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Vanishing of the Cheshire cat (illustrations by J. Tenniel for
the original 1865 edition)

‘Well! I've often seen a cat without a
grin,” thought Alice; ‘but a grin
without a cat! It’'s the most curious
thing | ever saw in my life!l’



Quantum Cheshire cat in interferometric setups
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Fig. Denkmayr et al, momentum
Nature Comm. 2014

How can this be measured ?
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Weak measurements and
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1. Measurements in Quantum Mechanics

The question we will be interested in throughout :
what is the value of a physical property between two
measurements?
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1. Measurements in Quantum Mechanics

Measurements are special in quantum mechanics

Postulates on

e Representation of physical states (vectors...)

e Time evolution of state vectors (Schrodinger eq)

Quantum measurements postulates

1. Each dynamical variable A is represented by a Hermitian operator A whose
eigenvalues ay are the possible values that the dynamical variable can take

2. Born’s rule: Py (ar) = [(ax| 15/’)‘2

3. Post-measurement state: |ax) (ax| ©) (projection, reduction...)



1. Measurements in Quantum Mechanics

Simple case: Qubit (spin 2)

Initial state \L’i’> — iy H) T |_>

spin componentalongz 0z |£) = £1|£)
Premeasurement state: "action of the operator on the initial state”

5pin % value

) =arlt)—aly 008

Projection
+) (+ ) or =) (=] )

Probabilities

Py(x1) = [(£] ) = |zl



1. Measurements in Quantum Mechanics

Eigenstate-eigenvalue link

System property defined < Eigenstate of observable (Dirac)
=> Initial state of the system disturbed

* Dby the interaction with the “pointer”

* Dby the projection (effective collapse)

U) = ay |+) +a_|-)

o, |£) = +1|%)
Premeasurement state: "action of the operator on the initial state”

oz |[P) = ay |4) —a_|-=)

Projection
[+) (+[ ) or =) (=] )

Probabilities

Py(£1) = (£ )7 = [axl”



= jnterferometer (without BS2)

which path took a
particle detected at D,?
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1. Measurements in Quantum Mechanics

= jnterferometer (without BS2)

which path took a
particle detected at D,?
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1. Measurements in Quantum Mechanics

2.3 Quantum pointers: Yon Neumann model

Initially ¢t = #; the system is prepared in state |1(t;)).
Another quantum system (the pointer) is in state |¢(t;)) (eg Gaussian)

(@l ¢(t)) = ———g exp |~
Tl @lty)) = exp | ——

LA (2752) /4 P72 ¢
Total initial quantum state is the uncoul\?led state | gy gTem

(W (t:)) = [¥(t:)) [p(ts)) -
| ) 100“».)1‘(;\(\ (QVQJ\JCWV\)
We assume the system and the pointer will interact during a brief time interval
7 centered around t = fy (physically corresponding to the time during which
the system and the quantum pointer interact). Let the interaction Hamiltonian
be specified by — > SqsTem  opsEavant

int j( 0, ' > PONTER \}A\(L\Ab\—e—

g(t — tg) is a smooth function non-vanishing only in the interval tg + 7/2 <
t < tg+ 7/2 and such that g = ﬁ:’j:/f q
constant.

(t)dt appears as the effective coupling



1. Measurements in Quantum Mechanics

Von Neumann model

(] W(0) = 3 Gan] 0000 o) (ol exp (—GanP) ()
k

— Z (ag| V(t;)) |ak) o(x + Gag, t;)
k

EV\%Q&%[(A S'KQJCC

e Each pointer state pp(x,t) = p(x+Gay, t;) is correlated with an eigenstate
lai.) (CAVEAT: orthogonality)

e Each pointer state o (x,t) is shifted proportionally to the eigenvalue ay.

