STRANEX ECT* Workshop Torent, 2019/10/21-25

φ meson in nucleus

Hiroaki Ohnishi ELPH Tohoku University

ϕ meson

$\cdot \phi$ meson:

- •Vector meson, $J^{PC} = 1$ --
- bound state of hidden strangeness (ss)
- \cdot narrow width = 4.43 MeV/c²
 - \rightarrow Long life time = 45 fm/c
- •Interaction between ϕ -nucleon :
 - ϕ -N interaction could be attractive. \rightarrow QCD van der waals interaction (multi-gluon exchange)

ømeson in nuclear matter

Progress of Theoretical Physics, Vol. 98, No. 3, September 1997

QCD Sum Rules for ρ , ω , ϕ Meson-Nucleon Scattering Lengths and the Mass Shifts in Nuclear Medium

Yuji KOIKE and Arata HAYASHIGAKI

Graduate School of Science and Technology, Niigata University Niigata 950-21

(Received April 14, 1997)

• Expected mass shift of $\phi \sim 1-2\%$ (@ $\rho = \rho_0$) = 10 MeV to 20 MeV

$$a_{
ho} = -0.47 \pm 0.05 \text{ fm},$$

 $a_{\omega} = -0.41 \pm 0.05 \text{ fm},$
 $a_{\phi} = -0.15 \pm 0.02 \text{ fm},$

Theoretical prediction for ϕ mesic nucleus

ømesic nucleus

Available online at www.sciencedirect.com

Nuclear Physics A 835 (2010) 406-409

www.elsevier.com/locate/nuclphysa

Formation of Slow Heavy Mesons in Nuclei

Satoru Hirenzaki^a, Junko Yamagata-Sekihara^b

^aDepartment of Physics, Nara Women's University, Nara 630-8506, Japan. ^bDepartamento de Física Teórica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigación de Paterna, Apartado 22085, 46071 Valencia, Spain

Available online at www.sciencedirect.com

Nuclear Physics A 835 (2010) 406-409

Formation of Slow He

Satoru Hirenzaki^a, Jun

^aDepartment of Physics, Nara Wome. ^bDepartamento de Física Teórica and IFIC, Centro Mixto U Paterna, Apartado 2208

Progress of Theoretical Physics, Vol. 124, No. 1, July 2010

Formation of ϕ Mesic Nuclei

Junko YAMAGATA-SEKIHARA,^{1,*)} Daniel CABRERA,² Manuel J. VICENTE VACAS³ and Satoru HIRENZAKI⁴

Available online at www.sciencedirect.com

Nuclear Physics A 835 (2010) 406-409

Formation of Slow He

Satoru Hirenzaki^a, Jun

^aDepartment of Physics, Nara Wome, ^bDepartamento de Física Teórica and IFIC, Centro Mixto U

Progress of Theoretical Physics, Vol. 124, No. 1, July 2010

Formation of ϕ Mesic Nuclei

PHYSICAL REVIEW C 75, 058201 (2007)

. VICENTE VACAS³

ømesic nucleus

Search for the ϕ -N bound state from ϕ meson subthreshold production

S. Liska, H. Gao, W. Chen, and X. Qian

Department of Physics and the Triangle Universities Nuclear Laboratory, Duke University, Durham, North Carolina 27708-0305, USA (Received 16 March 2007; published 30 May 2007)

The subthreshold photoproduction of ϕ mesons from heavy nuclear targets has been suggested as a candidate to search for the ϕ -N bound state, a quantum chromodynamics molecular state. In this Brief Report, we present detailed Monte Carlo studies to demonstrate the feasibility of this technique. Further, we show that proton-induced subthreshold production of ϕ meson from heavy nuclear targets is also suitable for such a search.

