Analyticity at the service of spectroscopy

College of William and Mary / Jefferson Lab, December 18, 2019

CHARTERED 1693

Arkaitz Rodas

1 Introduction

1.1 Motivation1.2 First principles

2 Results

2.1 Strange spectroscopy 2.2 Hunting Hybrid(s) 2.3 The slippery $a_1(1260)$ 2.4 Hunting glueballs with BESIII

3 Conclusions

Table of Contents

1 Introduction 1.1 Motivation

2 Results

2.1 Strange spectroscopy
2.2 Hunting Hybrid(s)
2.3 The slippery *a*₁(1260)
2.4 Hunting glueballs with BESIII

3 Conclusions

Motivation

- In this talk: Amplitude analyses of meson-meson interactions
- Ordinary hadrons \rightarrow first part of the talk

• Not so ordinary \rightarrow later on

■ Hybrid → later on

• Glueball \rightarrow last part

1/54

Spectroscopy for strange states

- Precise determination using model independent techniques.
- We can study more than 6 resonances appearing in πK .
- Another 4 appearing in $\pi\pi \to K\bar{K}$ scattering.
- Used to determine the $f_0(500)/\sigma$, the $K_0^*(700)/\kappa$, etc...

Motivation

- The $K_0^*(700)/\kappa$ meson still needs confirmation according to the PDG.
- Most of its determinations → simple models, Breit-Wigners, etc...
- Relevant for the identification of the scalar nonet.

⁵/₅₄

1 Introduction

1.1 Motivation

Motivation Light spectrum

Analyticity at the service of spectroscopy

⁶/₅₄

Motivation

- Only one hybrid expected.
- $J^{PC} = 1^{-+} \rightarrow$ lightest hybrid candidate.

1.1 Motivation

PDG status

- Glueball expected at around 1.5-2 GeV.
- Three different candidates measured close by.
- Only two of them should exist if there was ni glueball. f₀(1370) [/] $I^{G}(J^{PC}) = 0^{+}(0^{+})$

Mass $m = 1200$ t Full width $\Gamma = 20$	o 1500 MeV 10 to 500 MeV			f ₀ (1500) [n]	$I^{G}(J^{PC}) = 0^{+}$	-(0 ^{+ +})	
fg(1370) DECAY MODES	Fraction (F _j /F)	ρ (MeV/c)		Mass $m = 1504$ Full width $\Gamma = 1$	\pm 6 MeV (S = 1.3) 09 \pm 7 MeV		
$\pi \pi$ 4π	seen	672 617		f0(1500) DECAY MODES	Fraction (Γ_j/Γ)	Scale factor	P (MeV/e
4 ⁷⁰	seen	617		ππ	(34.9±2.3) %	1.2	74
$\frac{2\pi^+ 2\pi^-}{\pi^+ \pi^- 2\pi^0}$	seen seen	612 615		2 ^π ¹ ^π 2 ^π	seen seen		73
$\rho \rho$ 2(==)	dominant	t		$4\pi_{4\pi^0}$	(49.5±3.3) %	1.2	69
$\pi(1300)\pi$	seen	t		$2\pi^+ 2\pi^-$	seen		68
a ₁ (1260)π nn	seen	35		2(ππ)5-wave ρρ	seen		
KK	seen	475		$\pi(1300)\pi$	seen		14
6π	not seen	† 508		ηη	(5.1±0.9) %	1.4	51
ωω	not seen	†		$\eta \eta'(958) = \frac{\pi \eta'(958)}{\kappa \kappa}$	(1.9±0.8)% (86±1.0)%	1.7	56
e ⁺ e ⁻	not seen	685		22	not seen	1.1	75
	f ₀ (17)	LO) ^[†]	I ^G (J ^{PC})	= 0 ⁺ (0 + +)	111/		

Ma	ass m	=	1723 + 6	MeV

 $I^{G}(J^{PC}) = 0^{+}(0^{+})^{+}$

(S = 1.6)Full width $\Gamma = 139 \pm 8 \text{ MeV}$ (S = 1.1)

Fraction (Γ_j/Γ)	p (MeV/c)
seen	706
seen	665
seen	851
seen	360
	Fraction (Γ _i /Γ) seen seen seen

Table of Contents

1 Introduction 1.1 Motivation 1.2 First principles

2 Results

2.1 Strange spectroscopy
2.2 Hunting Hybrid(s)
2.3 The slippery *a*₁(1260)
2.4 Hunting glueballs with BESIII

3 Conclusions

1.2 First principles

S-matrix principles: Unitarity

- UNITARITY both right and left branch cuts $SS^{\dagger} = I \Rightarrow T T^{\dagger} = iTT^{\dagger}$.
- Due to elastic unitarity

$$S^{II}(z) = \frac{1}{S^I(z)}.$$

Looking for a zero of the scattering matrix in the first sheet.