Entangled state: superposition of different configurations

Definite outcome: random projection to ¢y, (x,t) correlated with |ag,)
(MEASUREMENT PROBLEM )

e Premeasurement state radically modified (i) by H;,.;; (ii) by the projection



1. Measurements in Quantum Mechanics

= jnterferometer (without BS2)

which path took a
particle detected at D,
orD,?
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1. Measurements in Quantum Mechanics

= interferometer (with BS2)

D, which path took a
particle detected at D,?
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1. Measurements in Quantum Mechanics

Delayed choice (Wheeler 1983)

= “paradox”: delay insertion of BS2 after the particle
has passed the path detectors

wave or particle aspect

D
.1 depend on our choice
just before the final
D b, detection

. L e e gen) i o eeaen e
we made our decision. This is the sénse in which, 1n a loose
way ot speaking, we decide what the photon shall have done
atter it has already done it. In actuality it is wrong to talk of
the “route” of the photon. For a proper way of speaking we
recall once more that it makes no sense to talk of the phe-
nomenon untl it has been brought to a close by an irrever-
sible act of amplification: “No elementary phenomenon is a
phenomenon untilitis a registered (observed) phenomenon.”

O.A. WhEELER



Delayed choice - Context dependence (Wheeler 1983)

* With pointers: particle aspect
« Without pointers : with BS2 wave aspect is inferred but
cannot be detected

. L e e gen) i o eeaen e
we made our decision. This is the sénse in which, 1n a loose
way ot speaking, we decide what the photon shall have done
atter it has already done it. In actuality it is wrong to talk of
the “route” of the photon. For a proper way of speaking we
recall once more that it makes no sense to talk of the phe-
nomenon untl it has been brought to a close by an irrever-
sible act of amplification: “No elementary phenomenon is a
phenomenon untilitis a registered (observed) phenomenon.”

O.A. WhEELER



1. Measurements in Quantum Mechanics

The question we will be interested in throughout :
what is the value of a physical property between two
measurements?

~
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Standard answer from standard quantum mechanics:
the question is meaningless, since a measurement would
be needed, and that measurement would break the
original system evolution (state projection).
Counterfactual reasoning leads to paradoxes (Bohr,
Wheeler...)



Three Box Paradox (Aharonov and Vaidman JPA 1991)
= 1 particle and 3 boxes

o] |A) J J
f o] |B) f
! ! oJ |C)

particle in box A particle in box B particle in box C

General guantum state:

) =alA)+ 5[B) +~[C)



Three Box Paradox
= Open a box : projectors

o |4) J f

f of |B) f

} } ] |C)
V) = ald) +5[B)+7|C)

[Ip = |B) (B]
Iy |B) = +1|B)
[Ip (a|A) +v[C)) =0(a|A) +~|C))



Three Box Paradox
= Where can we find the particle between t=t. and t=t; ?

4) OJ 14) £

B) (P ——— B) ()
)Y (T C)

Initial state: Final state (eigenstate of some
observable).

1 _ 1 _
|¢;@->:\/§(|A>+|B)+|c)) |7r/ff>—\/§(|A>+|B> 1))

pre-selection post-selection



Three Box Paradox
= At some intermediate t, is the particle in box A ?

A) } 4)
B) —— B) (7

& o OF
Initial state: i) = % (51) +‘|B) + |C>)'

|
eigenvalue 1 eigenvalue 0



Three Box Paradox

= At some intermediate t, é’is)the particle in box A ?

4) 67 i 4)
1B) —— B) (7
)63 o )63
4y +1B) + )

V3 / \ J

|
eigenvalue 1 eigenvalue 0

Initial state:  |) =

1
Constraint: final state  |¢¥yf) = 7 (|1A) +|B) —[C))

=) The particle MUST have been in box A )10 L )



Three Box Paradox

= At some intermediate t, is the particle in box B ?

