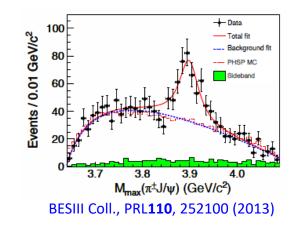
Search for a stable six-quark state in Y decays at BABAR

Alessandra Filippi

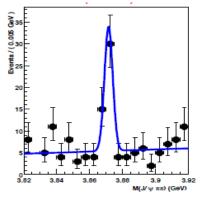
INFN Torino

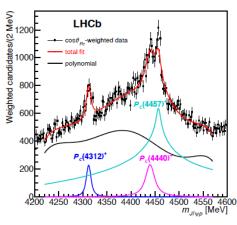
On behalf of the BABAR Collaboration


STRANEX Workshop, ECT* Trento, October 21-25, 2019

- Introduction and motivations
 - Multi-quark configurations
 - Six-quark configurations and lattice QCD expectations
 - Dark matter candidates and implications
- Analysis approach in BABAR
 - Pre-selections
 - Efficiencies and systematic uncertainties
- Results
 - Signal region and sidebands
 - Upper limits
- Conclusions

Multiquark configurations

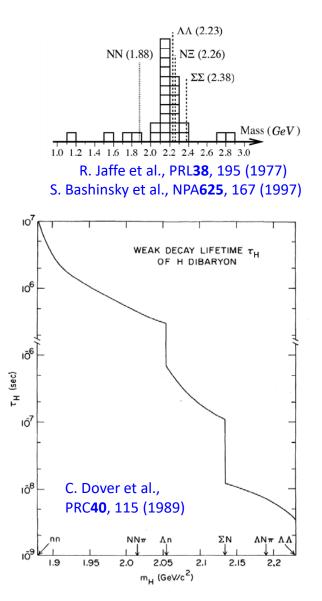

- Multiquark states allowed by QCD
- Recent observations of many-quark systems :
 - Tetraquarks
 - Belle:
 - X(3872), $J^{PC} = 1^{++}$, observed in $B \rightarrow K \pi^+ \pi^- J/\psi$
 - $Z_{c}(4430)^{+}$
 - BESIII: $Z_c(3900)^{\pm}$, observed in $\pi^{\pm}J/\psi$

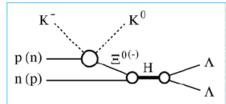


– Pentaquarks:

• LHCb: $P_c(4312)$, $P_c(4440)$, $P_c(4457)$, observed in $J/\psi p$

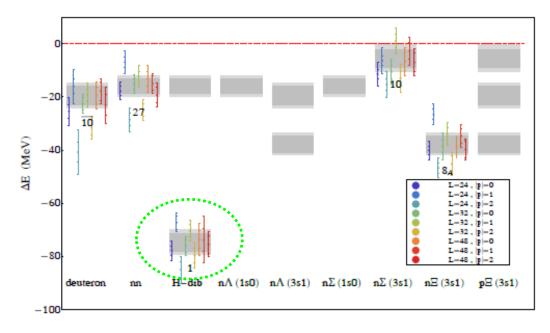
Belle Coll., PRL91, 262001 (2003)


What about 6-quark states?

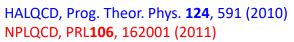

LHCb Coll., PRL122, 072002 (2019)

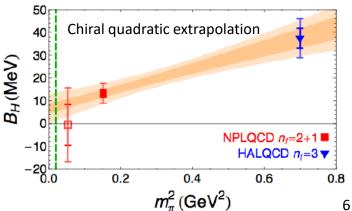
Six-quark states

- First proposed by R. Jaffe in 1977:
 H dibaryon
 - Flavor singlet state /udsuds >
 - Loosely bound AA state
 - Bag model prediction: m_H ~ 2150 MeV
 - Decay modes: if $m_H < 2m_A$ (2230 MeV)
 - Strong decay forbidden
 - Weak decay allowed, lifetime ~10⁻¹⁰ s
 - Wide expected range depending on the binding energy:
 - B.E. ~ 180 MeV: days/months
 - B.E. > 350 MeV: stable object
 - Many searches over the years in several channels, all unsuccessful
 - Main channel: one-nucleon absorption of kaons on deuterons + *Ξ* absorption
 - Double Λ hypernuclei observations set limits to mass/*B.E.* (${}^{6}_{\Lambda\Lambda}$ He)