DOI: 10.1103/PhysRevC.75.058201

PACS number(s): 13.60.Le, 24.85.+p, 25.10.+s, 25.20.-x

Available online at www.sciencedirect.com ScienceDirect

Nuclear Physics A 835 (2010) 406-409

Formation of Slow He

Satoru Hirenzaki^a, Jun

^aDepartment of Physics, Nara Wome ^bDepartamento de Física Teórica and IFIC, Centro Mixto U

Progress of Theoretical Physics. Vol. 124. No. 1. July 2010

Formati

JOURNAL OF PHYSICS G: NUCLEAR AND PARTICLE PHYSICS

PHYSICAL REVIEW C 75, 058201 (2007)

Search for the ϕ -*N* bound state from ϕ meson subth

S. Liska, H. Gao, W. Chen, and X. Qian Department of Physics and the Triangle Universities Nuclear Laboratory, Duke University, (Received 16 March 2007; published 30 May 2007

> The subthreshold photoproduction of ϕ mesons from heavy nuclear targets ha to search for the ϕ -N bound state, a quantum chromodynamics molecular state. detailed Monte Carlo studies to demonstrate the feasibility of this technique. Furth subthreshold production of ϕ meson from heavy nuclear targets is also suitable f

DOI: 10.1103/PhysRevC.75.058201

PACS number(s): 13.60.Le,

IOP PUBLISHING J. Phys. G: Nucl. Part. Phys. 37 (2010) 085109 (10pp) doi:10.1088/0954-3899/37/8/085109

ømesic nucleus

The ϕ -NN and $\phi\phi$ -NN mesic nuclear systems

S A Sofianos¹, G J Rampho¹, M Braun^{1,3} and R M Adam²

¹ Department of Physics, University of South Africa, PO Box 392, Pretoria 0003, South Africa ² South African Nuclear Energy Corporation, PO Box 582, Pretoria 0001, South Africa

Available online at www.sciencedirect.com ScienceDirect

Nuclear Physics A 835 (2010) 406-409

Formation of Slow He

Satoru Hirenzakia, Jun

^aDepartment of Physics, Nara Wome ^bDepartamento de Física Teórica and IFIC, Centro Mixto U www.elsevier.com/locate/nuclphysa

Progress of Theoretical Physics. Vol. 124. No. 1. July 2010

Formati

PHYSICAL REVIEW C 75, 058201 (2007)

Search for the ϕ -*N* bound state from ϕ meson subth

RAPID COMMUNICATIONS

PHYSICAL REVIEW C, VOLUME 63, 022201(R)

ϕ -N bound state

omesic nucleus

H. Gao,¹ T.-S. H. Lee,² and V. Marinov¹ ¹Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 ²Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (Received 6 October 2000; published 5 January 2001)

We show that the QCD van der Waals attractive potential is strong enough to bind a ϕ meson onto a nucleon inside a nucleus to form a bound state. The direct experimental signature for such an exotic state is proposed in the case of subthreshold ϕ meson photoproduction from nuclear targets. The production rate is estimated and such an experiment is found to be feasible at the Jefferson Laboratory.

DOI: 10.1103/PhysRevC.63.022201

PACS number(s): 25.20.Lj, 13.75.Gx, 24.85.+p

th Africa a

S. Liska, H. Gao, W. C

Department of Physics and the Triangle Universities Nuclear Laborato (Received 16 March 2007; pt

> The subthreshold photoproduction of ϕ mesons from hea to search for the ϕ -N bound state, a quantum chromodynar detailed Monte Carlo studies to demonstrate the feasibility of subthreshold production of ϕ meson from heavy nuclear tai

DOI: 10.1103/PhysRevC.75.058201

PACS n

IOP PUBLISHING J. Phys. G: Nucl. Part. Phys. 37 (2010) 085109 (10pp)

JOURNAL OF PHYSICS G: NUCLEAR AND PARTICLE PHYSICS

doi:10.1088/0954-3899/37/8/085109

Theoreti

Available online at www.sciencedirect.com

Nuclear Physics A 835 (2010) 406-409

Formation of Slow He

Satoru Hirenzaki^a, Jun

^aDepartment of Physics, Nara Wome. ^bDepartamento de Física Teórica and IFIC, Centro Mixto U Search for a hidden strange baryon-meson bound state from ϕ

production in a nuclear medium

Haiyan Gao,^{1,2} Hongxia Huang,^{1,3,*} Tianbo Liu,^{1,2,†} Jialun Ping,³ Fan Wang,⁴ and Zhiwen Zhao¹