11/54

S-matrix principles: Analiticity and Crossing

■ CAUSALITY⇒ANALITICITY No poles in the first Riemann sheet⇒ Cauchy theorem.

$$T(s,t) = \frac{1}{\pi} \int_{s_{th}}^{\infty} ds' \frac{\operatorname{Im} T(s',t)}{s'-s} + LHC.$$

- Possible subtractions.
- Using Cauchy theorem one can obtain Dispersion Relations (DR).
- Together with crossing \rightarrow closed set of dispersion relations.

- ¹²/₅₄
- There is a plethora of techniques and models → all of them accompanied by their drawbacks:
- Breit-Wigners \rightarrow good for narrow, isolated resonances.
- K-matrix Good for overlapping resonances and inelasticities → could be poles in the FIRST Riemann sheet.
- Conformal mapping Good and stable in the ELASTIC region
- UChPT → SU(2) ChPT good (nice convergence and hierarchy) → not unitary. Unitarizing ChPT is not a systematic approach, as it also assumes and approximates several contgributions → SU(3) bad convergence, SU(4), SU(5) really?

Table of Contents

1.1 Motivation 1.2 First principles

2 Results

2.1 Strange spectroscopy
2.2 Hunting Hybrid(s)
2.3 The slippery a₁(1260)
2.4 Hunting glueballs with BESIII

3 Conclusions

Table of Contents

1 Introduction

1.1 Motivation 1.2 First principles

2 Results 2.1 Strange spectroscopy 2.2 Hunting Hybrid(s) 2.3 The slippery *a*₁(1260) 2.4 Hunting glueballs with BESIII

3 Conclusions

Meson Spectroscopy

- Resonances → poles in unphysical sheets
- Analytic continuation is usually model dependent→ precise and model independent determination using S-matrix principles.

- $^{16}/_{54}$
- High L or broad resonance parameters not stable when using simple models. Customary (q(s)/q(s_r))^L and B_L(q,q_r) ⇒ systematic effects.
- Rigorous dispersive techniques cannot get the poles at higher energies.
- Partial wave is described by a Padé approximant.

$$t_l(s) \simeq P_1^N(s, s_0) = \sum_{k=0}^{N-1} a_K(s-s_0)^k + \frac{a_N(s-s_0)^N}{1 - \frac{a_{N+1}}{a_N}(s-s_0)}$$

Analyticity at the service of spectroscopy

Meson Spectroscopy

Eur.Phys.J. C77 91

- We stop at a N (N+1 derivatives) where the systematic uncertainty is smaller than the statistical one (usually N = 4 is enough).
- s_0 fixed \rightarrow gives the minimum difference between N and N+1.
- Run a Montecarlo for every fit to calculate the parameters and errors of each resonance.
- Different fitting functions (all dr constrained) included as systematics.

2.1 Strange spectroscopy

Meson Spectroscopy

Eur.Phys.J. C77 91

Determination of $K_0^*(1430)$, $K_1^*(1410)$, $K_2^*(1430)$ and $K_3^*(1780)$ vs PDG averaged values.

Analyticity at the service of spectroscopy

Spectroscopy for the κ particle

- Too broad to be determined using simple models.
- Threshold behavior (ChPT), Adler Zero and LHC play a role in its parameters.
- Problem shared by Lattice.

Phys.Rev.Lett.123

Spectroscopy for the κ particle Eur.Phys.J.C77 91

• $K_0^*(700)$ Padé \rightarrow triggered the change of name from $K_0^*(800)$.

