				BChPT			
0000000	00	000	00	00000000	0	0000	0000

Diquark correlations in light-cone distribution amplitudes of the baryon octet

Philipp Wein

Institut für Theoretische Physik Universität Regensburg

September 25, 2019, Trento

[based on Eur.Phys.J. A55 (2019) 116]

Motivation		BChPT		
000000				

Baryon wave functions

Schematically:

$$|B\rangle = |qqq\rangle + |qqqg\rangle + |qqq\bar{q}q\rangle + \dots$$

- very complicated
- one needs taylor-made approximations / effective descriptions for different situations
- e.g.,

Philipp Wein

Motivation 0●00000		BChPT 00000000	Extrapolation 0000	Results 0000

Inclusive vs. exclusive processes

relevant non-perturbative information

does not discriminate between Fock states Parton Distribution Function (PDF)

probability amplitude to find parton with a given momentum fraction

only Fock states with few partons relevant at high $Q^{2} \label{eq:constraint}$

Light-cone Distribution Amplitude (LCDA)

describes distribution of the momentum within a Fock state

Motivation		BChPT		
000000				

What are light-cone distribution amplitudes

- LCDAs: distribution of the lightcone-momentum within a specific Fock state
- in hard exclusive processes: Fock states are increasingly power-suppressed with a rising number of partons ⇒ 3q contribution most important!

 \Rightarrow at high momentum transfer the 3-quark contribution plays the most important role

actually, its a bit more complicated...

$$\begin{array}{ll} \underline{Q^2 \gtrsim 50 \ \text{GeV}^2?:} & \text{Form factor} = \text{DA} \circ T_H \circ \text{DA}^* & (\text{Factorization}) \\ \hline \underline{Q^2 \gtrsim 1 \ \text{GeV}^2:} & \text{Form factor} \xleftarrow{\text{LCSR}} \text{DA} & (\text{Light cone sum rules}) \end{array}$$

Philipp Wein

Motivation		BChPT		
000000				

What are light-cone distribution amplitudes

- LCDAs: distribution of the lightcone-momentum within a specific Fock state
 in hard exclusive processes: Fock states are increasingly power-suppressed with a
- rising number of partons \Rightarrow 3q contribution most important!

 \Rightarrow at high momentum transfer the 3-quark contribution plays the most important role

actually, its a bit more complicated...

$$\begin{array}{ll} \underline{Q^2 \gtrsim 50 \ \text{GeV}^2?:} & \text{Form factor} = \text{DA} \circ T_H \circ \text{DA}^* & (\text{Factorization}) \\ \hline \underline{Q^2 \gtrsim 1 \ \text{GeV}^2:} & \text{Form factor} \xleftarrow{\text{LCSR}} \text{DA} & (\text{Light cone sum rules}) \end{array}$$

Philipp Wein

Motivation 000●000		BChPT 00000000	Extrapolation 0000	Results 0000

Baryon wave functions

Schematically:

$$|B\rangle = |qqq\rangle + |qqqg\rangle + |qqq\bar{q}q\rangle + \dots$$

considering three-quark LCDAs we are only sensitive to the leading Fock state
 instead of

Motivation 0000000		BChPT 00000000	Extrapolation 0000	Results 0000

Baryon wave functions

Schematically:

$$|B\rangle = |qqq\rangle + |qqqg\rangle + |qqq\bar{q}q\rangle + \dots$$

considering three-quark LCDAs we are only sensitive to the leading Fock state
 we will see

 \Rightarrow we may find diquark correlations, but certainly no diquark (even if there was one)

Motivation				BChPT		
0000000	00	000	00	00000000	0000	0000

What diquark correlations would one naively expect in our case?

Diquark correlations are known to be large if ...

- one has large angular momentum
- heavy quarks are involved

```
see, e.g., Anselmino M. et al., Rev. Mod. Phys. 65 (1993) 1199
```

We consider:

- ground-state baryons (from the $J^P = \frac{1}{2}^+$ octet)
- quark content: up, down, strange

 \Rightarrow only mild diquark correlations to be expected

Motivation				BChPT			
0000000	00	000	00	00000000	0	0000	0000

LCDAs: connection to three-quark baryonic wave function

■ full three-quark baryonic wave functions still very complex ⇒ reduce complexity by introducing DAs