¹Department of Physics, Duke University, Durham, North Carolina 27708, U.S.A. ²Duke Kunshan University, Kunshan, Jiangsu 215316, China

P1 ³Department of Physics, Nanjing Normal University, Nanjing, Jiangsu 210097, China

J. Phys. G: Nucl. Part. Phys. 37 (2010) 085109 (10pp)

⁴Department of Physics, Nanjing University, Nanjing, Jiangsu 210093, China

U

CLE PHYSICS

PHYSICAL REVIEW C 75, 058201 (2007)

www.elsevier.com/l

Search for the ϕ -N bound state from ϕ meson subth

RAPID COMMUNICATIONS

doi:10.1088/0954-3899/37/8/085109

PHYSICAL REVIEW C, VOLUME 63, 022201(R)

ϕ -N bound state

H. Gao,¹ T.-S. H. Lee,² and V. Marinov¹ ¹Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 ²Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (Received 6 October 2000; published 5 January 2001)

We show that the QCD van der Waals attractive potential is strong enough to bind a ϕ meson onto a nucleon inside a nucleus to form a bound state. The direct experimental signature for such an exotic state is proposed in the case of subthreshold ϕ meson photoproduction from nuclear targets. The production rate is estimated and such an experiment is found to be feasible at the Jefferson Laboratory.

DOI: 10.1103/PhysRevC.63.022201

PACS number(s): 25.20.Lj, 13.75.Gx, 24.85.+p

th Africa

S. Liska, H. Gao, W. C

Department of Physics and the Triangle Universities Nuclear Laborato (Received 16 March 2007; pu

> The subthreshold photoproduction of ϕ mesons from hea to search for the ϕ -N bound state, a quantum chromodynar detailed Monte Carlo studies to demonstrate the feasibility of subthreshold production of ϕ meson from heavy nuclear tai

DOI: 10.1103/PhysRevC.75.058201

PACS n

ICAL KEVIEW C 75, 038201 (2007)

Theoreti

Available online at www.sciencedirect.com

Nuclear Physics A 835 (2010) 406-409

Formation of Slow He

Satoru Hirenzaki^a, Jun

^aDepartment of Physics, Nara Wome, ^bDepartamento de Física Teórica and IFIC, Centro Mixto U Search for a hidden strange baryon-meson bound state from ϕ

production in a nuclear medium

Haiyan Gao,^{1,2} Hongxia Huang,^{1,3,*} Tianbo Liu,^{1,2,†} Jialun Ping,³ Fan Wang,⁴ and Zhiwen Zhao¹

¹Department of Physics, Duke University, Durham, North Carolina 27708, U.S.A. ²Duke Kunshan University, Kunshan, Jiangsu 215316, China

P1 ³Department of Physics, Nanjing Normal University, Nanjing, Jiangsu 210097, China

⁴Department of Physics, Nanjing University, Nanjing, Jiangsu 210093, China

CLE PHYSICS

PHYSICAL REVIEW C 75, 058201 (2007)

PACS n

NU PH

www.elsevier.com/l

Search for the ϕ -*N* bound state from ϕ meson subth

J. Phys. G: Nucl. Part. Phys. 37 (2010) 085109 (10pp)

RAPID COMMUNICATIONS

doi:10.1088/0954-3899/37/8/085109

S. Liska, H. Gao, W. C Department of Physics and the Triangle Universities Nuclear Laborato (Received 16 March 2007; pt

> The subthreshold photoproduction of ϕ mesons from hea to search for the ϕ -N bound state, a quantum chromodynar detailed Monte Carlo studies to demonstrate the feasibility of subthreshold production of ϕ meson from heavy nuclear tai

DOI: 10.1103/PhysRevC.75.058201

PHYSICAL REVIEW C, VOLUME 63, 022201(R)

ϕ -N bound state

H. Gao,¹ T.-S. H. Lee,² and V. Marinov¹ ¹Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 ²Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (Received 6 October 2000; published 5 January 2001)

We show that the QCD van der Waals attractive potential is strong enough to bind a ϕ meson onto a nucleon inside a nucleus to form a bound state. The direct experimental signature for such an exotic state is proposed in the case of subthreshold ϕ meson photoproduction from nuclear targets. The production rate is estimated and such an experiment is found to be feasible at the Jefferson Laboratory.