 $\sqrt{s_p} = (670 \pm 18) - i(295 \pm 28)MeV$ $\sqrt{s_p} = (682 \pm 29) - i(274 \pm 12)MeV(PDG)$ (1)

Spectroscopy for the κ particle To be submitted

- Several different models and methods used to determine its parameters.
- Clear convergence with the use of analytic techniques.
- Model dependent determinations not suitable for this scenario.
- Model independent: → Padé (before), HDR dispersion relations (next) $S^{II}(s) = \frac{1}{S^{I}(s)}$.

²²/₅₄

HDR

1-Eur.Phys.J.C 78 897, 2-Invited to Phys.Rep.

- Dispersion relations obeying (s − a)(u − a) = b. Most previous works → a = 0.
- This work: a used to maximize applicability region → next slide
- Relations between $\pi K, \pi \pi, K\bar{K}$ to determine scattering lengths.
- Sub-threshold expansion \rightarrow Universal band not so universal.
- First describe all partial waves → impose HDR (Steiner), FDR and Roy eqs. on them for a total of 18 dispersion relations.

Invited to Phys.Rep.

• HDR used for both πK and $\pi \pi o K ar{K}$ channels

HDR both πK and $\pi \pi \to K \overline{K}$

- $$\begin{split} f_0^{\pm}(s) &= a_0^{\pm} + \frac{1}{\pi} \sum_l \int_{s_{th}}^{\infty} ds' K_{0l}^{\pm}(s,s') Im f_l^{\pm}(s') \\ &+ \frac{1}{\pi} \sum_l \int_{4m_{\pi}^2}^{\infty} dt' G_{0(2l-2),(2l-1)}^{\pm}(s,t') Im g_{(2l-2),(2l-1)}^{0,1}(t') \\ g_0^0(t) &= \frac{\sqrt{3}}{2} m_+ a_0^+ + \frac{t}{\pi} \int_{4m_{\pi}^2}^{\infty} \frac{Im g_0^0(t')}{t'(t'-t)} dt' \\ &+ \frac{t}{\pi} \sum_l \int_{4m_{\pi}^2}^{\infty} \frac{dt'}{t'} G_{0,2l-2}^0(t,t') Im g_{2l-2}^0(t') + \sum_l \int_{m_{\pi}^2}^{\infty} ds' G_{0,l}^+(t,s') Im f_l^+(s'). \end{split}$$
- πK inputs dominate their own partial waves
- Both channels are iterated until the result converges
- Suitable for calculating the $K_0^*(700)/\kappa$ resonance pole.

HDR

1-Eur.Phys.J.C 78 897, 2-Invited to Phys.Rep.

- Tension between FDR and Lattice.
- There is an universal band in the a₀⁻, a₀⁺ plane for a₀⁺ ⇒ no unique solution [Ananthanarayan et al. (2001)].
- Scarcity of πK data \rightarrow SL poorly determined.
- $K_0^*(700)$ pole out of FDR/fixed-t range of validity.

Preliminary: $K^*(892)$ pole

To be submitted

- Data description still compatible.
- Model independent continuation to the complex plane.

Preliminary: CFD $K_0^*(700)/\kappa$ pole To be submitted

- Compatible with previous analysis
- All uncertainties have been taken into account

Preliminary results

Invited to Phys.Rep.

28/54

πK spectroscopy:Summary and projects

- We have extracted, in a model independent, and precise way the parameters of several strange resonances.
- For the first time the Padé method has been applied to the extraction of inelastic resonances with good convergence.
- The $K_0^*(700)/\kappa$ has been calculated using two different analytic methods.
- These results triggered the change of denomination in the PDG from $K_0^*(800)$ to $K_0^*(700)$.
- Our dispersive extraction is the only one fully accounting all uncertainties, while it is also the one describing the data.
- Future projects: $f_0(1370), f_0(1500)$ extraction.