Wave function
$$\Psi$$

$$\Psi(x,k_{\perp}) = \langle 0|\epsilon^{ijk}f^{i}(x_{1},k_{1\perp})g^{j}(x_{2},k_{2\perp})h^{k}(x_{3},k_{3\perp})|B\rangle$$

$$\Phi(x,\mu) = Z(\mu) \int_{|k_{\perp}| \le \mu} [d^{2}k_{\perp}] \Psi(x,k_{\perp})$$

Three-quark DAs Φ :

- transverse quark momenta are integrated out
- \blacksquare only sensitive to light-cone momentum fractions $x_1,\,x_2,$ and x_3
- encode the momentum distribution of valence quarks at small transverse separations

Motivation 000000	Overview 00	Correlation functions	Renormalization 00	BChPT 00000000	Extrapolation 0000	Results 0000
2	Definiti					

$$\langle 0 | q^{a}_{\alpha}(a_{1}n) q^{b}_{\beta}(a_{2}n) q^{c}_{\gamma}(a_{3}n) | B(p,s) \rangle$$

$$= \int [dx] e^{-i n \cdot p \sum_{i} a_{i} x_{i}} \left[V^{B}_{1}(x_{1}, x_{2}, x_{3}) (\not{p}C)_{\alpha\beta}(\gamma_{5}u^{B}_{+}(p,s))_{\gamma} + . \right]$$

- color antisymmetrization and Wilson-lines are not written out explicitly
- **a**, b and c are flavor indices; α , β and γ are Dirac indices; n is a light-like vector
- the x_i are momentum fractions; $[dx] = dx_1 dx_2 dx_3 \ \delta(1 x_1 x_2 x_3)$
- on the r.h.s. one has 24 different structures and the same number of different DAs:

	twist-3	twist-4	twist-5	twist-6
scalar pseudoscalar vector axialvector tensor	$\begin{array}{c}V_1^B\\A_1^B\\T_1^B\end{array}$	$\begin{array}{c} S_{1}^{B} \\ P_{1}^{B} \\ V_{2}^{B}, V_{3}^{B} \\ A_{2}^{B}, A_{3}^{B} \\ T_{2}^{B}, T_{3}^{B}, T_{7}^{B} \end{array}$	$\begin{array}{c} S_2^B \\ P_2^B \\ V_4^B, V_5^B \\ A_4^B, A_5^B \\ T_4^B, T_5^B, T_8^B \end{array}$	$V_{6}^{B} \\ A_{6}^{B} \\ T_{6}^{B}$

ME decomposition by Braun et al., Nucl. Phys. B589 (2000) 381

. .

Motivation		Correlation functions	Renormalization	BChPT		Extrapolation	Results
0000000	00	000	00	00000000	0	0000	0000
	D						

3q DAs: Definition

$$0|q_{\alpha}^{a}(a_{1}n)q_{\beta}^{b}(a_{2}n)q_{\gamma}^{c}(a_{3}n)|B(p,s)\rangle = \int [dx]e^{-i\,n\cdot p\sum_{i}a_{i}x_{i}} \left[V_{1}^{B}(x_{1},x_{2},x_{3})(\not{n}C)_{\alpha\beta}(\gamma_{5}u_{+}^{B}(p,s))_{\gamma} + \dots\right]$$

- on the l.h.s. one has to choose the correct flavor content
- the order of flavors is relevant for the symmetry properties of the DAs
- a convenient choice is:¹

$$\begin{split} N &\equiv p \stackrel{\scriptscriptstyle \triangle}{=} uud \;, \qquad n \stackrel{\scriptscriptstyle \triangle}{=} ddu \;, \qquad \Sigma^+ \stackrel{\scriptscriptstyle \triangle}{=} uus \;, \qquad \Sigma^0 \stackrel{\scriptscriptstyle \triangle}{=} uds \;, \\ \Sigma &\equiv \Sigma^- \stackrel{\scriptscriptstyle \triangle}{=} dds \;, \qquad \Xi &\equiv \Xi^0 \stackrel{\scriptscriptstyle \triangle}{=} ssu \;, \qquad \Xi^- \stackrel{\scriptscriptstyle \triangle}{=} ssd \;, \qquad \Lambda \stackrel{\scriptscriptstyle \triangle}{=} uds \;. \end{split}$$

• we consider one representative from each isospin multiplet

¹see, e.g., Franklin J., Phys. Rev. **172** (1968) 1807

	Overview			BChPT		
0000000	0	000	00	00000000	0000	0000

Lattice QCD in a nutshell

- evaluate pathintegral numerically on a 4D lattice
- the quark fields q live on lattice sites