DOI: 10.1103/PhysRevC.63.022201

PACS number(s): 25.20.Lj, 13.75.Gx, 24.85.+p

th Africa

Interaction between ϕ N will be attractive, but no evidence for bound state so far

Try to see a little more

Progress of Theoretical Physics, Vol. 124, No. 1, July 2010

Formation of ϕ Mesic Nuclei

Junko YAMAGATA-SEKIHARA,
1,*) Daniel CABRERA,
2 Manuel J. VICENTE VACAS
3 and Satoru HIRENZAKI
4 $\,$

No clear structure.

IOP PUBLISHING	JOURNAL OF PHYSICS G: NUCLEAR AND PARTICLE PHYSICS
J. Phys. G: Nucl. Part. Phys. 37 (2010) 085109 (10pp)	doi:10.1088/0954-3899/37/8/085109

The ϕ -NN and $\phi\phi$ -NN mesic nuclear systems

S A Sofianos¹, G J Rampho¹, M Braun^{1,3} and R M Adam²

¹ Department of Physics, University of South Africa, PO Box 392, Pretoria 0003, South Africa
 ² South African Nuclear Energy Corporation, PO Box 582, Pretoria 0001, South Africa

Table 3. Bound state results (in MeV) for the ϕ NN and $\phi\phi$ NN systems. The number in parentheses corresponds to the root mean square radius (in fm).

		Singlet			Triplet	
System	EAA	SEM	Other	EAA	SEM	Other
ϕ NN	22.88 (1.0844)	23.609	21.8 [5]	39.364 (0.8345)	39.842	37.93 [5]
$\phi\phi \mathrm{NN}$	75.473 (0.4671)			124.590 (0.4239)		

 ϕ NN bound state may exist w/ B.E~20-30 MeV

Experimental knowlege about ϕ meson in nucleus

PRL 98, 042501 (2007)

PHYSICAL REVIEW LETTERS

week ending 26 JANUARY 2007

Evidence for In-Medium Modification of the ϕ Meson at Normal Nuclear Density

R. Muto,^{1,*} J. Chiba,^{2,†} H. En'yo,¹ Y. Fukao,³ H. Funahashi,³ H. Hamagaki,⁴ M. Ieiri,² M. Ishino,^{3,‡} H. Kanda,^{3,§}
M. Kitaguchi,³ S. Mihara,^{3,‡} K. Miwa,³ T. Miyashita,³ T. Murakami,³ T. Nakura,³ M. Naruki,¹ K. Ozawa,^{4,||} F. Sakuma,³
O. Sasaki,² M. Sekimoto,² T. Tabaru,¹ K. H. Tanaka,² M. Togawa,³ S. Yamada,³ S. Yokkaichi,¹ and Y. Yoshimura³

(KEK-PS E325 Collaboration)

Experimental knowlege about \$\$\phi\$ meson in nucleus

Experimental knowlege about \$\$\phi\$ meson in nucleus

mass decreasing $\sim 3.4 \%$ decay width broaden $\sim x3.6$ mass reduction might be attraction btw ϕN

Decay width of ϕ in nucleus

Transparency ratio,

NPA765(2006)188-196 ·

$$T_A = \frac{\sigma_{\gamma A \to \phi X}}{A(\sigma_{\gamma p \to \phi X})}$$

γ A→ φX : Extracted σ φN =30 mb
Analysis : NPA 765(2006)188

σ φN expected (Theo.) ~10 mb

discrepancy between σ φN measured and expected is explained by width broadening of φ in nuclear media by factor 16!
(Γ in nucleus~70 MeV)

