

Florin Sirghi

INFN - LNF

on behalf of the SIDDHARTA-2 collaboration

21-25 October 2019, ECT*, Trento, Italy STRANEX: Recent progress and perspectives in STRANge EXotic atoms studies and related topics

SIDDHARTA-2

Silicon Drift Detector for Hadronic Atom Research by Timing Applications

LNF- INFN, Frascati, Italy SMI- ÖAW, Vienna, Austria Politecnico di Milano, Italy IFIN – HH, Bucharest, Romania TUM, Munich, Germany **RIKEN**, Japan Univ. Tokyo, Japan Victoria Univ., Canada Univ. Zagreb, Croatia Helmholtz Inst. Mainz, Germany Univ Jagiellonian Krakow Poland Research Center for Electron Photon Science (ELPH), Tohoku University

STRONG-2020

Croatian Science Foundation, research project 8570

CONTENT

1. SIDDHARTINO installed on DAΦNE

SIDDHARTINO apparatus and aim

SIDDHARTINO installation on DAΦNE

- First results from DAΦNE: calibration of the SDD detectors and beam visibility
- Strategy for the measurement of kaonic helium

2. From SIDDHARTINO to SIDDHARTA-2

SIDDHARTA-2 strategy

during the commissioning of DA (NE) SIDDHARTINO measurement of K-4He (8 SDD arrays)

when DAΦNE operating condition is comparable (S/B) with SIDDHARTA ones <u>kaonic deuterium</u> (48 SDD arrays) run for 800 pb⁻¹

SIDDHARTINO = SIDDHARTA-2 with 8 SDD's

DAQ BUS configuration

SIDDHARTINO - SDD arrangement

SIDDHARTINO apparatus

- Needs to work with DAΦNE luminosity monitor
- setup lifted by ~100 mm
- w.r.t. nominal position
- SIDDHARTA-2 luminosity
- monitor included
- equipped with 8 SDD arrays
- complete Veto system
- target filled with He-4 gas (to compare with SIDDHARTA)

Aim: verify when DA Φ NE background is similar to the one in SIDDHARTA 2009

SIDDHARTINO was installed on DAFNE in April 2019

Summer shutdown period for more optimization and debugging

Restart operation in September

(compatible with DAFNE schedule)

New platform and interaction region

New beam pipe

flanges removed major source of asynchronous background

external carbon fiber jacket Ø 66 mm and thickness ~ 500 micron internal ultra pure aluminum Ø 55mm and thickness ~ 150 micron

DAFNE luminosity monitor

SIDDHARTINO shielding – we need modifications/integration

Designed for the new quadrupoles and DAFNE luminosity monitor

SIDDHARTINO Lateral shielding completed in summer shutdown period

SIDDHARTA-2 aluminum support frame

With the help of DAFNE experts the setup and the shielding were aligned with the beam line axis

Details about the SIDDHARTINO setup

- > 2-stage cooling system + Cryo Tiger
- > Light target and Silicon Drift Detector
- ➤ Veto-2 system
- > Luminosity monitor
- > Veto-1 system
- ≻ Kaon Trigger system

Cooling systems

add additional cooling power to the SDD and electronics

Target + SDD cooling
Leybold MD10 – 16 W @ 20 K
target cell and SDDs are cooled
via ultra pure aluminum bars
T_{TC} = 30 K and T_{SDD} = 100 K

Optimization for the SDD cooling using different materials epoxy, aluminum

Line driver boards
4 CryoTiger – 30 W @ 120 K
Copper - band cooling lines
T_{LD} = 120 K

Light target and SDD detector assembly

Target cell wall is made of a 2-Kapton layer structure (75 μm + 75 μm + Araldit) increase the target stopping power

almost double gas density with respect to SIDDHARTA (3% LHD)

SDDs placed 5 mm from the target wall

calibration foils inserted near to the SDD are activated by the X-ray tubes

The VETO-2 system

an inner ring of scintillator tiles placed as close as possible behind the SDDs for charge particle tracking

Luminosity monitor

Fast Needs:

- Fast detectors & FEE
- Real time acquisition
- Accidental rate << Signal rate

Allows:

- Collision optimization
- Machine feedback

- 2 pairs of scintillator: 80x40x2 mm³ Scionix EJ-200
- R4998 PMTs Hamamatsu
- light-guides
- aluminum tube + µMetal (0.1mm)
- reflective and light proof foil
- optical cement

Luminosity ~ 10³² cm⁻² s ⁻¹ Rate ~ 50-60 Hz

SIDDHARTA-2 Interaction regions

SIDDHARTINO installed on DA Φ NE (April 2019)

Summer shutdown work

SiPm from VETO-2 replace after the "power glitch"

Commissioning of SDD's in $DA\Phi NE$

- Test of the first signals in the accelerator environment (SFERA-SDD coupling, noise test, EMI/RFI filters on power lines)
- Tuning of the power supply parameters
- Calibration with the x-ray tube
- Comparison x-ray tube vs beam (more details in the M. Miliucci talk)

Calibration of SDDs

SDD's and DAFNE operation

Circulating beam in DAFNE

... two beams circulating ... but no collision yet ... vacuum improvement with the beam current

VUGI1001 vs iele 17/06/2019 VUGI1001 vs jele 17/06/2019 418011001 vs jain 18/06/2019 19/05/2010 va jele 20/06/2010 21/06/2019 VUCI1001 vs jele 22/05/2019 VUGI1001 vs iele 23/06/2019

Online beam monitoring

🚱 Online Luminometer Monitoring

– 🗆 X

Online beam monitoring

SIDDHARTA-2 access infrastructures

Data exchange protocol with DAΦNE team

- beam conditions measured by our detectors – veto system (very useful information for machine/background optimization)
- luminosity parameters (kaon rates, estimation of integrated luminosity, etc.)

