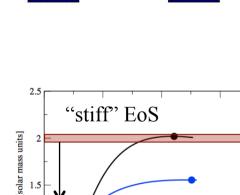
Impact of chiral hyperonic three-body forces on neutron stars

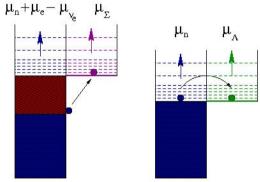
Isaac Vidaña (INFN, Catania) on behalf of Domenico Logoteta (University of Pisa)

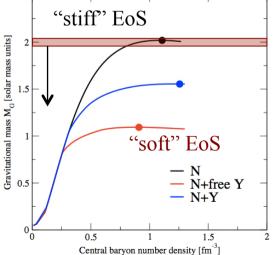
STRANEX: Recent progress and perspectives in STRANge EXotic atoms studies and related topics October 21st - 25th 2019. ECT*, Trento (Italy)

The Hyperon Puzzle: An Open Problem


Hyperons are expected to appear in the core of neutron stars at $\rho \sim (2-3)\rho_0$ when μ_N is large enough to make the conversion of N into Y energetically favorable.

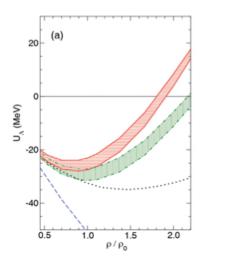
But


The relieve of Fermi pressure due to its appearance \rightarrow EoS softer \rightarrow reduction of the mass to values incompatible with observation


$$\begin{array}{ccc} \text{Observation of} & \longrightarrow & \text{Any reliable EoS of} \\ & \sim 2 \text{ M}_{\odot} \text{ NS} & & \text{dense matter should} \\ & & \text{predict } M_{\text{max}} [EoS] > 2M_{\odot} \end{array}$$

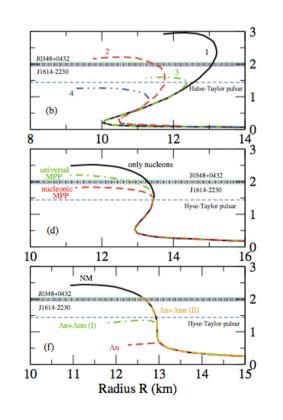
Can hyperons be present in the interior of neutron stars in view of this new constraint ?

Possible Solutions to the Hyperon Puzzle


YN & YY

• YY vector meson repulsion

 ϕ meson coupled only to hyperons yielding strong repulsion at high ρ


• Chiral forces

YN from χEFT predicts A s.p. potential more repulsive than those from meson exchange

Hyperonic TBF

Natural solution based on the known importance of 3N forces in nuclear physics

Quark Matter

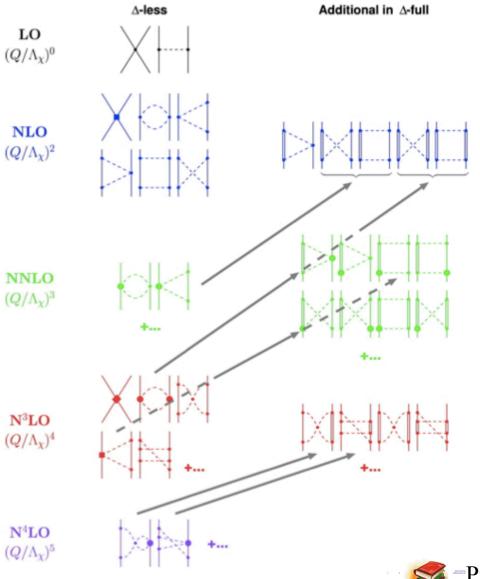
Phase transition to deconfined QM at densities lower that hyperon threshold

To yield $M_{\text{max}} > 2M_{\odot}$ QM should be

- significantly repulsive to guarantee a stiff EoS
- attractive enough to avoid reconfinement