4) OJ A) (F
B) \%_. B) (7

)6 sy O

Initial state: Vi) = %f/B) + |A4) + |C))
\ J

eigenvalue 1 eigenvalue 0

1
Constraint: final state  |¢¥yf) = 7 (|1A) +|B) —[C))

=) The particle MUST have been in box B

[A) +1C) L 1¢n)



The paradox

« At some intermediate t, we are sure to find the particle
in box A but also in box B (though there is only one
particle)

« Paradox €=>» projective measurements and
counterfactual reasoning

« But this is forbidden: the experimental setting is
modified, postselection may not happen... The paradox is
dissolved... but what happens at an intermediate time ?

14y OF 14) £

B) (I To~—p 1B) 7
C) (] = C)




The question we will be interested in throughout :
what is the value of a physical property between two
measurements?
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Non-standard answer from standard quantum
mechanics: weak measurements



2. Weak Measurements

2. weak coupling

~

U (t:)) A
1. preselection \t-b |¢(tf)> 3. postselection

4. weak pointer readout

Non-standard answer from standard quantum mechanics:

Weak Measurements

« at some intermediate time t a weak unitary interaction couples the
system to a weak pointer

« the system largely unperturbed reaches the same final state (as in
the case of no weak interaction)

* the projective measurement on the system at t; also projects the
weak meter wavefunction to a final state, revealing information on
the weakly measured observable



2. Weak Measurements

weakly coupled meter (ancilla
dynamical variable) whose
guantum state acts as a pointer

¥ (ti)) A
= [V(t/))

Weak Measurements

* Introduced by Aharonov et al over a number of years (ABL Phys Rev
1964 - time symmetric quantum mechanics, Aharonov Albert & Vaidman PRL

1988 weak values, Phys Today 2011 quantum properties)

« Recent increase in the number of works dealing with weak
measurements, incl notable experiments

« Useful as a tool to amplify small signals and estimate unknown
parameters



2. Weak Measurements

2. weak coupling

U(:)) A

1. preselection

3. tselecti
t§}|1/)(tf)> postselection

4. weak pointer readout

Weak Measurements

1. Preselection (state preparation)
Weak coupling (between A and a dynamical variable of the weak
pointer)

3. Postselection (projective measurement of a different system
observable B, selecting a given outcome)

4. Weak pointer readout: weak value of A, given the preselected and
postselected states.




Weak Values

Operationally, value indicated by the weak pointer
readout

It is different from the eigenvalues and can lie outside
the eigenvalue range



3. Weak measurement protocol

Weak Values

« Operationally, value indicated by the weak pointer
readout (complex number)

It is different from the eigenvalues and can lie outside
the eigenvalue range

« Universal in the weak coupling limit: the derivation in
the asymptotic limit gives the expression

w (X (tw)| A |)(ty)y= Preselected state
(xsllv)y = Oc(ta)| 5 (20)) (evolved forward in time)
w R T
weak value /

postselected state
(evolved backward in time)



3. Weak measurement protocol

Weak Values: properties
Expectation value

<A>|¢} = (V(tw)| AlY(tw))
| (a] '*#-’(tw)}l Ak
k

/-\(—/
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-
DeERWATIoN of wV ExfaessionN

Same as Von Neumann measurement except that coupling is weak (asymp-
totic expansion) and that final projection (postselection) due to the measure-
ment of another observable B.

Total Hamiltonian

H = Hy+ Hint

Interaction Hamiltonian:

Hi: =gt —t,)AP

g(t — ty) is a smooth function non-vanishing only in the interval t,, + 7/2 <

t < t,+7/2 and such that G = f;"j:f; g
constant.

Ul(ty,t1) will denote the “free” system evolution generated by Hy. No self-
Hamiltonian assumed for pointer.

(t)dt appears as the effective coupling



STEP 1: PRESELECTION |¢(t;)) and total initial quantum state is the un-
coupled state

[W(t;)) = [W(t:)) le(ts)) -
Then the system evolves up to time f,, — 7/2 when the interaction takes place.