Table of Contents

1 Introduction

1.1 Motivation 1.2 First principles

2 Results

2.1 Strange spectroscopy
2.2 Hunting Hybrid(s)
2.3 The slippery a₁(1260)
2.4 Hunting glueballs with BESIII

3 Conclusions

2 Results

Hunting the $\pi_1(1600)$ Phys.Rev.Lett. 122, continuation of Phys.Lett.B 779

464-472

- (1400) M	100	1354 + 25 MeV//S = 1.8)	(1700	MACC	1662+8 MeV
$\pi_1(1400)$ W/ $\pi_1(1400)$ W	IDTH	1334 ± 23 MeV (8 = 1.8) 330 ± 35 MeV	$\pi_1(1600)$ $\pi_1(1600)$) WIDTH	241 ± 40 MeV (S = 1.4)
ecay Mod	les		Decay N	lodes	
lode		Fraction (Γ_i / Γ)	Mode		Fraction (Γ_i / Γ)
1	ηπ ⁰	seen	Γ_1	πππ	seen
2	ηπ-	seen	Γ_2	$\rho^0 \pi^-$	seen
	n'π		Γ_3	$f_2(1270)\pi^-$	not seen
			Γ_4	b1(1235)π	seen
			Γ_5	$\eta'(958)\pi^{-}$	seen

PDG

Hunting the $\pi_1(1600)$

 \Rightarrow Ima(s) = $\rho(s)t^*(s)a(s)$.

• Amplitude built using $t(s) = \frac{N(s)}{D(s)}$ method $\Rightarrow a(s) = p^2 q \frac{n(s)}{D(s)}$.

- Numerators are smooth polynomials $n(s) = \sum_{i} a_{i} w^{j}(s)$, where $w(s) = \frac{s}{s+s_0}$.
- K-matrix approach with dispersive phase space.

$$D^{J}(s)_{ki} = (K^{J}(s)^{-1})_{ki} - \frac{s}{\pi} \int_{s_{k}}^{\infty} ds' \frac{p(s')N_{ki}^{J}(s')}{s'(s'-s-i\varepsilon)}$$

Hunting the $\pi_1(1600)$

2 Results

Phys.Rev.Lett. 122 042002

- We use an average of 6 parameters for each figure.
- $\chi^2 \approx 1.3$, no significant deviation for any partial wave.
- 1 T-matrix pole produces 2 different peaks for the P-wave → 300 MeV distance.

Phys.Rev.Lett. 122 042002

Hunting the $\pi_1(1600)$

- Most robust extraction of this hybrid candidate.
- Theoretical predictions and experiment reconciled.
- Statistical uncertainties \rightarrow 100k sample bootstrap.

Poles	Mass (MeV)	Width (MeV)
$a_2(1320)$	$1306.0 \pm 0.8 \pm 1.3$	$114.4 \pm 1.6 \pm 0.0$
$a_2'(1700)$	$1722 \pm 15 \pm 67$	$247\pm17\pm63$
$\bar{\pi_1}(1600)$	$1564 \pm 24 \pm 86$	$492\pm54\pm102$

 Systematics (diferent LHC, numerators, subtractions ...) included.

Table of Contents

1 Introduction

1.1 Motivation 1.2 First principles

2 Results

2.1 Strange spectroscopy
2.2 Hunting Hybrid(s)
2.3 The slippery a₁(1260)
2.4 Hunting glueballs with BESIII

3 Conclusions

$a_1(1260) \rightarrow 3\pi$

Phys.Rev. D98 096021

Simple application of 3-body to an interesting resonance.

- Decays mostly to 3π final states.
- The τ decay extraction should be the cleanest.
- CLEO ightarrow Dominant $ho\pi$ channel.

³⁶/₅₄

$a_1(1260) \rightarrow 3\pi$

• Extracted from the decay $au^- o \pi^- \pi^+ \pi^- v_ au$

Simplified model of 3 body interactions → disconnected diagrams neglected

2.3 The slippery $a_1(1260)$

$$\operatorname{Im} t(s) = t(s)t^{\dagger}(s) \int d\phi_3 |\sum_{j} f(\sigma_j)|^2$$

 $a_1(1260) \rightarrow 3\pi$

Phys.Rev. D98 096021

Amplitude defined through:

$$(s) = \frac{g^2}{m^2 - s - ig^2 C(s)/2},$$

Phase space:

 $\rho_{\text{SYMM}}(s) = \frac{1}{2} \int d\Phi_3 \left| f_{\rho}(\sigma_1) N_0(\Omega_1, \Omega_{23}) - f_{\rho}(\sigma_3) N_0(\Omega_3, \Omega_{12}) \right|^2$ $\rho_{\text{SYMM-DISP}}(s) = l_0 + \frac{s}{\pi} \int ds' \frac{\rho_{\text{SYMM}}(s')}{s'(s' - s - i\varepsilon)},$

 The ρ line shape is implemented through its customary Breit-Wigner shape.