A light H dibaryon: the S six-quark state


- Proposed by G. Farrar in 2017 as possible Dark Matter candidate (arXiv: 1708.08951)
- Tightly bound six-quark combination, doubly strange
 - S ~ |uuddss >, Q = 0, B = 2, S = -2
 - Completely symmetric spatial wave function
 - Flavor singlet: very small coupling to γ , π , ρ , ...
 - Very compact object: $r \sim 0.1-0.4$ fm (< $r_N/4$)
 - Large binding energy, smaller mass: m_s < 2.05 GeV
 - new stable hadron, $\Lambda\Lambda$ bound state
 - If $m_s < m_A + m_p + m_e = 2.05$ GeV: only doubly-weak decays allowed, cosmologically stable
 - Lower bound on mass can be fixed by non-observation of $nn \rightarrow S\pi^0$ in nuclei:
 - $-m_{s} \ge 2m_{n} m_{\pi} \approx 1.7 \text{ GeV}$
- SN interaction suppressed by tiny wavefunction overlap ($\sigma \sim 10^{-30} \text{ cm}^2$)
 - It does not bind to nuclei (no exotic isotopes)
- Not excluded so far by experiments

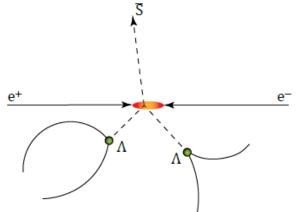

Dibaryons on the lattice

NPLQCD Coll., S. Beane et al., PRD**87**, 034506 (2013)

- LQCD calculations in the limit of SU(3) flavor symmetry, with $m_{\pi} = m_{\kappa} \approx 800$ MeV
 - Pion mass still (too) unphysical
 - Quarks are non-relativistic at this mass scale (not realistic)
 - Several bound baryon-baryon systems foreseen
 - Most tightly bound: singlet state
 - H: *B.E.* ~ 90 MeV
 - Lower binding energies expected in earlier calculations, with lower m_{π} mass

Hexa-quarks as Dark Matter candidates

- Hypothesis (G. Farrar, arXiv:1805.03723): DM formed by an equal amount of u, d, s quarks
 - Formation rate driven by QGP transition to the hadronic phase
 - DM models include hexa-quarks/quark nuggets/many-quark aggregates
 - negligible coupling to photons
- Hexa-quarks with mass 1860-1880 MeV can reproduce the ratio of densities within 15%: $\Omega_{DM}/\Omega_{B} \approx 5$
 - The total baryon asymmetry in the Universe, including Dark Matter, would be close to the observed value: asymmetric DM models
- Not excluded by current direct searches yet
- Ongoing discussion about the validity of this hypothesis (Kolb & Turner, PRD99, 063519 (2019))
 - Hexa-quarks better candidates as relics, rather than DM constituents

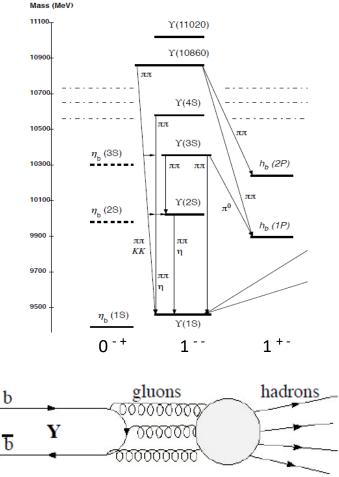


Search for S

• Viable search channels:

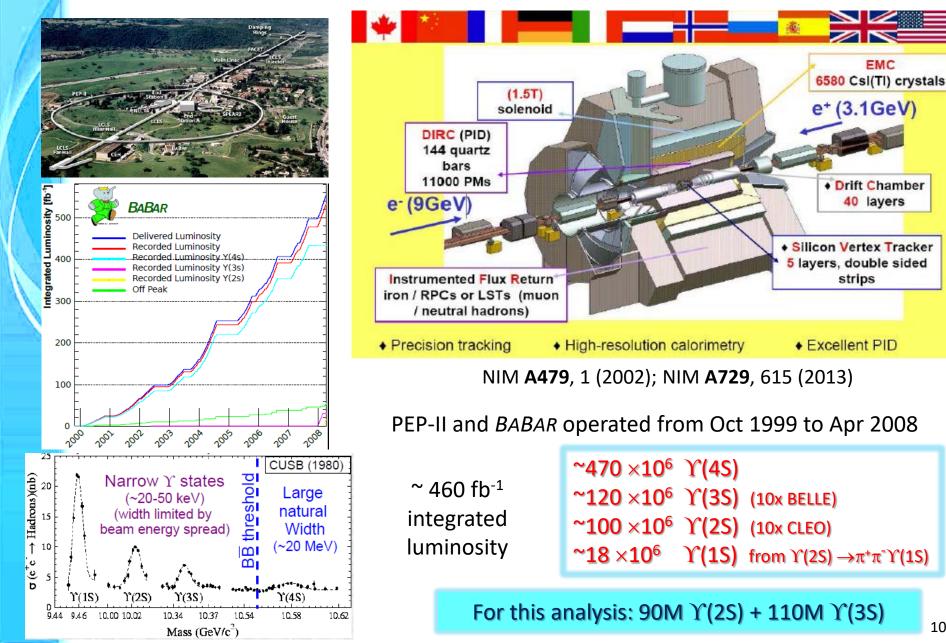
Fixed target experiments with intense beams (small rates expected)
 K⁻p → ĀS

- S production in hadronic collisions: \overline{S} annihilation along the beampipe/detector, detection of decay products B = -1, S = +2
 - $\bar{S}N \to \Xi^{+,\theta} X, \, \bar{S}N \to \bar{A}K^{+,\theta} X$
 - $\bar{S} \, n \to \bar{\Lambda} \, \, {\sf K}^{0}{}_{{\sf S}}, \, \bar{S} \, p \to \bar{\Lambda} \, {\sf K}^{+}$
- Υ decays below open-bottom threshold:
 - Υ (2S, 3S) \rightarrow gluons $\rightarrow S \overline{A}\overline{A}$ + pions / γ (+ c.c.)
 - High Λ reconstruction efficiency (c $\tau \sim 8$ cm)
 - Other discovery avenues: *Ξ* ⁻*p*, or *Λ* replaced by *K* ⁻*p*
 - Short distance nature of the gluonic force
 - Expected inclusive branching fractions (based on statistical models): O(10-7)


Missing-mass analysis for exclusive decays: S recoils against a $\overline{\Lambda}\overline{\Lambda}$ ($\Lambda \Lambda$) system in the Y center of mass

$$m_{rec}^2 = (p_{\rm Y} - p_{\overline{\Lambda}} - p_{\overline{\Lambda}})^2$$

Low-lying Υ states (below open b)


- Nearly non-relativistic
- Low lying bottomonia are the mesons with the highest energy density
 - R = 0.25 0.5 fm
 - $E/(4\pi R^3/3) = 20 200 \text{ GeV/fm}^3$
- $J^{PC} = 1^{--}$
- Υ (1S,2S,3S) annihilate to light hadrons (u, d, s, c) via:
 - 3 gluons
 - 2 gluons + γ
 - Channels with access to gluon fragmentation
 - γ*
- Strong decay suppressed (OZI rule)
- Main background from QED processes: $e^+e^- \rightarrow \gamma^* \rightarrow q\bar{q}$ + radiative corrections

- Annihilation to gluons happens at a scale R ~ 1/m_b ~ 0.04 fm
- Initial gluon density: 40 TeV/fm³