STEP 2: WEAK COUPLING. At t = t,, + 7/2 the system and pointer have
interacted and the total state |¥(¢)) becomes

i pt=twtT/2
|U(t)) = exp (hft g(t" — tﬂ)APfﬁ) Ultw — 7/2.8;) [(t:)) |o(t:))

w—T/2

= exp (—%G’AP) [V(tw)) |o(ts)) (midpoint)

- (f - 0P ) 4(t) [e(t))  (“C small”)

( S exp (—%G’akp) (ag| ¥(ty)) |ax) |‘P(tz)>)

k



STEP 3: POSTSELECTION. At t =1ty

¥(t7)) = Uty t) (1= 5GAP ) ot o(6)

and a projective measurement i1s made for an observable B with eigenstates
|br.). Let us only keep the results corresponding to a chosen eigenvalue by, and
label the postselected state by

‘\(ff)) = ‘bko>

Then the pointer state correlated with postselection is |p(tf)) = (x(tf)] U(tg))

()| W) = <w) (1= 5GAP ) oteu) o)
= (x(tw)| (I — —CAP) |10 (tw)) [o(ti)) (backward evolution)

) O AR Y |
= (x(tw)] ¥ (w»( 2ot )\cp(tm

) AT )
= ((t)l (tw»exp( Fei Gl eliel p) e

L i L FNaL §SATE of
[p(tr)) = (X(tw)] ¥(tw)) exp ( h(r _1(‘(f| 1) ) lo(:)) ch, \ME_P\‘\(L\{
where _ (,o\)f\k() QO\' NTQ’(\

(x(tw)| A ‘?:J(tw»
(x(tw)] uf"(tw»

AV = AL i =

1s the weak value of the observable A.



STEP 3: POSTSELECTION. At t =ty

¥(t7)) = Ultyota) (1= 5GAP) [6(6) o(05)

and a projective measurement 1s made for an observable B with eigenstates
|br). Let us only keep the results corresponding to a chosen eigenvalue by, and
label the postselected state by

X(27)) = |bro)

Then the pointer state correlated with postselection is |@o(tr)) = (x(t7)] Y(tf))



3. Weak values

((t)] W(tp)) = ()| Ut tu) (I - %GAP) () ()

= (x(tw)| (I - —C’AP) |(tw)) |o(ti)) (backward evolution)

= (xttu)l w(t)) (1 56 ) ) o)

()] A ()
)] ¥(tw))

CA?;( 1,1%) ) lo(t:))

— (x(tu) vt o (5 P)lo(6)
h

o(t)) = (x(tw)] (t) exp (

where

w g (X(tw)lAh’j(tw)}
AT =401 = T ) D)

1s the weak value of the observable A.



3. Weak values

STEP 4: WEAK POINTER READOUT The quantum state of the pointer is

Z. w
i) o exp (—£GA"P) [o(00)
A" extraction depends on form of pointer state. For a Gaussian pointer ¢(x, ;)
e(z,tf) o (x| exp ( 7 Awp) lo(1:))

o plr+ GAY ;)

but validity of the asymptotic expansion implies ¢(x, ;) broad.
Expansion

(e ()] (1) = (ol xttw) exp ( ~5GAP ) ot e(e)

(X (tw)| ¥(tw)) — %G' (X(tw) A [t (tw)) (—ih0r)

(E ) (v (tw)] A Iub(tw))(iﬁaw)g}e}‘p (222*’*)

1
2
= {l (t)) = 56 ] ATt (i 55)
1
3

(; ) (x(tu)] 42 [i0) (i) 2A4’3‘2)+...}9Xp (~557)




3. Weak values

(e ()] () = (ol (xttw exp (=5 GAP ) o0 ()

(X (tw)] ¥(tw)) = %0 (X(tw)| Al (tw)) (—1hOe)

(;G)Q (X(tw)] A2 [U(ty)) (iﬁam)g} =P (2;)

()l () = G (x ()| Al(t) (ih i)

(50) (Nt 42 o) (it (25 ) + } (57

e It A~ 0, r— x¢: cannot work.