Diquark correlations in light-cone distribution amplitudes of the baryon octet

- the gauge field U is represented by 3×3 matrices on the links between the sites
- after integrating out fermionic degrees of freedom, e.g.,

$$\langle q(x)\bar{q}(y)\rangle = \frac{1}{Z}\int \mathcal{D}U \det(M[U])e^{-S_E[U]} (M[U])_{xy}^{-1}$$

 $M \equiv \text{Dirac matrix}$

- one considers Euclidean space-time (i.e., imaginary times) $\Rightarrow \det(M[U])e^{-S_E[U]}$ can be used as weight in a Monte-Carlo integration
- small problem: we cannot evaluate quark fields at light-like separations

	Overview			BChPT		
0000000	00	000	00	00000000	0000	0000

Overview: Lattice analysis

Philipp Wein

	Correlation functions	BChPT		
0000000	000			

Moments \longleftrightarrow matrix elements of local operators

Moments of DAs

$$V_{lmn}^{B} = \int [dx] \ x_{1}^{l} x_{2}^{m} x_{3}^{n} V^{B}(x_{1}, x_{2}, x_{3})$$

unlike the full DAs the moments can be directly evaluated on the latticefor that purpose we define local operators such as

$$\begin{aligned} \mathcal{V}_{\rho}^{B,000} &= \epsilon^{ijk} \left(f^{Ti}(0) C \gamma_{\rho} g^{j}(0) \right) \gamma_{5} h^{k}(0) \\ \mathcal{V}_{\rho\nu}^{B,001} &= \epsilon^{ijk} \left(f^{Ti}(0) C \gamma_{\rho} g^{j}(0) \right) \gamma_{5} \left[i D_{\nu} h(0) \right]^{k} \end{aligned}$$

consider specific linear combinations to avoid operator mixing, e.g.,

$$\mathcal{O}_{\mathcal{V}}^{B,000} = -\gamma_3 \mathcal{V}_3^{B,000} + \gamma_4 \mathcal{V}_4^{B,000} \,, \; \dots \;, \; (\text{see below})$$

	Correlation functions	BChPT		
	000			

Correlation functions: spectral decomposition

- insert full set of states
- at large t excited states are negligible
- parity projection: $\gamma_{+} = (\mathbb{1} + k\gamma_{4})/2$ with $k = m_{B^{*}}/E_{B^{*}}$ (k = 1 also fine)
- source currents: $\mathcal{N}^N = \left(u^T C \gamma_5 d \right) u$, $\mathcal{N}^\Sigma = \left(d^T C \gamma_5 s \right) d$, ...
- quark fields in source currents smeared to enhance ground state overlap

$$\langle 0 | \mathcal{N}^B(0, \mathbf{0}) | B(\mathbf{p}, \lambda) \rangle \equiv \sqrt{Z_{\mathbf{p}}^B} u(\mathbf{p}, \lambda)$$

 $\mathcal{O} = \mathcal{N} \text{ (smeared current)}: \quad C_{\mathcal{N}} = Z_B \frac{m_B + kE_B}{E_B} e^{-E_B t} + \dots$ $\mathcal{O} = \mathcal{O}_{\mathcal{V}}^{B,000} \text{ (local current)}: \quad C_{\mathcal{O}} = V_{000}^B \sqrt{Z_B} \frac{E_B (m_B + kE_B) + kp_3^2}{E_B} e^{-E_B t} + \dots$

- \rightarrow simultaneous fit to smeared-smeared and smeared-point correlation functions (fit range: $t_{\text{start}} < t < 20a$; in this case choose $t_{\text{start}} = 10a$)
- $\rightarrow\,$ obtain normalization constants $f^B\equiv V^B_{000}$ and $f^B_T\equiv T^B_{000}$ and first moments

Renormalization procedure

- bare lattice values have to be renormalized
- in the end we should be able to give our results in the popular continuum $\overline{\text{MS}}$ scheme
- this scheme cannot be implemented directly on the lattice
- we use a nonperturbative RI//SMOM scheme for the lattice renormalization
 renormalization condition: fix vertex function to Born term at the renormalization point
 renormalization point: use non-exceptional (i.e., symmetric) momentum configuration

e.g.,
$$p_{\mathsf{SMOM}}$$
: $p_1^2 = p_2^2 = p_3^2 = (p_1 + p_2)^2 = (p_1 + p_3)^2 = (p_1 + p_2 + p_3)^2 = \mu^2$