- dedicated VLAN network
- optical fiber connection with DAΦNE and LNF computing services
- dedicated file storage server for data (NAS)
- 10G interconnection between our computers
- online control and monitoring of our setup parameters (target pressure, SDD cooling, remote control of x-ray tubes, etc.)

SIDDHARTA-2 present status

We are presently in <u>Phase 1</u>

during the commissioning of DAΦNE optimisation of SIDDHARTINO for K-4He (8 SDD arrays)

May 2019 – December 2019 or until the aim is reached (S/B on K-⁴He as better than 100/1) in agreement with the LNF management

SIDDHARTINO – K-⁴He test measurement

S/B was 10/1 for the K-4He measurement with ~ 30 pb-1

Kaonic Helium-4 SIDDHARTINO expected spectrum for about 50 pb⁻¹

(one week of data taking in SIDDHARTA-like conditions)

About 1000 events in La peak, S/B > 100/1 (ideally should be 300/1)

Position precision : 6.452 +- 0.002 (stat) keV

SIDDHARTA-2 K-d measurement

SIDDHARTA-2 plan

- integrated);
- during summer break install veto2 second layer, adjust shielding, readout electronics and other optimizations;
- restart run from autumn 2020 with optimized setup (for other 500 pb-1);

SIDDHARTA-2 plan

- integrated);
- during summer break install veto2 second layer, adjust shielding, readout electronics and other optimizations;
- restart run from autumn 2020 with optimized setup (for other 500 pb-1);

Spares

Strategy and Time Schedule

DAFNE and SIDDHARTA-2 operation schedule	2019								2020																			
	Apri	il	м	lay		June		Ju	uly	 Au	gust	Septe	embe	r Oc	tobe	r I	Vove	mber	Dec	emb	er J	F	MA	м	, ,	A	; 0	ND
PHASE 1																												
Commissioning of DAFNE - technical machine run																						Τ						
Interaction region (beam pipe)																												
DAFNE Luminosity monitor																												
SIDDHARTA-2 Installation																												
Lead schielding table																												
Transport and installation setup																												
Vaccum test																												
Alignment of the shielding and setup																												
Cooling cryogenic target																						Τ						
Installation of SIDDHARTA-2 Luminosity monitor																												
SDD optimization and calibration with x-ray tube																												
Installation of Veto-1 system																												
Installation of Kaon Trigger system																												
Integration of Dafne signals in DAQ (timing, injection)																												
Debugging and optimization DAQ																												
PADME BEAM TEST in new configuration																												
BTF2 BEAM TEST (nights and weekends)																												
LNF summer SHUTDOWN																												
DAFNE MAINTENANCE																												
SIDDHARTINO																												
K-He measurement with only 8 SDD arrays																												
PADME second BEAM TEST																												
PHASE 2	Π													Γ								T						
SIDDHARTA-2 final installation																						T		\square		\square		
LNF winter SHUTDOWN																						Τ		\square		\square		
Kaonic Deuterium measurement with full setup (48 arrays)																												

More details:

The modern era of light kaonic atom experiments

Catalina Curceanu, Carlo Guaraldo, Mihail Iliescu, Michael Cargnelli, Ryugo Hayano, Johann Marton, Johann Zmeskal, Tomoichi Ishiwatari, Masa Iwasaki, Shinji Okada, Diana Laura Sirghi, and Hideyuki Tatsuno

Rev. Mod. Phys. 91, 025006 – Published 20 June 2019

SIDDHARTA-2 kaonic deuterium at DA Φ NE

Future programme and perspectives: Feasibility studies in parallel with Siddharta-2 (Ge and VOXES) -> Alessandro Scordo

- **Proposal for Extension/New Scientific Program**
- Kaon mass precision measurement at a level < 7 keV
- Kaonic helium transitions to the 1s level
- Other light kaonic atoms (K⁻ O, K⁻ C,...)
- Heavier kaonic atoms (K⁻ Si, K⁻ Pb...)
- Radiative kaon capture Λ (1405) study
- Investigate the possibility of the measurement of other types of hadronic exotic atoms (sigmonic hydrogen ?)

New ideas will be discussed during: STRANEX: Recent progress and perspectives in STRANge EXotic atoms studies and related topics workshop at ECT* - 21- 15 October – we invite you to participate!