 $\sigma_{\phi N} \sim 10 \text{ mb}$: λ interaction ~ 7 fm $\sigma_{\phi N} \sim 20 \text{ mb}$: λ interaction ~ 3.5 fm

ϕ meson in? deuteron

Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physleth

Measurement of the incoherent $\gamma d \rightarrow \phi pn$ photoproduction near threshold

LEPS Collaboration

W.C. Chang^{a,*}, M. Miyabe^h, T. Nakano^c, D.S. Ahn^{c,d}, J.K. Ahn^d, H. Akimune^e, Y. Asano^r, S. Daté^g, H. Ejiri^c, H. Fujimura^h, M. Fujiwara^{c,i}, S. Fukui^j, S. Hasegawa^c, K. Hicks^k, K. Horie^c, T. Hotta^c, K. Imai^h, T. Ishikawa^h, T. Iwata¹, Y. Kato^c, H. Kawai^m, K. Kino^c, H. Kohri^c, N. Kumagai^g, S. Makinoⁿ, T. Matsuda⁰, T. Matsumura^p, N. Matsuoka^c, T. Mibe^c, M. Miyachi^q, N. Muramatsu^{c,i}, M. Niiyama^b, M. Nomachi^r, Y. Ohashi^g, H. Ohkuma^g, T. Ooba^m, D.S. Oshuev^a, C. Rangacharyulu^s, A. Sakaguchi^r, P.M. Shagin^T, Y. Shiino^m, H. Shimizu^h, Y. Sugaya^T, M. Sumihama^c, Y. Toi^o, H. Toyokawa^g, M. Uchida^u, A. Wakai^v, C.W. Wang^a, S.C. Wang^a, K. Yonehara^e, T. Yorita^{c,g}, M. Yoshimura^w, M. Yosoi^c, R.G.T. Zegers^x

ø meson absorption?
even with deuteron
(on single nucleon??)
Why absorption of ø takes place on deuteron?
Is this only a case with gamma induced experiment?

Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

The extraction of ϕ -N total cross section from $d(\gamma, pK^+K^-)n$

CLAS Collaboration

X. Qian^{a,*}, W. Chen^a, H. Gao^a, K. Hicks^b, K. Kramer^a, J.M. Laget^{c,d}, T. Mibe^b, S. Stepanyan^d, D.J. Tedeschi^e, W. Xu^f, K.P. Adhikari^{af}, M. Amaryan^{af}, M. Anghinolfi^w, H. Baghdasaryan^{am}, J. Ball^c, M. Battaglieri^w, V. Batourine^d, I. Bedlinskiy^z, M. Bellis^k, A.S. Biselli^{p,ag}, C. Bookwalter^r, D. Branford^o, W.J. Briscoe^s, W.K. Brooks^{al,d}, V.D. Burkert^d, S.L. Careccia^{af}, D.S. Carman^d, P.L. Cole^{u,d}, P. Collins^h, V. Crede^r, A. D'Angelo^{x,ai}, A. Daniel^b, N. Dashyan^{ao}, R. De Vita^w, E. De Sanctis^v, A. Deur^d, B. Dey^k, S. Dhamija^q, R. Dickson^k, C. Djalali^e, G.E. Dodge^{af}, D. Doughty^{m,d}, R. Dupre^g, P. Eugenio^r, G. Fedotov^{aj},

Experiment : $\gamma d \rightarrow \phi X$ ϕN cross section measured: $\sigma \phi N = 20$ mb expected: $\sigma \phi N = 11$ mb How to explain this discrepancy? Again width broadening of ϕ meson in nuclear matter even on deuteron?