³⁹/₅₄

$a_1(1260) \rightarrow 3\pi$

Phys.Rev. D98 096021

- Clear deviations from not-symmetrized results.
- Symmetrized has way less deviations and more right physics
- Statistical errors calculated through bootstrap.
- $m = 1209 \pm 4^{+12}_{-9}$ MeV and $\Gamma = 576 \pm 11^{+89}_{-20}$ MeV.

Spectroscopy 2:Summary and projects

- We have extracted in a robust way only one hybrid meson decaying to $\eta^{(\prime)}\pi$.
- There is no statistical significance for a second light hybrid.
- We have extracted the parameters of the *a*₁(1260) from a three body decay.
- The τ decay should be very clean, and the dispersive model has the smallest systematic effects.
- All these extractions have been included in the PDG and used for they new averages.
- Future projects: Include more η^(')π data, include U(3) scattering lengths?.
- Future projects: Khuri-Treiman for particles with spin.

Table of Contents

1 Introduction

1.1 Motivation 1.2 First principles

2 Results

2.1 Strange spectroscopy
2.2 Hunting Hybrid(s)
2.3 The slippery a₁(1260)
2.4 Hunting glueballs with BESIII

3 Conclusions

- The glueball is expected to be predominant in either the $f_0(1500)$ or the $f_0(1710)$.
- Not much of a consensus → V. Mathieu et al. Int.J.Mod.Phys. E18 (2009) 1-49.
- Recent years → not much of an improvement.
- $f_0(1500) \rightarrow 0.89|gg\rangle$ Giacosa et al. Phys.Rev. D72 (2005) 094006.
- $f_0(1710) \rightarrow 0.93 |gg\rangle$ Albaladejo-Oller Phys.Rev.Lett. 101 (2008) 252002.

43/54

Data: Glueball "rich" experiments

Pomeron collisions

• $p\bar{p}$ anihilation

• J/ψ radiative decays considered the golden channel for glueballs.

Data: BESIII $J/\psi ightarrow \gamma \pi \pi$

• Data on $J/\psi \rightarrow \gamma \pi \pi$ half a million events.

- 3 prominent f_0 's with similar couplings.
- The $2^{++}E1$ partial wave is dominated by the $f_2(1270)$.

⁴⁵/₅₄

Data: BESIII $J/\psi ightarrow \gamma K ar{K}$

• Another 3 prominent f_0 's

- The couplings are fairly different, with a way more prominent $f_0(1710)$.
- The $2^{++}E1$ partial wave is dominated by the $f'_2(1525)$.

Data: BESIII J/ψ

• Is the coupling of the $f_0(1710)$ greater \rightarrow glueball hint?

π

π

 $J/\psi \rightarrow \gamma m_1 m_2$

Slightly different kinematics

- Left hand $\operatorname{cut} \to s = 0$ GeV.
- $Ima(s) = \rho(s)t(s)^*a(s)$
- $t(s) \rightarrow \pi\pi$, $K\bar{K}$ scattering.

 J/ψ

 π/K

 π/K

 π/K

⁴⁸/54

Coupled-channel scenario

- Fit from 1 GeV to 2.5 GeV, $\chi^2 \approx 1.7$.
- Interested in the f_0 .
- Coupled channel between just $\pi\pi$ and $K\bar{K}$.

49/54

Complex plane

• We use the analytical properties of the parameterization \rightarrow complex plane continuation.

- m(f₀(1500)) = 1460 MeV
 m(f₀(1710)) = 1800 MeV
- $m(f_0(210)) = 1970 \text{ MeV}$

$$\begin{split} & \Gamma(f_0(1500)) = 85 \text{ MeV}, \\ & \Gamma(f_0(1710)) = 190 \text{ MeV}, \\ & \Gamma(f_0(1710)) = 490 \text{ MeV}. \end{split}$$

Scalar poles

Complex plane plots

- Few "spurious" poles, all far from real axis
- HOWEVER, there is ONE FIRST sheet pole.

- Testing new ideas
- Another f_0 above 2 GeV?
- Decoupling between numerator and denominator
- Several Chew-Mandelstam terms
- Future tests:
- A third inelastic threshold
- Three body effects?

