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OUTLINE

A quick survey of conventional optical model analyses

Resonance near threshold and the need for additional
input beyond single-nucleon amplitudes

A short guide to MC methods and some results

Beyond the single nucleon absorption

New results: The Barcelona 2N potentials

Summary and outlook



Introduction and background

Close to 300 observables of strong-interaction effects in pionic,
kaonic and antiprotonic atoms enabled extensive analyses in terms
of hadron-nucleus optical potentials.

Phenomenological potentials have been gradually replaced by more
theoretically-based approaches.

In the last decade potentials built on hadron-nucleon scattering
amplitudes showed a need for additional input and revealed
possible difficulties with conventional analyses.



Schematics of exotic-atom energy levels

Following NPA231 (1974) 477



Kaonic atoms experiments

Results from CERN, Argonne, Rutherford Lab., BNL

Use weighted averages

Good accuracies for shifts and widths

Reasonable accuracies for relative yields (= upper level
widths)

Puzzles with early data for H and He removed by new precision
experiments at KEK and Frascati between 1997 and 2007.

Measured strong interaction level shifts and width, measured
relative yields of upper to lower level transitions.

Phenomenological optical potentials from GLOBAL fits to
experiments lead to χ2 of 130 for 65 data points, with 3
adjustable parameters.



Early attempts to use ‘chiral’ amplitudes

Ramos & Oset, NPA 671 (2000) 481
Baca et al., NPA 673 (2000) 335
Cieply et al.,NPA 696 (2001) 173

Poor agreement with data (χ2(65)=300)

Reduced χ2 to 200 with typical 50% rescaling

χ2=130 by adding a tρ term with NEGATIVE absorption

Something is missing!



Seven chiral K−N models constrained by fits to near-threshold
data, including the SIDDHARTA result for K−H at threshold

1350 1400 1450 1500

s
1/2

 (MeV)

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

R
e
a
l 
 K

−
p
 a

m
p
li
tu

d
e
 (

fm
) 

KM

P

B2

B4

M1

M2

BCN

1350 1400 1450 1500

s
1/2

 (MeV)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Im
a
g
in

a
ry

 K
−
 p

 a
m

p
li
tu

d
e
 (

fm
)

B2

B4
M1

M2

P

KM BCN



Seven chiral K−N models constrained by fits to near-threshold
data, including the SIDDHARTA result for K−H at threshold
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Reminder of ‘in-medium kinematics’

Adopt the Mandelstam variable s = (EK− + EN)
2 − (~pK− + ~pN)

2

as the argument transforming free-space to in-medium K−N

amplitudes.

In the hadronic atom c.m. frame the average of (~pK− + ~pN)
2 is

the average of ~p 2
N + A−2

A
~p 2
K−

, with A the nuclear mass number.

Both the energies and the momenta cause
√
s to be below

MN +mK .



Reminder of ‘in-medium kinematics’

Adopt the Mandelstam variable s = (EK− + EN)
2 − (~pK− + ~pN)

2 as the
argument transforming free-space to in-medium K−N amplitudes.
δ
√
s =

√
s−Eth, Eth = mK− +mN , then to first order in B/Eth one gets

δ
√
s = −BNρ/ρ̄− βN [TN(ρ/ρ̄)

2/3 + BK−ρ/ρ0] + βK− [Re VK− + Vc(ρ/ρ0)
1/3],

βN = mN/(mN +mK−), βK− = mK−/(mN +mK−), ρ0 = 0.17 fm−3.
Average binding energy BN = 8.5 MeV, TN=23 MeV (Fermi gas model).
The specific ρ/ρ0 and ρ/ρ̄ forms ensure that δ

√
s → 0 when ρ→ 0

Solving by iterations,
√
s and hence amplitudes become functions of ρ,

essentially averaging over subthreshold energies.

Accepting ‘Minimal Substitution’ (MS), Vc(r) is subtracted from δ
√
s,

(as supported by analyses of pion-nucleus experiments).



For attractive potentials the energy
√
s is below threshold within

the nuclear medium.

In addition there are corrections due to Pauli correlations.

The algorithm performs averaging over subthreshold energies.

PLB 702 (2011) 402; PRC 84 (2011) 045206; NPA 899 (2013) 60;
EPJ Web of Conferences 81 (2014) 01018; NPA 959 (2017) 66;
(partial list).