• we use continuum perturbation theory to convert from RI'/SMOM to \overline{MS} (at 2 GeV)

Motivation 0000000			Renormalization O	BChPT 00000000	Extrapolation 0000	Results 0000
Operato	r classifi	cation: $\overline{H(4)}$				

- \blacksquare on the lattice: continuous $\mathsf{O}(4)$ symmetry broken to hypercubic $\mathsf{H}(4)$ symmetry
- fermions on a lattice transform under the spinorial hypercubic group $\overline{H(4)}$ (a discrete double cover group of H(4) with 768 elements)
- five irreducible spinorial representations: τ_1^4 , τ_2^4 , τ^8 , τ_1^{12} , τ_2^{12}
- operators belonging to different representations cannot mix

	no derivatives dimension 9/2	1 derivative dimension 11/2	2 derivatives dimension 13/2
$ au_1^{\underline{4}}$	$\mathcal{O}_1, \mathcal{O}_2, \mathcal{O}_3, \mathcal{O}_4, \mathcal{O}_5$		$\mathcal{O}_{DD1}, \mathcal{O}_{DD2}, \mathcal{O}_{DD3},$
τ_2^4			$\mathcal{O}_{DD4}, \mathcal{O}_{DD5}, \mathcal{O}_{DD6},$
$\tau^{\underline{8}}$	\mathcal{O}_6	$\mathcal{O}_{D1},$	$\mathcal{O}_{DD7}, \mathcal{O}_{DD8}, \mathcal{O}_{DD9},$
$\tau_1^{\underline{12}}$	$\mathcal{O}_7, \mathcal{O}_8, \mathcal{O}_9$	$\mathcal{O}_{D2}, \mathcal{O}_{D3}, \mathcal{O}_{D4},$	$\mathcal{O}_{DD10}, \mathcal{O}_{DD11}, \mathcal{O}_{DD12}, \mathcal{O}_{DD13}, \dots$
$\tau_2^{\underline{12}}$		$\mathcal{O}_{D5}, \mathcal{O}_{D6}, \mathcal{O}_{D7}, \mathcal{O}_{D8}$	$\mathcal{O}_{DD14}, \mathcal{O}_{DD15}, \mathcal{O}_{DD16}, \mathcal{O}_{DD17}, \mathcal{O}_{DD18}, \dots$

Philipp Wein

Motivation 0000000			Renormalization O •	BChPT 00000000	Extrapolation 0000	Results 0000
Operato	r classifi	cation: $\overline{\mathbf{H}(4)}$				

- in the continuum operators with different number of derivatives do not mix
- \hfill on the lattice there is an additional dimensionful quantity: the lattice spacing a
- schematically: Dqqq can now mix with $\frac{1}{a}qqq$ (problematic in the continuum limit)
- for leading twist normalization constants and first moments:
 - \rightarrow we can avoid the problem
- normalization constants/first moments mix among each other

	no derivatives dimension 9/2	1 derivative dimension 11/2	2 derivatives dimension 13/2
$ au_1^4$	$\mathcal{O}_1, \mathcal{O}_2, \mathcal{O}_3, \mathcal{O}_4, \mathcal{O}_5$		$\mathcal{O}_{DD1}, \mathcal{O}_{DD2}, \mathcal{O}_{DD3},$
τ_2^4			$\mathcal{O}_{DD4}, \mathcal{O}_{DD5}, \mathcal{O}_{DD6},$
$\tau^{\underline{8}}$	\mathcal{O}_6	$\mathcal{O}_{D1},$	$\mathcal{O}_{DD7}, \mathcal{O}_{DD8}, \mathcal{O}_{DD9},$
$\tau_1^{\underline{12}}$	$\mathcal{O}_7, \mathcal{O}_8, \mathcal{O}_9$	$\mathcal{O}_{D2}, \mathcal{O}_{D3}, \mathcal{O}_{D4},$	$\mathcal{O}_{DD10}, \mathcal{O}_{DD11}, \mathcal{O}_{DD12}, \mathcal{O}_{DD13}, \dots$
$\tau_2^{\underline{12}}$		$\mathcal{O}_{D5}, \mathcal{O}_{D6}, \mathcal{O}_{D7}, \mathcal{O}_{D8}$	$\mathcal{O}_{DD14}, \mathcal{O}_{DD15}, \mathcal{O}_{DD16}, \mathcal{O}_{DD17}, \mathcal{O}_{DD18}, \dots$