Momentum dependence of transparency ratio by COSY-ANKE

Phys. Rev. C 85, 035206 (2012) [8 pages]

Momentum dependence of the φ -meson nuclear transparency

Abstract	Abstract References	
Download: PDF (396 kB	B) Buy this article Export	BibTeX or EndNote (RIS)
Hide All Authors/Affilia	tions	

M. Hartmann^{1,*}, Yu. T. Kiselev^{2,†}, A. Polyanskiy^{1,2}, E. Ya. Paryev³, M. Büscher¹, D. Chiladze^{1,4}, S. Dymov^{5,6}, A. Dzyuba⁷, R. Gebel¹, V. Hejny¹, B. Kämpfer⁸, I. Keshelashvili⁹, V. Koptev^{7,‡}, B. Lorentz¹, Y. Maeda¹⁰, V. K. Magas¹¹, S. Merzliakov^{1,6}, S. Mikirtytchiants^{1,7}, M. Nekipelov¹, H. Ohm¹, L. Roca¹², H. Schade^{8,13}, V. Serdyuk^{1,6}, A. Sibirtsev⁵, V. Y. Sinitsyna¹⁴, H. J. Stein¹, H. Ströher¹, S. Trusov^{8,15}, Yu. Valdau^{1,16}, C. Wilkin¹⁷, P. Wüstner¹⁸, and Q. J. Ye¹⁹

Momentum dependence of transparency ratio by COSY-ANKE

Phys. Rev. C 85, 035206 (2012) [8 pages]

Momentum dependence of the φ -meson n

 Abstract
 References
 Citing Articles (1)

 Download: PDF (396 kB) Buy this article
 Export: BibTeX or EndNote (RIS)

 Hide All Authors/Affiliations
 Export: 12 F Ye Deres 3 M Directed 1

M. Hartmann^{1,*}, Yu. T. Kiselev^{2,†}, A. Polyanskiy^{1,2}, E. Ya. Paryev³, M. Büscher¹, D. Chiladz Keshelashvili⁹, V. Koptev^{7,‡}, B. Lorentz¹, Y. Maeda¹⁰, V. K. Magas¹¹, S. Merzliakov^{1,6}, S. Mi Serdyuk^{1,6}, A. Sibirtsev⁵, V. Y. Sinitsyna¹⁴, H. J. Stein¹, H. Ströher¹, S. Trusov^{8,15}, Yu. Valda¹ Institut für Kernphysik and Jülich Centre for Hadron Physics, Forschungszentrum Jülich, I

Momentum dependence of transparency ratio by COSY-ANKE

Phys. Rev. C 85, 035206 (2012) [8 pages]

Momentum dependence of the φ -meson n

 Abstract
 References
 Citing Articles (1)

 Download: PDF (396 kB) Buy this article
 Export: BibTeX or EndNote (RIS)

 Hide All Authors/Affiliations

Hide All Authors/Amilations

M. Hartmann^{1,*}, Yu. T. Kiselev^{2,†}, A. Polyanskiy^{1,2}, E. Ya. Paryev³, M. Büscher¹, D. Chiladz Keshelashvili⁹, V. Koptev^{7,‡}, B. Lorentz¹, Y. Maeda¹⁰, V. K. Magas¹¹, S. Merzliakov^{1,6}, S. Mi Serdyuk^{1,6}, A. Sibirtsev⁵, V. Y. Sinitsyna¹⁴, H. J. Stein¹, H. Ströher¹, S. Trusov^{8,15}, Yu. Valda¹ Institut für Kemphysik and Jülich Centre for Hadron Physics, Forschungszentrum Jülich, I

Width increasing ? as a function of momentum Less absorption with low momentum ϕ meson ?

\$\$ meson in high temperature? \$\$ meson production in 158 GeV/c In-In collisions at CERN/SPS (NA60) \$\$ (NA60) \$\$ CERN/SPS (NA60) \$\$ meson production in 158 GeV/c In-In collisions at CERN/SPS (NA60) \$\$ meson production in 158 GeV/c In-In collisions at The second sec

mass shift and width broadening are not identified in hot nuclear matter (within detector resolution)

What do we want to know?

· Property of ϕ meson under high density environment (inside nucleus)

What do we want to know?

· Property of ϕ meson under high density environment (inside nucleus)

 1) Study on meson mass modification in nuclei using primary proton beam at J-PARC
 → detail study of f->e+e- in nucleus (J-PARC E16 experiment)

2) Search for ϕ meson bound state

Key point to produce ϕ meson bound state

We want to embedding ϕ meson in nucleus What we need ?