The BABAR experiment at PEP-II, SLAC

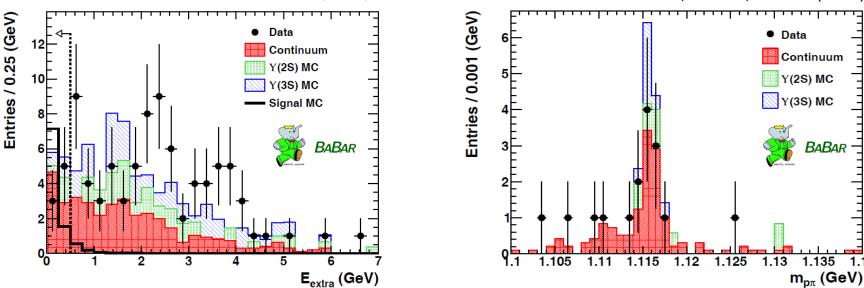
EMC

Search for Υ (2S, 3S) $\rightarrow S\overline{A}\overline{A}$ (+ c.c.) in BABAR

 π^{-}

 π^{-}

- Full reconstruction of $2x\overline{\Lambda}$ (2 Λ) decays: $\overline{\Lambda} \to \overline{\rho} \pi^+$
- Target: zero background in the signal region
- Selection criteria:
 - Four charged tracks + at most one additional track not from IP
 - Loose PID criteria to select \overline{p}
 - Selection of events with 2 \varLambda or 2 $\overline{\varLambda}$
 - flight significance for each Λ:
 - $\left| \vec{r}_{\Lambda} \right| / \sigma_r > 5$
 - Λ pointing back to IP: $\cos(\vec{r}_{\Lambda}, \vec{p}_{\Lambda}) > 0.9$
 - Minimal contribution from out of cone events + hits on ECAL not connected to tracks: E_{extra} < 0.5 GeV
 - Blind analysis (MC tuning)



Event preselection

BABAR Coll., PRL122, 072002 (2019)

- $2x\Lambda$ candidates, 5 tracks/event at most: 92 events
- E_{extra} distribution of ECAL hits
 - Signal: E_{extra} < 500 MeV: 8 events (2 entries/event)
 - True signal in $(p\pi)$ invariant mass
- Backgrounds: dominated by hadronic events with several strange baryons (typically 2Λ) and additional charged and neutral particles escaping detection

BABAR Coll., PRL122, 072002 (2019)

Last step: kinematic fit imposing mass constraint to each Λ candidate, requiring common origin from beamspot ($\chi^2 < 25$): 4 events

BABAR

1.135

1.14

Background studies

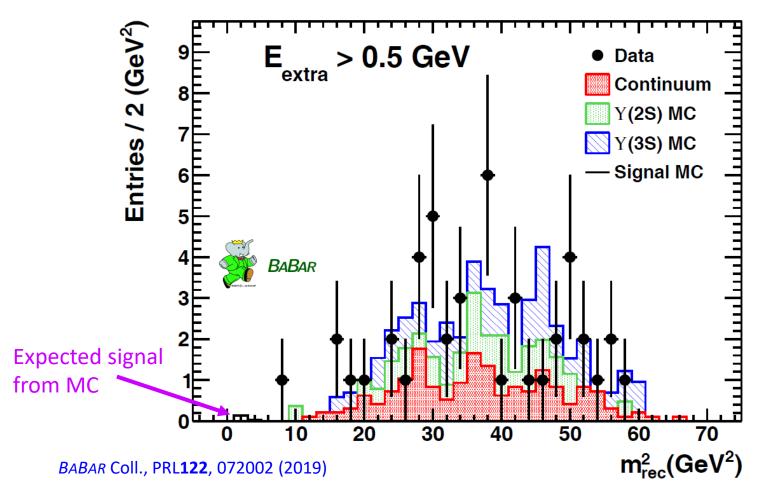
- MC generation of Y(2S, 3S) decays with EVTGEN generator
- Continuum $e^+e^- \rightarrow q\bar{q}$ from $\Upsilon(4S)$ data (q = u, d, s, c)
- Background sample normalization chosen to match the sideband E_{extra} > 500 MeV distribution
- Remaining background (may filter through the *E_{extra}* selection):
 - $e^{+}e^{-} \rightarrow \Lambda \Lambda \overline{\Lambda} \overline{\Lambda} (X) \text{ with the two } \Lambda \text{'s}$ decaying in the neutral channel $\Lambda \rightarrow n\pi^{0}$