_|_

o] = ——

_|_

e It A large, v ~ KA with Kk ~ 1 and

(X (tw)| A [¢(tw))
(X(tw”A |w(tw})

A>G




5. Boxes and Cats

Example : Three Box Paradox
= Where can we find the particle between t=t. and t=t; ?

4) OJ 14) £

B) (P ——— B) ()
)Y (T C)

Initial state: Final state (eigenstate of some
observable).

1 _ 1 _
|¢;@->:\/§(|A>+|B)+|c)) |7r/ff>—\/§(|A>+|B> 1))

pre-selection post-selection



4. The Three-Box Paradox

Weak values

e ChamaVty Te =4
<“J(Jol°b>

&
||
5
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Weak values of spatial projectors
(HA>w =1 (HB)w =1

[1; =1-1TI4 = [B)(B| + |C){C|
(H )w =0

A
J. Phys. A: Math. Theor. 46 (2013) 3153 T A Matzkin and A K Pan

3 box paradox
for spin-1 atoms

Stern Gerlach
No weak trace here ?



Discontinuous weak trajectories

Nested Mach-Zehnder interferometers: couple several weak
meters along the paths (vaidman et al PRA 87, 052104 2013; PRL 111, 240402 2013)

Weakly coupled pointers measure the particle’s presence at their location (weak
value of spatial projectors)
Initial state of each meter:

|
|

C

E

PRE-SELECTION \ POST-SELECTION
-
t=0 t) = t3 ty

Duprey & Matzkin PRA 95, 032110 2017




Discontinuous weak trajectories

Weak Trace criterion (Vaidman): the particle was not present in
regions where the projector weak values vanish (the particle’s
spatial presence cannot be detected) = paradox

M1

;
t |
&

Cp C

@

\ POST-SELECTION
M3 ..@
t=0 t 2 ts

BS3

ty



Weak trajectories

TDLO

P RoP AGATION
0¢ Lo\l EeaenT
AL n\a/\si)
eyt Cal &m}m\’me)
(,SQW‘\ - LleSH Ca\
V(ego%m\(oq




Weak measurements of trajectories

Weakly coupled pointers on a grid, Postselection at t = tf

(€) (d)

rp|Ulty, tw) |v) (r|U(tw, t:) [¢4)
(rp| Uty t;)|vn)

()] = |

The quantum pointer “fires” if

e r; lies on a classical trajectory emanating from the initial quantum state
centered at rg

e the pointer is placed along that particular trajectory



Weak measurements of trajectories

Weakly coupled pointers on a grid, Postselection at t = tf

[H(I‘)]w _ <I'f| U(tf, t,w) |I‘> <r| U(twj tz) |153>

(rp| Uty ti) [i)

(b)

Sum over paths

Matzkin PRL 2012, JPA 2015, Mori & Tsutsui, PTEP 2015
Sokolovski PLA 2016, Georgiev & Cohen PRA 2018



Weak measurement of momentum field

Momentum weak value

<l.f| b lw@) “Bohmian” trajectories Double slit experiment
(P())w =
(r/] w)
_ . Vp(l'f, I)
= mv\( Iy, l’) lh—ZP(rf’ t) .
v

\/t\ec‘dus o I ()MHAL\(
wnYu A (brvs\\( _Borm model

Transverse coordinate[mm]

N —) )
VI = A Len
__’4_/ T 3oioo 4.0i00 5000 6000 7000 8000
. ) \_y \V ) ‘\> \ Propagation distance[mm]
q o et Steinberg et al, Science, 2011.

CUCC2nk O 8\’&\'}{



Weak measurements of different observables
Quantum Cheshire Cat effectS

Aharonov et al (NJP 2013, book Quantum Paradoxes 2005)

m* =1 (o)’ =0.

qW@ poime.r T B
Path 1 ‘
Path 11 SF '
D g
My =0 (o =1.