Philipp Wein

Motivation 0000000			BChPT ●0000000	Extrapolation 0000	Results 0000
SU(3) B	ChPT				

■ in QCD chiral symmetry is spontaneously broken:

 $SU(3)_L \otimes SU(3)_R \xrightarrow{SSB} SU(3)$ flavor + 8 Goldstone bosons

- explicit breaking due to non-zero quark masses
 - \Rightarrow the Goldstone bosons acquire a mass
 - \Rightarrow additional SU(3) flavor symmetry breaking if the quark masses are not equal
- using ChPT the explicit breaking can be treated perturbatively

 \Rightarrow **ChPT** is a most suitable tool to understand SU(3) symmetry and its breaking

Motivation 0000000		BChPT 0●000000	Extrapolation 0000	Results 0000

Hadronic fields

meson fields:

$$\phi = \sqrt{2} \begin{pmatrix} \frac{\pi^{0}}{\sqrt{2}} + \frac{\eta}{\sqrt{6}} & \pi^{+} & K^{+} \\ \pi^{-} & -\frac{\pi^{0}}{\sqrt{2}} + \frac{\eta}{\sqrt{6}} & K^{0} \\ K^{-} & \overline{K}^{0} & -\frac{2\eta}{\sqrt{6}} \end{pmatrix} \qquad u = \exp\left(\frac{i\phi}{2F_{\pi}}\right)$$

$$= \text{ octet baryons:}$$

$$B = \begin{pmatrix} \frac{\Sigma^{0}}{\sqrt{2}} + \frac{\Lambda}{\sqrt{6}} & \Sigma^{+} & p \\ \Sigma^{-} & -\frac{\Sigma^{0}}{\sqrt{2}} + \frac{\Lambda}{\sqrt{6}} & n \\ \Xi^{-} & \Xi^{0} & -\frac{2\Lambda}{\sqrt{6}} \end{pmatrix} \qquad \hat{=} \qquad \sum^{-} \underbrace{\sum^{0}_{-} \frac{-\hat{T}_{-}}{\sqrt{2}} \sum^{0}_{+} \frac{-\hat{T}_{-}}{\sqrt{2}} \sum^{0}_$$

Philipp Wein

Motivation 0000000		BChPT 00●00000	Extrapolation 0000	Results 0000
Thurson	 			

I hree quark operators

- the quest: construct 3q operator in terms of hadron fields
- first step: use $q = q_L + q_R$ to make use of chiral symmetry

$$\begin{split} q^{a}_{\alpha}(a_{1}n)q^{b}_{\beta}(a_{2}n)q^{c}_{\gamma}(a_{3}n) &= \mathcal{O}^{abc}_{RR,\alpha\beta\gamma}(a_{1},a_{2},a_{3}) + \mathcal{O}^{abc}_{LL,\alpha\beta\gamma}(a_{1},a_{2},a_{3}) \\ &+ \mathcal{O}^{abc}_{RL,\alpha\beta\gamma}(a_{1},a_{2},a_{3}) + \mathcal{O}^{abc}_{LR,\alpha\beta\gamma}(a_{1},a_{2},a_{3}) \\ &+ \mathcal{O}^{cab}_{RL,\gamma\alpha\beta}(a_{3},a_{1},a_{2}) + \mathcal{O}^{cab}_{LR,\gamma\alpha\beta}(a_{3},a_{1},a_{2}) \\ &+ \mathcal{O}^{bca}_{RL,\beta\gamma\alpha}(a_{2},a_{3},a_{1}) + \mathcal{O}^{bca}_{LR,\beta\gamma\alpha}(a_{2},a_{3},a_{1}) \end{split}$$

• i.e., there are only two different types of operators: chiral-even $(\mathcal{O}_{RR}/\mathcal{O}_{LL})$ and chiral-odd $(\mathcal{O}_{RL}/\mathcal{O}_{LR})$

$$\mathcal{O}_{XY,\alpha\beta\gamma}^{abc}{}_{(a_1n,a_2n,a_3n)} = q_{X,\alpha}^a(a_1n)q_{X,\beta}^b(a_2n)q_{Y,\gamma}^c(a_3n)$$

Philipp Wein

		BChPT		
		00000000		

Ansatz for the effective operator

$$\mathcal{O}_{XY,\alpha\beta\gamma}^{abc}{}_{(a_1n,a_2n,a_3n)} = \int [dx] \sum_{i,j} \sum_{k=1}^{k_j} \mathcal{F}_{XY}^{i,j,k}{}_{(x_1,x_2,x_3)} \Gamma_{\alpha\beta\gamma\delta}^{i,XXY} B_{\delta,abc}^{j,k,XXY}(z)$$