Short Summary of the Talk

- \diamond Study of the effects of NNA force on neutron stars
 - NN at N³LO inxEFT including Δ isobar in inermediate states of NN scattering
 - NNN at N²LO in χEFT
 - NΛ from meson-exchange (Nijmegen group). Weak point of the work
 - NNA derived by the Juelich-Munich-Bonn group in χ EFT at N²LO
 - EoS & NS structure derived within the BHF approach
- ♦ Inclusion of NNA force leads to an EoS stiff enough such that he resulting NS maximum mass is compatible with current observations but the model contains only N, leptons & A's
- ♦ We have NOT SOLVED the hyperon puzzle but have taken an additional step towards its solution


In collaboration with: Ignazio Bombaci (University of Pisa)

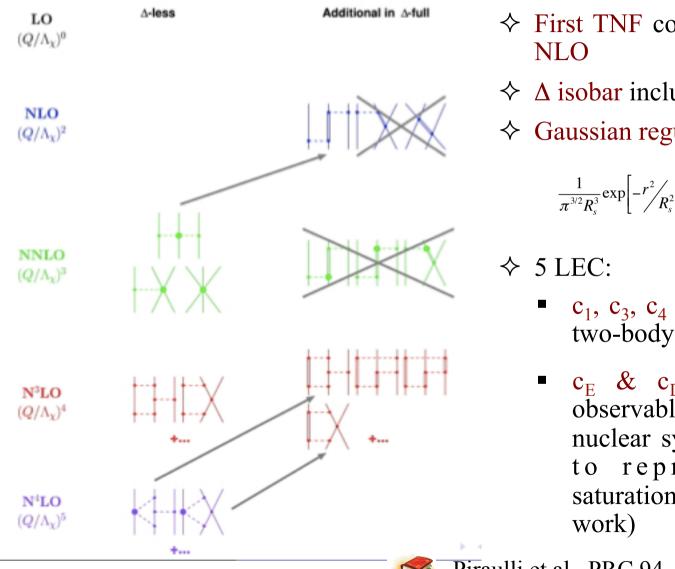
For details see:

arXiv:1906.11722. EpJA (in production)

NN interaction

- Local chiral potential derived in coordinate space
- ♦ A gaussian regulator for short range contributions

$$\frac{1}{\pi^{3/2} R_s^3} \exp\left[-\frac{r^2}{R_s^2}\right], \ R_s = 0.7 \, fm$$


♦ Long range contributions regularized with

$$1 - \left(\left(\frac{r}{R}\right)^6 \exp\left(\frac{2r}{R_I} - 2\right) + 1\right)^{-1}, \quad R_I = 1 fm$$

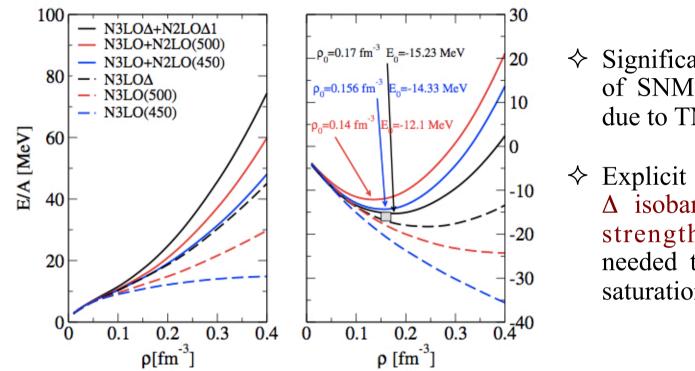
 ♦ Operatorial structure similar to the Av18 (but not the same)

Piraulli et al., PRC 94, 054007 (2016)

NNN interaction

- \diamond First TNF contribution at
- $\diamond \Delta$ isobar included
- \diamond Gaussian regulator used

$$\frac{1}{\pi^{3/2} R_s^3} \exp\left[-\frac{r^2}{R_s^2}\right], \ R_s = 0.7 \, fm$$

