Status of X-ray spectroscopy of Ξ⁻-atom (J-PARC E03)

O

2019/10/24 **T. O. Yamamoto** JAEA (Japan) for the E03 collaboration

X-ray spectroscopy of Ξ^- atom

First try in J-PARC E07

Coming measurement in J-PARC E03

> Pilot run for detector optimization [2017-2018]

Ge detector live time measurement

B.G. level study

Data taking in 2020?

Present status & schedule

X-ray spectroscopy of Ξ⁻-atom

We (J-PAEC E03 group) are aiming for

world first measurement of X ray from Ξ^- -atom

 \rightarrow Information on the ΞA optical potential

Information on
 (effective) ΞN interaction
 large baryon mixing?
 (small ΔM(ΞN-ΛΛ)=28 MeV)
 ΞA interaction

and it's A dependence Role of Ξ^- in neutron star?

Establishment of experimental method in the J-PARC E03 (Fe- Ξ^- atom) \rightarrow Systematic measurement (over wide mass range) in future

X-ray spectroscopy of Ξ⁻-atom

Physics motivation

•

Valuable information on ΞN (effective) interaction

Impact on emulsion data

Our first try in J-PARC E07

Experimental study of double hypernuclei

Junya Yoshida (Advanced Science Research Center, JAEA) On behalf of J-PARC E07 Collaboration

Our first try in J-PARC E07

Feature of the measurement:

Expected # of event = 10-20 (for Ag) w/ full stat.

Emulsion analysis is on going to search "special" event \rightarrow Not enough analyzed Ξ stop event (10-20%) so far

Experimental method [J-PARC E03]

Fe target for the first measurement

 * Absorption strength (and width) reported in theoretical case study is suitable for our measurement

((5,4) state : $\Delta E \sim \Gamma \sim 4 \text{keV}$ [W.S. shape potential of -24-3i MeV])

- * Enough dense (~7.9 g/cm³) for higher stopping probability of Ξ^-
 - 1.8 GeV/c kaon beam \rightarrow J-PARC K1.8 beam line
 - large yield of the Ξ⁻ production for coincidence measurement
 - \rightarrow Wide acceptance spectrometer KURAMA (~0.2 msr)
 - A few keV resolution for X-ray measurement \rightarrow Ge detector

will be used in **Hyperball-J** Ge detector array Full statics E03 run Lower half of Hyperball-J Features **PWO** counter Large photo-peak efficiency Ge detector $\rightarrow \epsilon \sim 6\%$ @1 MeV with 32 Ge detectors Beam Target Fast readout system hadron beam for high intensity Low temp. Ge detector for radiation hardness \rightarrow Mechanical cooling Fast background suppressor \rightarrow PWO counter **Developed Ge detector** Pulse tube refrigerater Ge detector

Pulse-tube cooler

Strategy of E03

We decided to run with 10% statistics (1st-phase) for not full accelerator intensity

< 1st phase > 10% statistics (~20 days with present beam power)

- $(7 \rightarrow 6)$ transition will be seen

 \rightarrow "World first measurement of X ray from Ξ atom"

- (6 \rightarrow 5) finite shift & width (if Γ <1 keV)
- information of absorption strength from $(6\rightarrow 5)/(7\rightarrow 6)$

Hyperball-X' for 1st phase

BGO suppressor

"clover-type" Ge detector (4 segmented crystals)

Optimum for

low beam intensity

4 detector units with vertically covered configuration

- Horizontally wide beam profile and target
- Self-absorption of X ray is serious for horizontal direction

Γ~1keV	case,
--------	-------

Higher energy resolution has great merit

- better peak significance
- small error on shift & width

	HBX'	HBJ
High rate capability	▲ * slow amp. * segmented crystal	O * fast amp. * large crystal * radiation hardness
Energy resolution	2.5 keV (FWHM)	4 keV (FWHM)

Pilot run for realistic estimation

First time to use our Ge detector array with "heavy" target

We have experience for $A \le 19$ target,

but A=56 target will be used in J-PARC E03

<Unknown factor>

- Live time of Ge detector
- B.G. level in final X-ray spectrum

Need data with actual beam and target

Pilot run for E03-1st June 2017 (2.5h) + Feb. 2018 (19h)

Setup: KURAMA + clover-type Ge + Iron target

- optimization of Ge detector position and beam intensity (Live time vs coverage)
- data for realistic B.G. estimation

Pilot run

- study ① Position and beam intensity dependence of "Ge live time" Direct measurement using dummy signal
- study ②
 B.G. level in energy spectrum
 Ξ⁻ production x Ge coincidence (very low statistics physics run)

<Scan parameters>

- Ge detector position
 X, Y(2D) scan
- Beam intensity
 π+K = 200 - 800 k/spill
- Slow amp. or fast amp.

Direct measurement of live time

ADC channel

ADC channel

Measured live time

Beam condition: K⁻beam [1.8GeV/c] π+K= ~500k/spill

Yield \propto Photo-peak eff * Live time * analysis eff

Optimum condition:

~6cm distance + 500k/spill(2s) beam intensity

B.G. level measurement

Expected spectrum for E03-1st phase

We re-estimated yield & B.G. level using result of the pilot run

- $(7\rightarrow 6)$ transition will be seen
 - * Weak absorption [width~=0]
 - * Higher X-ray yield

 [× 3 yield of (6→5) transition]

 No physics output, but

 first measurement of Xi-atom X-ray
- (6→5) transition will be seen <u>if width ~= 1 keV</u>

Physics outputs

- Chance for finite shift & width error in shift : 0.3 keV
- Yield for absorption strength

Preparation status

Detector preparation: almost ready

- KURAMA detectors: common with E07/E40(now running)

no special development necessary

- Hyperball-X: common with E07
 - Maintenance of Ge detectors: Finish (2019.06)
 - Modified frame: under construction [-2020.2]

Delay due to Schedule for E03-1st phase ACC trouble in this spring We are aiming for beam time after J-PARC E40 *need "KURAMA magnet move" and "HBX' installation" 2019.10 New primary target (T1) will be installed 2020.1 HBX' frame E40 (@K1.8 beam line) (for higher beam power) construction Kaon beam tuning 2020.4 **KURAMA** magnet + detector move 2020.7 **HBX'** installation 2020.10 E03 detector system ready Coming soon ! E03 beam time (we are requesting)

Summary

We (J-PAEC E03 group) are aiming for world first measurement of X ray from Ξ^- -atom

- \rightarrow Information on the ΞA optical potential
 - Test of Experimental technique in J-PARC E07
 - E03 2 phase strategy for current ACC condition
 - Pilot run for optimization of 1st-phase [2017-2018]
 - Ge detector live time measurement
 - B.G. level study
 - $\rightarrow\,$ Realistic yield and B.G. estimation was done
 - Detectors are almost ready

We are aiming for beam time in Autumn 2020