The Pauli-corrected single-nucleon potential is,
T. Waas, M. Rho, W. Weise, NPA 617 (1997) 449 (WRW)

2µKV
(1)
K−

(ρ) = −4π

[

(2f̃K−p − f̃K−n)
1
2ρp

1 + 1
4ξk(ρ)f̃0ρ(r)

+
f̃K−n(

1
2ρp + ρn)

1 + 1
4ξk(ρ)f̃1ρ(r)

]

,

f̃K−N(ρ) are related kinematically to the in-medium K−N c.m.
amplitudes fK−N(ρ) by f̃K−N(ρ) = (1 + A−1

A
µK

mN
)fK−N(ρ). The

Pauli correlation factor ξk(ρ) is defined by

ξk(ρ) =
9π

k2F

(

4

∫ ∞

0

dr

r
exp(ikr) j21 (kF r)

)

,

with k = [(EK− − iΓ/2)2 −m2
k ]

1/2 and where Γ is the width of the
particular kaonic atom state. kF = (3π2ρ/2)1/3.
With q = −ik/kF the above integral (x4) is

4Ik(ρ) = 1− q2

6
+

q2

4
(2 +

q2

6
) ln(1 +

4

q2
)− 4

3
q (

π

2
− arctg(q/2)),



χ2 for 65 kaonic atoms data points from optical potentials based
only on single-nucleon amplitudes.

model B2 B4 M1 M2 P KM

χ2(65) 1174 2358 2544 3548 2300 1806

χ2 for 18 high quality data points (P, S, Cl, Cu, Ag, Pb)
model B2 B4 M1 M2 P KM

χ2(18) 364 733 949 1232 480 449

Not fits!



Good fits to the data are obtained by adding to the combined
single-nucleon amplitudes an empirical amplitude B0(ρ/ρ0)

α and
varying the 3 parameters ReB0, ImB0 and α.
For example, based on the KM amplitudes,
χ2(65)=119.4,
ReB0 = −0.60± 1.96 fm,
ImB0 = 2.39± 4.34 fm,

α = 1.46± 1.85.

????



Fits to 65 kaonic atoms data points when single-nucleon amplitudes are
supplemented by a B0(ρ/ρ0)

α amplitude with fixed α compatible with its
best-fit value. B in units of fm.

model BCN M1 M2 P KM
α 1.0 0.3 1.0 1.0 1.0

ReB0 −1.3±0.3 0.3±0.1 2.1±0.2 −1.3±0.2 −0.9±0.2
ImB0 1.9±0.3 0.8±0.1 1.2±0.2 1.5±0.2 1.4±0.2
χ2(65) 129 121 109 125 123

Is it necessary to go subthreshold?
Example for KM, when δ

√
s=0:

α = 1.0, ReB0 = −1.8± 0.1, ImB0 = −1.1± 0.1, χ2(65) =139

Negative ImB0 and/or significantly larger χ2 obtained for all seven
models when taken on threshold.
Similar problems when ignoring Pauli correlations.
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Reducing uncertainties of optical potentials

The phenomenological multinucleon amplitude B0(ρ/ρ0)
α is a

source of uncertainties due to correlations between the exponent α
and B0. χ

2 searches on three parameters lead to meaningless
results. So far we had to grid on α and fit only two parameters,
ReB0 and ImB0.

A way out is by replacing the error-matrix approach by
Monte-Carlo techniques.



In the Monte-Carlo method we assume many repetitions,
i = 1, ....N of ALL the experiments, where every individual result
(shift, width, or yield, k = 1, ...65) is moved randomly assuming
Gaussian distribution. A random Gaussian shift f i

k
in units of

standard deviation multiply each ”experimental” (1σ) error, to
provide a ‘new result’, with its old original uncertainty:

expr(k)±∆(k) → [expr(k) + f i
k
∆(k)]±∆(k)



In the Monte-Carlo method we assume many repetitions,
i = 1, ....N of ALL the experiments, where every individual result
(shift, width, or yield, k = 1, ...65) is moved randomly assuming
Gaussian distribution. A random Gaussian shift f i

k
in units of

standard deviation multiply each ”experimental” (1σ) error, to
provide a ‘new result’, with its old original uncertainty:

expr(k)±∆(k) → [expr(k) + f i
k
∆(k)]±∆(k)

Then new χ2 fits are made, varying all three parameters that again
lead to large uncertainties.

Repeating the process typically 200 to 500 times produces
distributions of α, ReB0 and ImB0 with amazingly well-defined
average values and small uncertainties.



For a Gaussian 1
σ
√
2π
e−

1
2
( x−µ

σ
)2 and for two [0,1] random numbers

z1 and z2 we get a random

x−µ
σ = f =

√
−2logz1cos(2πz2).

For N repetitions of χ2 fits we get parameters αi, βi etc.