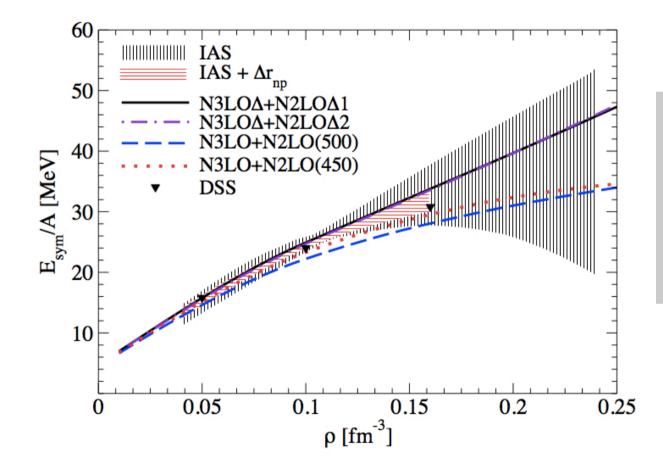

- c_1, c_3, c_4 fixed from the two-body interaction
- $c_E \& c_D$ fixed from observables of few body nuclear systems (³H) or to reproduce the saturation point (this

Piraulli et al., PRC 94, 054007 (2016)

Nuclear Matter EoS

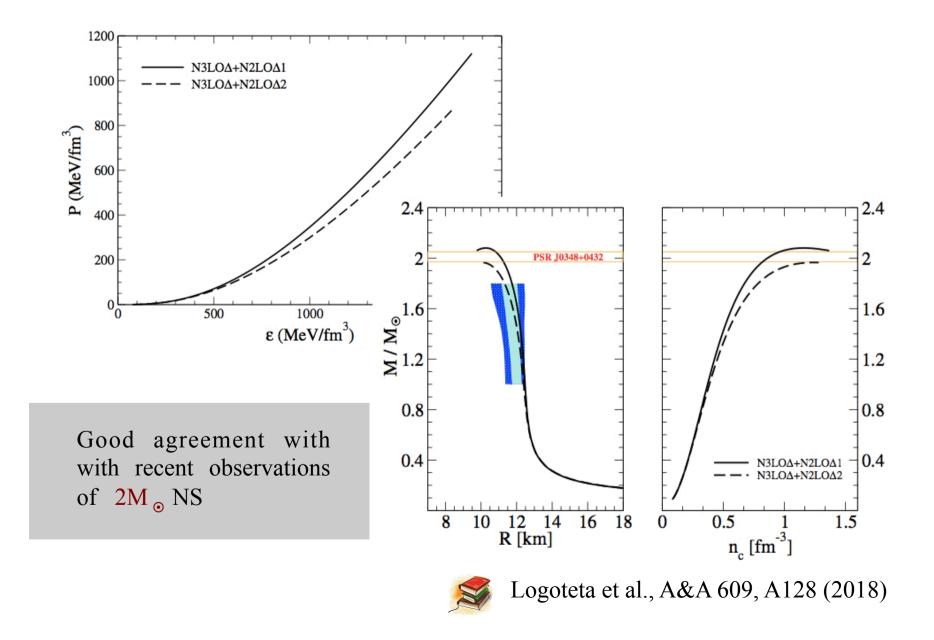
PNM

SNM


- ♦ Significant improvement of SNM saturation point due to TNF
- $\Leftrightarrow \begin{array}{l} \text{Explicit inclusion of the} \\ \Delta \text{ isobar diminishes the} \\ \text{strength of the TNF} \\ \text{needed to obtain a good} \\ \text{saturation point} \end{array}$

Nuclear Matter Properties at Saturation

Model	$ ho_0({ m fm}^{-3})$	E/A (MeV)	E_{sym} (MeV)	L (MeV)	K_{∞} (MeV)
$N3LO\Delta + N2LO\Delta 1$	0.171	-15.23	35.39	76.0	190
$N3LO\Delta + N2LO\Delta 2$	0.176	-15.09	36.00	79.8	176
N3LO+N2LO(500)	0.135	-12.12	25.89	38.3	153
N3LO+N2LO(450)	0.156	-14.32	29.20	39.8	205