LEAR / JETSET

Double ϕ meson production in pp reaction

How to produce \$\$\phi\$ mesic nucleus?

Conceptual design Large solid angle charged particle spectrometer (with large gap dipole magnet)

Using antiproton beam with 1.0 – 1.1 GeV/c

Large acceptance for forward going ϕ meson (for missing mass analysis)

Large solid angle for the decay particles, $K+ / \Lambda$, from ϕ mesic nucleus

Typical event display

 $p + Cu \phi + {}_{\phi}Ni (B_{\phi} = 30 \text{ MeV})$ "\$\phi\$"+"\$p" \$\rightarrow K^+ + \$\Lambda\$ (proton & \$\phi\$ at rest) All decay processes are isotopic.

Detector simulation using GEANT4 based on conceptual detector design is in progress

Expected Signal+background

Expected missing mass distribution

with background (On Carbon target) :

(270 kW, one month)

•

Assumption for the signal $\Delta m_{\phi} = 35 \text{ MeV}$ $\Gamma_{\phi} = 15 \text{ MeV}$

Expected Signal+background

Expected missing mass distribution with background (On Carbon target) : (270 kW, one month)

Assumption for the signal $\Delta m_{\phi} = 35 \text{ MeV}$ $\Gamma_{\phi} = 15 \text{ MeV}$

•

 Well at J-PARC K1.8BR ? But we need to construct new spectrometer which has large acceptance in forward direction

 Well at J-PARC K1.8BR ? But we need to construct new spectrometer which has large acceptance in forward direction

Using Spectrometer which Masa and Fuminori presented yesterday?

Where we could perform

A new 4π detector with γ/n sensitive detectors

 Well at J-PARC K1.8BR ? But we need to construct new spectrometer which has large acceptance in forward direction

Using Spectrometer which Masa and Fuminori presented yesterday?

 J-PARC E50 Spectrometer now under construction at J-PARC High-p beamline?

High momentum beam line

- High-intensity beam: > 1.0×10^7 Hz π (< 20 GeV/c) Unseparated beam: $\pi/K/p_{bar}$
- High-resolution beam: Δp/p ~ 0.1%(rms)
 Momentum dispersive optics method

Plan for near future? Double ϕ meson production Strong OZI violated process It is very hard to understand the reason of large cross section at threshold

Double ϕ meson production Strong OZI violated process It is very hard to understand the reason of large cross section at threshold

Meson-Meson bound state?

$\phi \phi$ bound?

The reason why enhancement of the cross section of double ϕ event on threshold is not known.

contribution of f0 or f1? It is very important to measure the cross section on threshold !

$\phi \phi$ bound?

The reason why enhancement of the cross section of double ϕ event on threshold is not known.

PHYSICAL REVIEW C 90, 048201 (2014)

contribution of f0 or f1? It is very important to measure the cross section on threshold !

$\phi \phi$ bound?

The reason why enhancement of the cross section of double ϕ event on threshold is not known.

PHYSICAL REVIEW C 90, 048201 (2014) contribution of f0 or f1? It is very important to measure the cross section on threshold !

double ϕ measurement w/ J-PARC E15 spectrometer Using E15 spectrometer Solenoid L³He Magnet Target Target Large acceptance charged Z-Vertex Chamber Chamber Charge Veto Kaon Decay particle spectrometer Counter Veto Counter Cylindrical surrounding target (CDS). Drift Chamber 1.5m Hodoscope Detecting K+K- pairs from Counter ϕ decay in CDS Missing Mass [GeV/c²] Calculate invariant mass of K+K- and missing mass, then we can identify 0.95 double ϕ production incident p momentum = 1.20 GeV/c 0.9 0.95 1.05

Invariant Mass [GeV/c²]

How to identify double ϕ

angle acceptance

Summary

- The project to searching for ϕ meson bound state has been proposed to J-PARC and now we got stage-1 approval (E29)
- The most promising elementary process for the ϕ mesic nucleus production will be $pp \rightarrow \phi \phi$ channel
- The preparation of the document for the beam time request is under the way.
 (Dr. Y. Sada is working on it)