leptonic vertex:
quasi-real photon emission

The calculation is performed projecting the electron spin on the helicity base and 
working in the GJ reference frame (virtual photon moving along Z axis, nucleon 
scattering in the XY plane)

No spin-flip at high energy!

Leptonic vertex calculation

!, #, $: impinging electron
!%, #%, $′: scattered electron

V. Mathieu



AmpTools

The AmpTools package is a collection of libraries that are useful for performing unbinned maximum likelihood fits 
to data using a set of interfering amplitudes.

All the technical aspects are handled within the software in a (almost) transparent way to the user: this includes 
data readout, event handling, fit performing.

Thus the user can just focus on the physics.

The AmpTools software:

• Developed at Indiana University 
• Main developers: H. Matevosyan, R. Mitchell, and M. Shepherd

• Fully written in C++ 
• Freely available at https://github.com/mashephe/AmpTools/

• Requires ROOT to be installed (TLorentzVector class is used to handle 4-vectors)

• A very nice presentation about its features (with more details than this talk):
http://www.ge.infn.it/~athos12/ATHOS/Program_files/mitchell_athos12.pdf

https://github.com/mashephe/AmpTools/


AmpTools philosophy: provide a full set of C++ classes, with virtual methods (i.e. functions) that the user has to complete 
(override) according to the specific application.

• Data readout
• Amplitudes
• Visualization (plots, histograms)..

AmpTools

Example: the “CLAS12PhotonsDataReader” (class used to read data from MC developed for my PhD thesis)

class Clas12PhotonsDataReader : public UserDataReader<Clas12PhotonsDataReader >
Derive the class from the AmpTools Data Reader

Kinematics* 
Clas12PhotonsDataReader::getEvent(){

...
MCTree->GetEntry(n);
“Kinematics=Entry”; //a little bit more 

complicated
n++;
...

}

The (only) method that has to be completed
(overridden) by the user is the “getEvent”.

Returns a “Kinematics” object (a class
containing 4-vectors of particles).

(In this specific case, MC data was read from a ROOT file)

No a-priori choices are built in in the 
framework



AmpTools amplitude: an "amplitude", practically, is simply a function that takes as input the 4-vectors of the involved 
particles for a given reaction and returns a complex number. The "amplitude" can spread from very simple (a constant) to 
very complex.

The reaction intensity (per each event) is written as a incoherent sum of coherent sums

AmpTools reaction amplitudes

I: intensity of the reaction 

!: complete set of kinematic variables for the final state

i: index of the incoherent sum (typically, it runs on spin configurations)

j: index of the coherent sum

Ai,j: the set of complex amplitudes, user defined

Vi,j: a (complex) normalization factor for each amplitude

It is up to the user to write the amplitudes that he needs for his specific reaction.



AmpTools amplitude: in AmpTools, an Amplitude is an abstract class (i.e. a class with pure virtual methods that
can't be instantiated directly).

The user has to derive (in C++ sense!) his own amplitudes starting from the Amplitude base class. Practically, he has to “fill 
the gaps” in the Amplitude base class, defining the specific behavior of his amplitudes.

The user has to specify how the Amplitude is calculated, starting from the 4-vectors of the involved particles

The method that has to be “filled”:

AmpTools reaction amplitudes - implementation

virtual complex< GDouble > calcAmplitude (GDouble **pKin) const

4-vectors (2D-array of doubles)

Example from the Dalitz Tutorial, Breit-Wigner 
amplitude



AmpTools reaction amplitudes for MesonEx
We want to use AmpTools with photo-production amplitudes. In this way, we have a practical method to communicate both 
with other experiments (GlueX) and with theorists.

The quasi-real photoproduction process has to be included in the framework.

The amplitude

The intensity

Solution: embed the electron-scattering term and the sum over “i” 
in the framework, in a transparent way for the user

Use a new base class derived from the Amplitude class: 
CLAS12PhotonsAmplitude

complex <GDouble> CalcAmplitude(GDouble **pKin){

return ∑" (calcHelicityAmplitude($,pKin) *
ElectronScattering($,pKin) )

}



Example: single !"production
Goal: study single π"production in CLAS12, describing the reaction through the photoproduction amplitudes 
developed by JPAC (V. Mathieu)

Discussed here: how to generate Montecarlo events starting from the photoproduction amplitude and how 
to check the Beam Spin Asymmetry (BSA)

Not included:
• Project on the detector (GEMC)
• Reconstruct simulated data (CLAS12 reconstruction framework)
• Analyze reconstructed data



Example: single !"production – how to generate MC events
AmpTools for event generation: since no physics is embedded within the framework, AmpTools doesn’t have 
any specific method to generate MC events. This is done by combining two main ingredients:  

• PhaseSpace event generator
• Intensity calculator (from the amplitudes provided by the user)

Method: “hit-or-miss”

• Generate N phase-space events
• Compute the intensity of each of them, take the maximum intensity Imax

• For each event, generate a random number Irand between 0 and Imax

• If the intensity of the event is greater than Irand, keep it
• Otherwise, skip it

The advantage of this method is that it is agnostic regarding the physics. Disadvantage is that it is 
computational expensive.



Example: single !"production – simplified model

Goal: use a very simplified reaction model and extract the BSA. Compare with the analytical prediction.

Electron-scattering cross-section: Ω$: the angle between the hadronic and 
the leptonic plane.

Expansion via response 
functions, ignoring &':

Response functions 
expressed via 
hadronic amplitudes: 

Parity conservation 
relations:



Example: single !"production – simplified model results

Simplified model:

Expected 
result:

Fit with # $ = &" 1 + &) cos 2$
&) = −0.193
p1 = 0.65 * (-0.3) as expected from before!

Selected events with 
polarization ~ 0.65

= - 0.3



Example: single !"production – a real reaction amplitude
The reaction amplitude is written by creating a new class deriving from Clas12PhotonsAmplitude

//the order of the particles is supposed to be:
//0: e- beam
//1: e- scattered
//2: target
//3..n-2: all the other particles

V. Mathieu



Conclusions



BACKUP