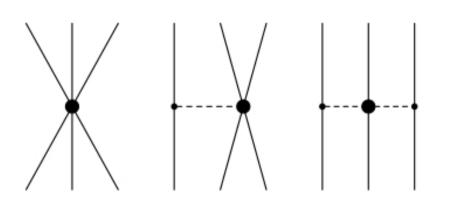

Nuclear Symmetry Energy

Good agreement with e x p e r i m e n t a l constraints from Isobaric Analog States & neutron skin thinkness

NS EoS & Structure at N³LO Δ +N²LO Δ

$N\Lambda$ interaction

 \Rightarrow NY & YY interactions in χ EFT derived by the Juelich-Bonn-Munich group


• NY at

LO: Polinder et al., NPA 779, 244 (2006)
 NLO: Haidenbauer et al., NPA 915, 24 (2013)
 Haidenbauer et al., arXiv:1906.11681

• YY at NLO: Haidenbauer et al., NPA 954, 273 (2016)

WEAK POINT OF THE PRESENT WORK: unfortunately at present we do not have at our disposal this interaction and, therefore, instead we use a NY meson-exchange interaction from the Nijmegen group (NSC97a & NSC97f)

$NN\Lambda$ interaction

 $(\pi \text{ exchange expected to be dominant, heavy meson} (K,\eta)$ exchange absorved into contact terms)

- First contributions to NNY appear in χEFT at N²LO
- ♦ Leading terms at $N^{2}LO$
 - ✓ Three-baryon contact terms
 - ✓ One & two-meson exchange
- ♦ LEC estimated through decouplet saturation. Only one LEC H' remains a free parameter. A value of H'=+-1/ f_{π} where f_{π} =93 MeV has been considered by Petschauer et al.
- ♦ In this work $H'=\beta/f_{\pi}^2$ with β a parameter fixed to reproduce $U_{\Lambda}(k=0) \sim -28 30$ MeV in SNM at saturation \longrightarrow Models NNΛ₁ & NNΛ₂
- ♦ A non-local regulator $\exp(-(p^4+p'^4)/\Lambda^4)$ with Λ =500 MeV is used

Petschauer et al., PRC93, 014001 (2016)

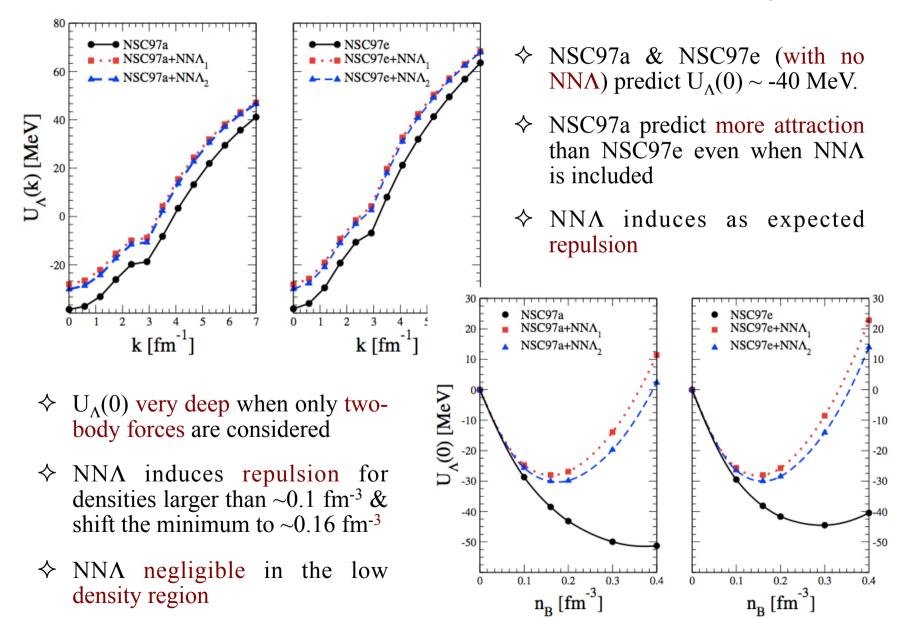
Effect of NNA interaction on hypernuclei