Table of Contents

1.1 Motivation 1.2 First principles

2 Results

2.1 Strange spectroscopy
2.2 Hunting Hybrid(s)
2.3 The slippery *a*₁(1260)
2.4 Hunting glueballs with BESIII

3 Conclusions

- We have shown how powerfull analytic techniques are to the extraction of relevant resonance poles.
- Precise analytical and dispersive determinations of the $K_0^*(700)/\kappa$ meson.
- We have extracted in a model independent way the parameters of 7 strange resonances.
- We have determined the existence of one hybrid meson.
- We have started extracting parameters of resonances decaying to more than two mesons.
- Several ongoing works divided between many JPACers.

Spare slides!

Omnès-Muskhelishvili equations

- Omnès-Muskhelishvili DR with as less subtractions as possible
- S-channel and T-channel coupled in a complicated non-linear way

$$\begin{split} g_0^0(t) &= \Delta_0^0(t) + \frac{t\Omega_0^0(t)}{t_m - t} \left[\alpha + \frac{t}{\pi} \int_{4m_\pi^2}^{t_m} dt' \frac{(t_m - t')\Delta_0^0(t')\sin\phi_0^0(t')}{\Omega_{0,R}^0(t')t'^2(t' - t)} \right] \\ &+ \frac{t}{\pi} \int_{t_m}^{\infty} dt' \frac{(t_m - t')|g_0^0(t')|\sin\phi_0^0(t')}{\Omega_{0,R}^0(t')t'^2(t' - t)} \right], \\ g_1^1(t) &= \Delta_1^1(t) + \Omega_1^1(t) \left[\frac{1}{\pi} \int_{4m_\pi^2}^{t_m} dt' \frac{\Delta_1^1(t')\sin\phi_1^1(t')}{\Omega_{1,R}^1(t')(t' - t)} \right] \\ &+ \frac{1}{\pi} \int_{t_m}^{\infty} dt' \frac{|g_1^1(t')|\sin\phi_1^1(t')}{\Omega_{1,R}^1(t')(t' - t)} \right]. \end{split}$$

If more subtractions⇒ scalar and vector partial waves coupled in a non-linear way.

Analyticity at the service of spectroscopy

56

Regge poles: single channel

The contribution of a single pole to a partial wave is

$$f(J,s) = f_{background} + \frac{\beta(s)}{J - \alpha(s)} \approx \frac{\beta(s)}{J - \alpha(s)}$$

α(s) is the position of the pole, whereas β(s) is the residue.
 Unitarity condition on the real axis implies

 $Im\alpha(s) = \rho(s)\beta(s)$

• The analytical properties of $oldsymbol{eta}(s)$ implies

$$\beta(s) = \frac{\hat{s}^{\alpha(s)}}{\Gamma(\alpha(s) + 3/2)} \gamma(s)$$

The trajectory and residue should satisfy these integral equations:

$$\begin{aligned} \operatorname{Re} \alpha(s) &= \alpha_0 + \alpha' s + \frac{s}{\pi} PV \int_{4m^2}^{\infty} ds' \frac{\operatorname{Im} \alpha(s')}{s'(s'-s)}, \\ \operatorname{Im} \alpha(s) &= \frac{\rho(s) b_0 \hat{s}^{\alpha_0 + \alpha' s}}{|\Gamma(\alpha(s) + \frac{3}{2})|} \exp\left(-\alpha' s [1 - \log(\alpha' s_0)]\right) \\ &+ \frac{s}{\pi} PV \int_{4m^2}^{\infty} ds' \frac{\operatorname{Im} \alpha(s') \log \frac{\hat{s}}{\hat{s}'} + \arg \Gamma\left(\alpha(s') + \frac{3}{2}\right)}{s'(s'-s)}\right) \\ \beta(s) &= \frac{b_0 \hat{s}^{\alpha_0 + \alpha' s}}{\Gamma(\alpha(s) + \frac{3}{2})} \exp\left(-\alpha' s [1 - \log(\alpha' s_0)]\right) \\ &+ \frac{s}{\pi} \int_{4m^2}^{\infty} ds' \frac{\operatorname{Im} \alpha(s') \log \frac{\hat{s}}{\hat{s}'} + \arg \Gamma\left(\alpha(s') + \frac{3}{2}\right)}{s'(s'-s)}\right), \end{aligned}$$

 Constants fixed by forcing the amplitude to have THE POLE AND RESIDUE OF THE DESIRED RESONANCE

Analyticity at the service of spectroscopy

58/5/

κ resonance: ordinary vs non-ordinary

 If we impose a linear Regge trajectory the result does not describe the data.