Feasibility tests for future measurements – (II)

WIKAMP proposal presented at DAFNE as Open Accelerator Test Facility, LNF December 17, 2018

Investigation of single-and multi-nucleon processes of antikaons in nuclei by simultaneous measurements of upper and lower levels transition widths of selected kaonic atoms with ultra-high energy resolution detectors

DAFNE-TF workshop - Dec. 17, 2018

E Friedman, S. Okada, Nucl. Phys. A915 (2013) 170-178

CHALLENGE WITH NEW X-RAY DETECTORS

DAFNE-TF workshop - Dec. 17, 2018

SIDDHARTA-2 winning cards

SIDDHARTA-2 relies on a major upgrade (w.r.t. SIDDHARTA)

of the detectors systems and of the cryogenic target

SIDDHARTA-2 builds up based on a series of improvements with respect to the previous SIDDHARTA setup aiming to dramatically:

• increase the S/B ratio and also the signal rate:

by gaining in solid angle taking advantage of

new SDDs form factor (more active area)

• reduction of the background:

by improving the SDDs timing resolution (\sim 400 ns) and implementing additional veto systems

SDDHARTA-2 expected result

Geant4 simulated K⁻d X-ray spectrum for 800 pb⁻¹

For more information

Journals 🔻	Help/Feedback					Journal, vol, page, DOI, etc.	-
REVIE	WS OF MO[Accepted Authors	DERN PHYSIC	CS Press About	Staff :	<i>"</i>		
Accepted The Rev. Mod Catalina C Diana Lau	Paper MODERNERA . Phys. urceanu, Carlo Guaraldo, ra Sirghi, and Hideyuki Ta March 2040	of light kaoni Mihail Iliescu, Michael Cargn	C atom exp elli, Ryugo Hayano, Jol	Derime	ents Johann Zmeskal, Tomoichi Is	shiwatari, Masa Iwasaki, Shinji (Dkada,
ABSTRACT	March 2019	ABSTRACT This review article activity, defined b precision measur kaon, containing	e covers the modern er y breakthroughs in tech ements. Kaonic atoms the strange quark, whic	a of experime nnological de are atomic sy th interacts in	ental kaonic atoms studies, er velopments which allowed pe ystems where an electron is re the lowest orbits with the nuc	ncompassing twenty years of erforming a series of long-awaite eplaced by a negatively charged cleus also by the strong interacti	d I ion.

As a result, their study offers the unique opportunity to perform experiments equivalent to scattering at vanishing relative energy. This allows to study the strong interaction between the antikaon and the nucleon or the nucleus "at threshold", namely at zero relative energy, without the need of {} extrapolation to zero energy, as in scattering experiments. The fast progress achieved in performing precision light kaonic atoms experiments, which also solved

SIDDHARTA-2 - new organization structure

Spokespersons:

Catalina Curceanu (LNF-INFN) Johann Zmeskal (SMI)

Technical Coordinator:

Florin Sirghi (LNF-INFN) Contact person DAFNE - SIDDHARTA-2: Alberto Clozza (LNF-INFN) DAQ responsible: Mihai Iliescu (LNF-INFN, SMI and CERN) Readout electronics: Massimiliano Bazzi (LNF-INFN)

Carlo Fiorini (Politecnico di Milano) Slow Control:

Mario Bragadireanu (IFIN-HH)

SDD detector system:

Marco Miliucci (LNF-INFN)

Veto systems and trigger: Alessandro Scordo (LNF-INFN) Luminometer: Magda Skurzok Alessandro Scordo (LNF-INFN) **Monte Carlo simulations:** Diana Sirghi (LNF-INFN) Michael Cargnelli (SMI) Data analysis group: Luca De Paolis, Raffaele Del Grande, Alessandro Scordo, Magda Skurzok, Diana Sirghi (LNF-INFN) Marlene Tuchler (SMI) **VOXES** system: Alessandro Scordo (LNF-INFN) Germanium detector system: Damir Bosnar (Uni. Zagreb)

DAFNE vs x-ray TUBES (raw) (BUS 5 CH 49)

DAFNE vs x-ray TUBES (calibrated spectra)

A: ⁸³Bi (L_α)

C: ⁷⁹Au (L_β)

D: ⁸³Bi (L_β)

E: ⁴⁶Pd (K_{α})

F: 47 Ag (K_a)

Calibration of SDDs with the x-ray tube in DAFNE

SDD 48 BUS 5

ADC channels

BUS configuration

Monte Carlo simulations

Simulation in the framework of GEANT4

Machine conditions – similar with SIDDHARTA 2009 (more details in the D. Sirghi talk)

First signals from the Luminosity monitor with beam

optimization with the beam in progress

DAFNE (From 2019/06/07 00:00 To 2019/06/08 00:00) plots

The Monte Carlo simulations for kaonic deuterium

KH results: $\varepsilon_{1s} = -283 \pm 36(\text{stat}) \pm 6(\text{syst}) \text{ eV}$ $\Gamma_{1s} = 541 \pm 89(\text{stat}) \pm 22(\text{syst}) \text{ eV}$

... internal components

... experienced adjustments