Before analyzing the effect of NNA interaction on NS we consider its role on hypernuclear strucure. To such end

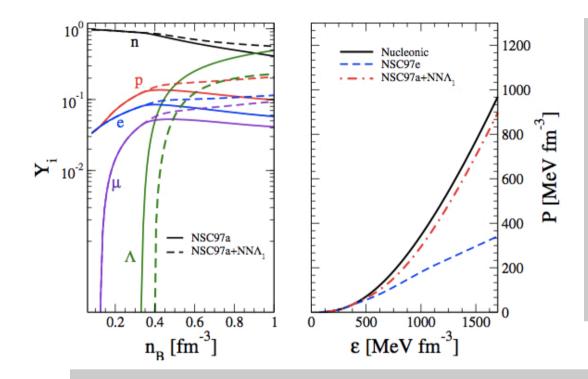
A perturbative many-body approach is employed to obtain the A self-energy in finite nuclei from which the A s.p. bound states can be obtained $G_{NM} = V + V \left(\frac{Q}{E}\right)_{NM} G_{NM} \longrightarrow G_{FN} = G_{NM} + G_{NM} \left[\left(\frac{Q}{E}\right)_{FN} - \left(\frac{Q}{E}\right)_{NM} \right] G_{FN}$ A irreducible self-energy in finite nuclei $A = \int_{a}^{b} \int_{a}^{b$

(for details of the method see Vidaña's talk on charmed nuclei on Wednesday)

Effect of NNA interaction on hypernuclei


	⁴¹ Ca	$^{91}_{\Lambda}$ Zr	²⁰⁹ Pb
NSC97a	23.0	31.3	38.8
NSC97a+NNA1	14.9	21.1	26.8
NSC97a+NNA ₂	13.3	19.3	24.7
NSC97e	24.2	32.3	39.5
NSC97e+NNA ₁	16.1	22.3	27.9
NSC97e+NNA ₂	14.7	20.7	26.1
Exp.	18.7(1.1)*	23.6(5)	26.9(8)

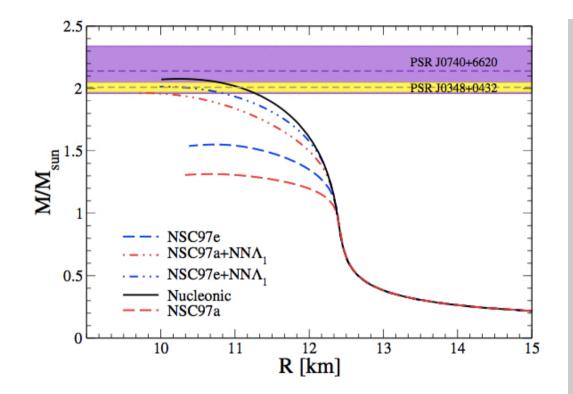
A separation energy in ${}^{41}_{\Lambda}$ Ca, ${}^{91}_{\Lambda}$ Zr & ${}^{209}_{\Lambda}$ Pb


- ↔ We consider only hypernuclei described as a closed shell nuclear core + a Λ sitting in a s.p. state. Comparison with the closest hypernucleus for which exp. data is available
- ♦ Inclusion of NNA improves the agreement with data for ${}^{91}_{\Lambda}$ Zr & ${}^{209}_{\Lambda}$ Pb.
- \therefore NNA predict too much repulsion in the case ${}^{41}{}_{\Lambda}$ Ca & lighter hypernuclei
- ♦ No refit of any parameter has been done to perform these calculatios

^{*} Taken from Pile et al., PRL 66, 2585 (1991). Not included in the recent Gal et al., RMP 88, 035004 (2016)