Analyticity at the service of spectroscopy

Hunting the $\pi_1(1600)$: formula

- $\eta^{(')}\pi$ coupled channel up to 2 GeV.
- ρπ cannot be included without including big systematic contribution (Deck).
- We use a K-matrix approach with a Chew-Mandelstam phase space.

$$D(s)_{ij} = (K^{-1})_{ij}(s) - \frac{s}{\pi} \int_{s_{th}}^{\infty} ds' \frac{\rho(s')N(s')}{s'(s'-s)}$$
$$K(s)_{ij} = \sum_{R} \frac{g_{i}^{R}g_{j}^{R}}{m_{R}^{2}-s} + c_{ij} + d_{ij}s.$$

Just 1 K-matrix pole for the P-wave, 2 for the D-wave.

Hunting the $\pi_1(1600)$: correlation

- Numerator and denominator parameters uncorrelated
- P and D waves not correlated

Hunting the $\pi_1(1600)$: systematics

Numerator

Systematic	Poles	Mass (MeV)	Deviation (MeV)	Width (MeV)	Deviation (MeV)	
Variation of the numerator function $n(s)$						
Sector 1	$a_2(1320)$	1305.9	-0.1	114.7	0.3	
Polynomial expansion	$a_2'(1700)$	1723	1	249	2	
	$\pi_1(1600)$	1563	-1	479	-13	
	$a_2(1320)$		0.0		0.0	
Systematic assigned	$a_2'(1700)$		0		0	
	$\pi_1(1600)$		0	Y	0	
	$a_2(1320)$	1306.8	0.8	114.1	-0.3	
$t_{\rm eff} = -0.5 {\rm GeV}^2$	$a_2'(1700)$	1730	8	259	13	
	$\pi_1(1600)$	1546	-18	443	-49	
	$a_2(1320)$		0.8	A	0.0	
Systematic assigned	$a_2'(1700)$		0	11.	0	
	$\pi_1(1600)$		0		0, 0).	

Denominator

Systematic	Poles	Mass (MeV)	$Deviation\ (MeV)$	Width (MeV)	Deviation (MeV)		
Variation of the function $\rho N(s')$							
The second secon	$a_2(1320)$	1306.4	0.4	115.0	0.6		
$s_I = 0.8 \text{GeV}^2$	$a_{2}^{\prime}(1700)$	1720	-3	272	26		
	$\pi_1(1600)$	1532	-33	484	-8		
The set of the set of the set of the	$a_2(1320)$	1305.6	-0.4	113.2	-1.2		
$s_I = 1.8 \text{GeV}^2$	$a_{2}^{\prime}(1700)$	1743	21	254	7		
	$\pi_1(1600)$	1528	-36	410	-82		
	a2(1320)		0.0	. 0.1-	0.0		
Systematic assigned	$a_{2}'(1700)$		21		26		
	$\pi_1(1600)$		36	A S	82		
	$a_2(1320)$	1305.9	-0.1	114.7	0.3		
$\alpha = 1$	$a_{2}^{\prime}(1700)$	1685	-37	299	52		
	$\pi_1(1600)$	1506	-58	552	60		
	a2(1320)		0.0		0.0		
Systematic assigned	$a'_{2}(1700)$	6	37		52		
	$\pi_1(1600)$		58		60		
	$a_2(1320)$	1304.9	* -1.1	114.2	-0.2		
$Q_J, \alpha = 1$	$a_{2}'(1700)$	1670	-52	269	22		
	$\pi_1(1600)$	1511	-53	528	36		
100 million (1990)	$a_2(1320)$	1306.0	0.1	115.0	0.6		
$Q_J, \alpha = 1.5$	$a_2'(1700)$	1717	-5	272	25		
	$\pi_1(1600)$	1578	14	530	39		
	$a_2(1320)$	1306.2	0.2	114.7	0.3		
$Q_J, \alpha = 2$	$a_2'(1700)$	1723	. 1 /	261	15		
	$\pi_1(1600)$	1570	6	508	16		
	$a_2(1320)$		1.1		0.0		
Systematic assigned	$a'_2(1700)$.52		25 9		
	$\pi_1(1600)$		53	1	0		