Efficiencies evaluation

- Necessary for the determination of branching fractions
- The efficiencies have been obtained by simulations of the signal MC based on:
 - different models for decay amplitudes
 - 1. G. Farrar: effective Lagrangian with constant matrix elements combined in different arrangements according to the relative angular momentum
 - 2. phase-space flat decays
 - Different interaction patterns of *S* with the detector materials
 - 1. As a neutron
 - 2. Non interacting (as a neutrino)
- Differences used as systematic uncertainties
- The efficiency is mainly determined by the geometrical acceptance
 - 7.2% at threshold, 8.2% @ 2 GeV
- *Mass resolution* (on recoiling mass) in *BABAR*: ~ 100 MeV

Systematic uncertainties

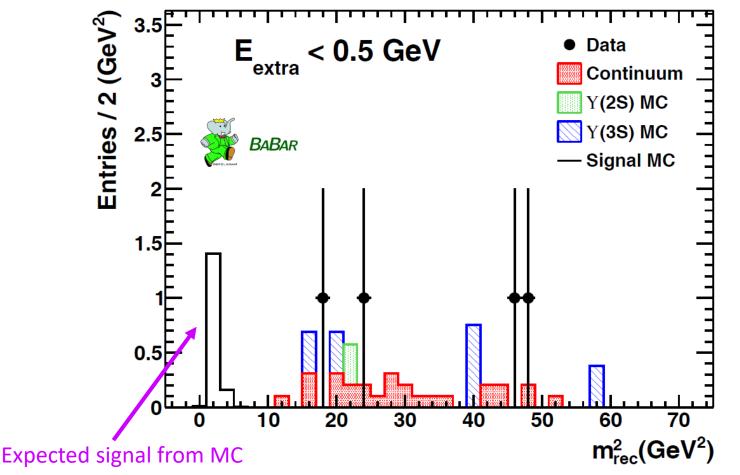
- Main sources:
 - MC signal modelling
 - Production amplitude \Rightarrow different angular distributions
 - S interactions in the detector (neutron? neutrino?)
 - Data/MC differences in the reconstruction, PID


Source	Systematic error
S angular distribution modelling	(4-15)%
S interactions modelling	(8-10)%
Λ reconstruction	4%/ ⁄/
proton/antiproton PID	1%/p
MC sample size	1.5%
arLambda branching fraction	1.6%
<i>Y(2S, 3S)</i> counts	0.6%

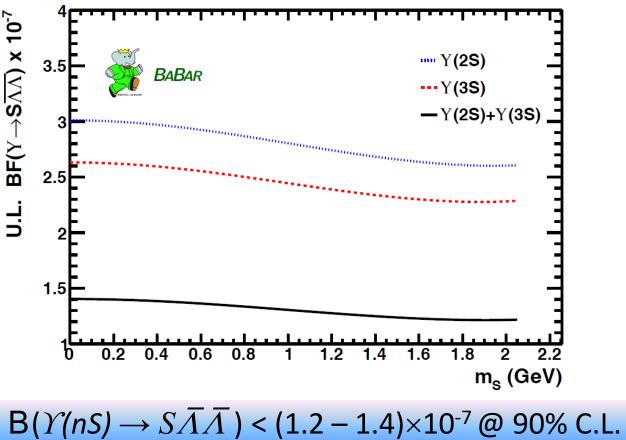
Total systematic uncertainty: (12.8-16.1)%

Validation on sideband: *E_{extra}* > 0.5 GeV

- Study of m_{rec}^2 distribution for events in the sideband (combined Υ (2S) and Υ (3S) datasets)
 - Zero background event in the expected signal region (0 5 GeV²)


• Signal region expected to be background free

Signal region: *E_{extra}* < 500 MeV


- No event observed in the expected signal region
- MC signal simulated in the hypotheses:
 - $m_{s} = 1.6 \, \text{GeV}$
 - $B(\Upsilon(nS) \rightarrow S\overline{A}\overline{A}) = 10^{-7}$

BABAR Coll., PRL122, 072002 (2019)

Upper limits: **B**($\Upsilon(nS) \rightarrow S\overline{A}\overline{A}$)

- Scan on S masses in the (0 2.05) GeV range in 50 MeV steps
- No signal event observed
- Set upper limit at 90% C.L. using profile likelihood method (single event sensitivity: one event, zero bck) including systematic uncertainties