A single-particle potential in SNM at ρ_0

Neutron star matter EoS & Composition



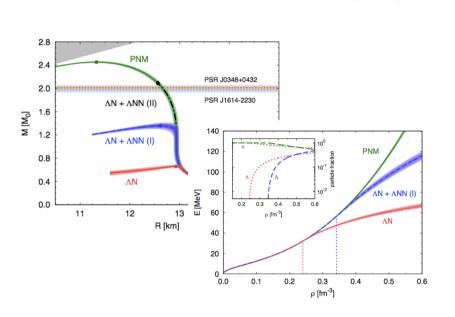
Only n, p, e⁻, μ^- & Λ included

- ✓ First exploratory work. We are interested on the role of NNA
- ✓ More complete study requires the inclusion of other hyperons (work on progress)

- \diamond The effect of NNA interaction is twofold:
 - ✓ Shift the onset of the Λ to slightly larger baryon density
 - ✓ Strong reduction of the amount of A's at large baryon densities with the consequent stiffening of the EoS compared to the case in which the NNA is not included —> important consequences for NS mass (M_{max} increases)

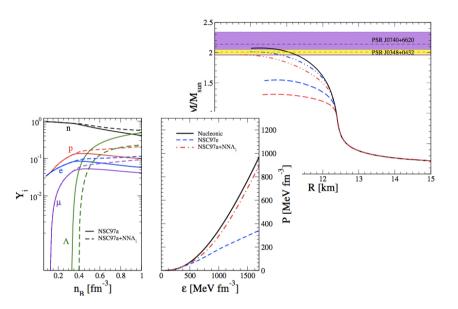
Neuron star Properties

	$M_{max}(M_{\odot})$	<i>R</i> (km)	$n_c ({\rm fm}^{-3})$
Nucleonic	2.08	10.26	1.15
NSC97a	1.31	10.60	1.40
NSC97a+NN Λ_1	1.96	9.80	1.30
NSC97a+NN Λ_2	1.97	9.87	1.28
NSC97e	1.54	10.81	1.18
NSC97e+NN Λ_1	2.01	10.10	1.20
$NSC97e+NN\Lambda_2$	2.02	10.15	1.19


NS M_{max} compatible with the largest NS observed

But

- We have ignored the presence of other hyperons in the NS interior that could change this conclusion
- ✓ Hypothetical repulsive NNY, NYY & YYY forces could lead to a similar conclusion


In view of this we CANNOT say that we have solved the hyperon puzzle

A comparison with QMC calculations

Lonardoni et al., PRL 114, 092301 (2016)

- NS matter described as mixture of neutrons & Λ's in β-equilibrium
- ♦ Simple interaction models: Av8'+UIX (nn,nnn) & Bodmer-Usmani (NΛ) potential, NNΛ (2π exchange + phenomenological repulsive term)
- ♦ The only NNA able to give $2M_{\odot}$ lead to the total disappearance of A in NS, but this in in fact just pure neutron matter

This work

- ↔ NS matter described as a mixture of n, p, e⁻, μ⁻ & Λ's in β-equilibrium
- ↔ χEFT (NN, NNN, NNΛ) + mesonexchange (NY)
- ↔ Even if the concentration of Λ's is strongly reduced they are still present in the interior of a 2M_☉ NS

Summary & Conclusions (Again)

 \diamond Study of the effects of NNA force on neutron stars

- NN at N³LO inxEFT including Δ isobar in inermediate states of NN scattering
- NNN at N²LO in χ EFT
- NΛ from meson-exchange (Nijmegen group). Weak point of the work
- NNA derived by the Juelich-Munich-Bonn group in χEFT at N²LO
- EoS & NS structure derived within the BHF approach
- Inclusion of NNA force leads to an EoS stiff enough such that he resulting NS maximum mass is compatible with current observations but the model contains only N, leptons & A's
- ♦ We have NOT SOLVED the hyperon puzzle but have taken an additional step towards its solution

- \diamond You for your time & attention
- Domenico who could not come & forced me to work double this week