Numerically,

ᾱ = 1
N
Σi(αi)

σ2α = N
N−1Σi(αi − ᾱ)2,

σαβ = 1
N
Σi(αi − ᾱ)(βi − β̄)

and correlations

Cαβ =
σαβ

σασβ
.

In principle similar results are available from regular χ2

minimisation.
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With 65-3=62 degrees of freedom we can test whether the
hundreds of χ2 values follow the expected relation of

var(χ2) = 2(χ2)ave .

From some of the experimental papers we note that the quoted
errors contain, in several examples, non-statistical contributions of
up to 30%. Therefore we check the effects of limiting the above f

factor to a fraction of the quoted experimental error.
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Good fits to the data are obtained by adding to the combined
single-nucleon amplitudes an empirical amplitude B0(ρ/ρ0)

α and
varying the 3 parameters ReB0, ImB0 and α.
For example, based on the KM amplitudes,
χ2(65)=119.4,
ReB0 = −0.60± 1.96 fm,
ImB0 = 2.39± 4.34 fm,

α = 1.46± 1.85.

????



Good fits to the data are obtained by adding to the combined
single-nucleon amplitudes an empirical amplitude B0(ρ/ρ0)

α and
varying the 3 parameters ReB0, ImB0 and α.
For example, based on the KM amplitudes,
χ2(65)=119.4,
ReB0 = −0.60± 1.96 fm,
ImB0 = 2.39± 4.34 fm,

α = 1.46± 1.85.
From the Monte-Carlo technique we get
χ2(65)=119.4, (this is NOT χ2

ave)
ReB0 = −0.55± 0.33 fm,
ImB0 = 2.39± 0.72 fm,

α = 1.44± 0.31.

Now it makes sense to look at the potentials.
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Comparing full imaginary potentials, KM based to BCN based
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Testing BCN’s (KN+KNN) potential on some N=Z targets

for O, Mg, Si, S we find χ2 per point=33

global (KM 1N + phen. term) χ2 per point=3
global (BCN 1N + phen. term) χ2 per point=4.6



Fraction of multinucleon absorptions at rest from
Bubble-Chamber experiments

K− + N → Y + π

K− + N + N → Y + N

0.26±0.03 on a mixture of C, F and Br (Berkeley, 1968)
0.28±0.03 on Ne (BNL, 1971)
0.19±0.03 on C (CERN, 1977)
Results from nuclear emulsions quote larger uncertainties.

We therefore adopt as a best estimate of experimental K−

multinucleon absorption-at-rest fraction an average value of
0.25±0.05 for C and heavier nuclei.

Apply fraction of single-nucleon absorptions 0.75±0.05 as an
additional constraint.



The level width Γ is obtained from the eigenvalue EK− − iΓ/2
when solving the Klein-Gordon equation with an optical potential,
(EK− = mK− − BK−). It is also related to the imaginary part of
the potential by the overlap integral of ImVK− and |ψ|2,

Γ = −2

∫

ImVK− |ψ|2 d~r
∫

[1− (BK− + VC)/µK ] |ψ|2 d~r

where BK− , VC and µK are the K− binding energy, Coulomb
potential and reduced mass, respectively, and ψ is the K− wave
function of the particular state concerned.



The level width Γ is obtained from the eigenvalue EK− − iΓ/2
when solving the Klein-Gordon equation with an optical potential,
(EK− = mK− − BK−). It is also related to the imaginary part of
the potential by the overlap integral of ImVK− and |ψ|2,

Γ = −2

∫

ImVK− |ψ|2 d~r
∫

[1− (BK− + VC)/µK ] |ψ|2 d~r

where BK− , VC and µK are the K− binding energy, Coulomb
potential and reduced mass, respectively, and ψ is the K− wave
function of the particular state concerned.

When the best fit optical potential is V
(1)
K−

+V
(2)
K−

, the sum of a
single-nucleon part and a multinucleon part, it is straight forward
to calculate the fraction of single-nucleon absorptions, separately
for any nucleus and for any specific kaonic atom state.
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Summary

Modern K̄ -nucleon scattering amplitudes are unable to lead to
acceptable optical potentials for kaonic atoms.

Conventional χ2 fits of additional phenomenological term lead
to good fits but unacceptable uncertainties of parameters.

Monte Carlo methods achieve significantly improved
accuracies for the phenomenological parameters.

Based on single-nucleon absorption fractions one can select
the Kyoto-Munich (KM), Prague (P) and the Barcelona
(BCN) amplitudes.

For the first time one may get empirically the part of the
optical potential that represent multinucleon interactions.