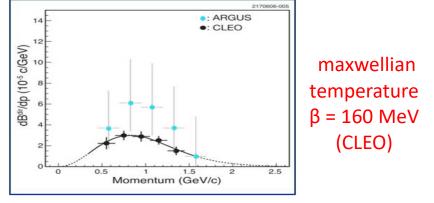
BABAR Coll., PRL122, 072002 (2019)

Conclusions

- Some interest recently revived in the search for stable six-quark states as possible baryonic Dark Matter candidates
- 200 millions Υ (2S,3S) decay events analysed by BABAR to search for signatures of $S = |uuddss > six-quark state recoiling against <math>\overline{AA}$ (AA) pairs
- No signal found, no background
- Stringent limit set, at 90% C.L.:
 - B(Υ (2S, 3S) → $S\overline{A}\overline{A}$) < (1.2 1.4)×10⁻⁷

BABAR Coll., PRL122, 072002 (2019)

- This limits add up to a former measurement by Belle for S production in $\Upsilon(1S,2S)$ decays, with S recoiling against $\Lambda p\pi^{-}$ or $\Lambda\Lambda$: (0.8 33) ×10⁻⁷ Belle Coll., PRL110, 222002 (2013)
- The exclusive branching fraction could be too small than BABAR's sensitivity
 - Need to look for semi-inclusive decays: $\Upsilon(nS) \rightarrow S\overline{A}\overline{A}X$
 - Analysis ongoing, but probably the available BABAR statistics won't be enough

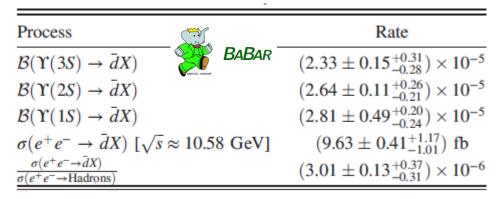


Backup slides

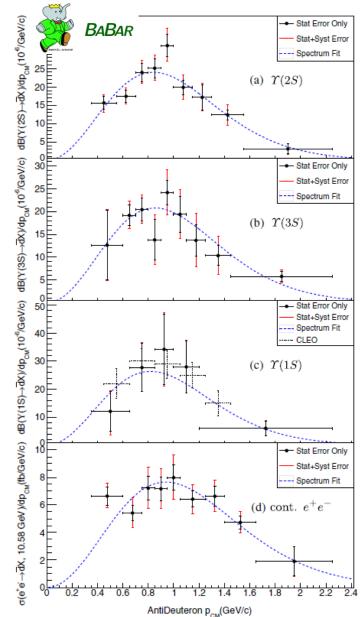
(Anti-)deuteron formation models: fireball and coalescence

• Fireball spectrum for C.M. $d(\bar{d})$ energy: thermal production

 $P(E) = \alpha v^{2}(E) \exp(-\beta E) =$ $= \alpha \frac{E^{2} - m_{d}^{2}}{E^{2}} \exp(-\beta E)$


PLB98 (1981) 153 - PR131 (1986), 223

- Coalescence: production of the bound state expected when (pn)(pn) are emitted nearby in phase-space
 - The relative *p** momentum is ~ deuteron binding energy (or smaller)
 - The $d(\bar{d})$ production is related to the square of the nucleon σ_{prod}
 - Coalescence volume $4\pi p_0^3/3$: related to the spatial size of \overline{d} wave function and the size of the fragmentation region (CLEO: 130 MeV/*c*)
 - No correlation between the momenta of nucleons produced in the same fragmentation


Inclusive antideuteron production in Υ

decays at **BABAR**

BABAR Coll., PRD**89**, 111102(R) (2014)

- Agreement with CLEO $\Upsilon(1,2S)$ results: fits of the \overline{d} yields to a fireball spectrum
- Results: integral of the fireball spectrum
- Production of \overline{d} measured from $q\overline{q}$ continuum @10.58 GeV and $\Upsilon(1,2,3S)$ decays
 - First measurements from continuum and $\Upsilon(3S)$
 - Most precise measurement from Y(2S)
- Orders of magnitude smaller than ordinary branching fractions
- Decreasing *BF* with c.m. energy
- Suppressed production in $q\bar{q}$ vs gluons
 - Slightly harder spectrum from continuum