I— pre-selection I post-selection

« The spin left a trace where the spatial wavefunction didn’t =
spatial separation between the particle and one of its properties



Neutron Mach-Zehnder interferometric experiment

neutron
Denkmayr et al,
} J 4/- Nat. Comm. 2014

LD

\red

spin
projection
along z

Inference of weak values without making weak measurements - fit weak
values from observed intensities
= not a demonstration of the quantum Cheshire cat effect

Similar single photon expmt Ashby & al, PRA 2016
Experiments are hard to do!

Correa et al NJP 2015, Atherton et al Opt. Lett. 2015, Stuckey et al IJQF 2016, Duprey
et al Ann Phys 2018



The quantum Cheshire cat: neutron interferometric
experiment

Figure 2 | lllustration of the experimental setup. The neutron beam is polarized by passing through magnetic birefringent prisms (P). To prevent
depolarization, a magnetic guide field (GF) is applied around the whole setup. A spin turner (ST1) rotates the neutron spin by 7/2. Preselection of the
system’s wavefunction |i;) is completed by two spin rotators (SRs) inside the neutron interferometer. These SRs are also used to perform the weak
measurement of {@11;)  and (6,11}, The absorbers (ABS) are inserted in the beam paths when (I1)) and (I1,},, are determined. The phase shifter (PS)
makes it possible to tune the relative phase y between the beams in path | and path /l. The two outgoing beams of the interferometer are monitored

by the H and O detector in reflected and forward directions, respectively. Only the neutrons reaching the O detector are affected by postselection using a
spin turner (ST2) and a spin analyzer (A).



The quantum Cheshire cat: neutron interferometric
experiment




Where is the neutron located? Absorber-Path coupling

preselection postselection
1 1
=518 )+ s lSs —)l) =515 =)D +1m).

O-detector O-detector

12
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c
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IS

2 { | ABSORBER IN PATH / |  NO ABSORBER | JABSORBER IN PATH I/

_I 0 i n _x 0 i n
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Phase shift ¥ (rad) Phase shift 7 (rad)




Weak values and quantum properties

Weak measurements controversial (on the significance)

« Eigenstate-eigenvalue link €=» measurement, property
* Pointer motion, consistent with standard measurements
« Ensemble average or single shot ?

« “Generalized form of eigenvalue (aav)”?
* No corresponding “element of reality” for the system
(some eigenstate of B)

« Retrodictive effect on the pointer state

Svensson, Found Phys 2013, Alonso & Jordan, Quant Stud Math Found 2015; Griffiths PRA
2016; Duprey & Matzkin PRA 2017; Cohen, Found Phys 2017; Sokolovski Phys Lett A 2017,
Matzkin Found Phys 2019, Vaidman et al PNAS 2019



Weak values and quantum properties

Wt 3 (06 1) A+ Abya)) 1V (1))
(U (tw) b (1) 1V (1))

Re AY =

Wt 3 (Pb ;1) A — APb 1)) 1V ()
(W (tw)| 05 00) W (1)) ‘

ImAY =

ERCEITAL Y

() Q? - g Yy >
t; i
\5\ < \3% |

’ é - Zv by oy 7 <\9K\



e
Conclusion

 Weak measurements: protocol for non-destructive and non-
disturbing measurements

 Weak value (as read from pointers): value related to a partial, local,
conditioned property of a system.

« Property ascription:

eigenvalue < weak value
global prop./local Measurmt < delocalized prop./local value
“particle-like” aspect < “wave-like” aspect

* Interesting for quantum foundations (experimentally play with the
formalism), and also applications (quantum state measurement,
particle tagging, weak signal amplification for parameter
estimation)



Thanks!
Grazie!

Work in collaboration:
Q. Duprey, A. Pan (Univ. Cergy-Pontoise)
D. Home (Bose Inst.), U. Sinha (Raman Research Inst.)