$a_1(1260)$

Integration path complex

$$\rho_{QTB} \propto \int_{4m_{\pi}^2}^{(\sqrt{s}-m_{\pi})^2} d\sigma_1 f^{II}(\sigma_1) f^I(\sigma_1) \frac{\sqrt{\lambda_1 \lambda_{s1}}}{\sigma_1}$$

The endpoints of integration move along the lines

$$\begin{split} \rho_{\rm INT}(s) &= \frac{1}{2\pi(8\pi)^2 s} \int_{4m_{\pi}^2}^{\sigma_{\rm lim}} {\rm d}\sigma_1 \int_{\sigma_3^-(\sigma_1,s)}^{\sigma_3^+(\sigma_1,s)} {\rm d}\sigma_3 \frac{f_{\rho}^{(II)}(\sigma_1)}{\sqrt{\sigma_1 - 4m_{\pi}^2}} \frac{f_{\rho}^{(I)}(\sigma_3)}{\sqrt{\sigma_3 - 4m_{\pi}^2}} \\ &\times \frac{W(\sqrt{s},\sqrt{\sigma_1},\sqrt{\sigma_3})}{((\sqrt{s} + \sqrt{\sigma_1})^2 - m_{\pi}^2)((\sqrt{s} + \sqrt{\sigma_3})^2 - m_{\pi}^2)}. \end{split}$$

Future Project: Khuri-Treiman analysis

- Already done for $D^+ \rightarrow \pi^+ \pi^+ K^-$ [Niecknig, Kubis (2015)].
- Using πK as input and predicting D^+ decay.

• Can we make it work the other way around η_c decay $\Rightarrow \pi K$ scattering.

New high precision LCHb/BELLE 2 data?

Future project: New HDR

- It's been shown (cita) that symmetric variables under s,t,u exchanges offer the biggest convergence in the complex plane.
- Maximum energy in the real axis \rightarrow 1.7 GeV.
- It offers two possibilities:
- I- Select between incompatible data sets above 1.4 GeV.
- 2- Determine if the $f_0(1370), f_0(1500)$ appear in this proccess \rightarrow glueball related .

Future projects: More spectroscopy

• $J/\psi
ightarrow \gamma \pi \pi$ • How many f_0 do we have here?

• Khuri-Treiman \rightarrow particles with spin.

68/54

 m_2

G

2.4 m_{e 7} (GeV)

000000

Future projects: Regge with spin

- What about resonances decaying to resonances?
- Their spin can be accommodated through a set of coupled integral eqs.
- What about inelastic resonances → coupled channel Regge physics.

 $a_1(1260) \rightarrow 3\pi$

Phase space:

 $\rho_{\text{SYMM}}(s) = \frac{1}{2} \int d\Phi_3 \left| f_{\rho}(\sigma_1) N_0(\Omega_1, \Omega_{23}) - f_{\rho}(\sigma_3) N_0(\Omega_3, \Omega_{12}) \right|^2$ $\rho_{\text{SYMM-DISP}}(s) = l_0 + \frac{s}{\pi} \int ds' \frac{\rho_{\text{SYMM}}(s')}{s'(s' - s - i\varepsilon)},$

 The ρ line shape is implemented through its customary Breit-Wigner shape.

$$f(\sigma) = \mathcal{N} \frac{p(\sigma)R}{\sqrt{1 + (p(\sigma)R)^2}} \frac{1}{m_{\rho}^2 - \sigma - im_{\rho}\Gamma_{\rho}(\sigma)}$$

$$\Gamma(\sigma) = \Gamma_{\rho} \times \frac{p^3(\sigma)}{\sqrt{\sigma}\sqrt{1 + (p(\sigma)R)^2}} \frac{p\left(m_{\rho}^2\right)}{m_{\rho}\sqrt{1 + \left(p\left(m_{\rho}^2\right)R\right)^2}} o(\rho)$$