• the functions \mathcal{F} are distribution amplitudes

 \rightarrow play the role of LECs

• Γ : *i* labels the possible Dirac structures (6 for chiral-even and 6 for chiral-odd) \rightarrow Lorentz indices are contracted with *n* or derivatives acting on *B*

■ B: contains hadron fields; e.g., $B_{\delta,abc}^{1,1,RRL} = (u B_{\delta})_{aa'}(u)_{bb'}(u^{\dagger})_{cc'} \varepsilon_{a'b'c'}$

 $j = 2, 3 \rightarrow$ structures with quark mass matrix (contained in χ^+) $k = 2, 3, \ldots \rightarrow$ different positions of baryon-octet field B_{δ} and χ^+

		BChPT		
		00000000		

Ansatz for the effective operator

$$\mathcal{O}_{XY,\alpha\beta\gamma}^{abc}{}_{(a_1n,a_2n,a_3n)} = \int \left[dx \right] \sum_{i,j} \sum_{k=1}^{k_j} \mathcal{F}_{XY}^{i,j,k}{}_{(x_1,x_2,x_3)} \Gamma_{\alpha\beta\gamma\delta}^{i,XXY} B_{\delta,abc}^{j,k,XXY}(z)$$

•
$$z = n \sum_{i} x_i a_i$$
 and $[dx] = dx_1 dx_2 dx_3 \ \delta(1 - x_1 - x_2 - x_3)$
 \rightarrow correct behaviour under translations in n direction

- **Parity:** relates left- and right-handed operators $\rightarrow \mathcal{F}_{RR} = -\mathcal{F}_{LL}$ and $\mathcal{F}_{LR} = -\mathcal{F}_{RL}$
- \blacksquare CP or Time-reversal: yield "reality condition" \to $\mathcal{F}^{\dagger}=\mathcal{F}$ up to an overall phase
- symmetry under quark exchange: relates different \mathcal{F} to each other

		BChPT		
		00000000		

Leading one-loop calculation

- loop integrals are (more or less) straightforward
- multiply with \sqrt{Z} to take into account wave function renormalization
- we use IR regularization scheme²
- **main challenge:** handling the large number of different structures
- **a** last step: obtain results for the 24 standard DAs $S_{1,2}^B$, $P_{1,2}^B$, V_{1-6}^B , A_{1-6}^B , T_{1-8}^B by matching to the general matrix element decomposition

²T. Becher and H. Leutwyler, Eur. Phys. J. C9 (1999) 643

				BChPT		
0000000	00	000	00	000000000	0000	0000

Results: Definition of octet DAs (leading twist)

$$\begin{split} \Phi_{\pm,3}^{B\neq\Lambda}(x_1,x_2,x_3) &= \frac{1}{2} \left(\left[V_1 - A_1 \right]^B (x_1,x_2,x_3) \pm \left[V_1 - A_1 \right]^B (x_3,x_2,x_1) \right) \\ \Pi_3^{B\neq\Lambda}(x_1,x_2,x_3) &= T_1^B (x_1,x_3,x_2) \\ \Phi_{+,3}^{\Lambda}(x_1,x_2,x_3) &= +\sqrt{\frac{1}{6}} \left(\left[V_1 - A_1 \right]^{\Lambda} (x_1,x_2,x_3) + \left[V_1 - A_1 \right]^{\Lambda} (x_3,x_2,x_1) \right) \\ \Phi_{-,3}^{\Lambda}(x_1,x_2,x_3) &= -\sqrt{\frac{3}{2}} \left(\left[V_1 - A_1 \right]^{\Lambda} (x_1,x_2,x_3) - \left[V_1 - A_1 \right]^{\Lambda} (x_3,x_2,x_1) \right) \\ \Pi_3^{\Lambda}(x_1,x_2,x_3) &= \sqrt{6} \ T_1^{\Lambda}(x_1,x_3,x_2) \end{split}$$

- nice feature: **no mixing** under chiral extrapolation
- good behaviour in the SU(3) symmetric limit

$$\begin{split} \Phi_{+,i}^{\star} &\equiv \Phi_{+,i}^{N\star} = \Phi_{+,i}^{\Sigma\star} = \Phi_{+,i}^{\pm\star} = \Phi_{+,i}^{\Lambda\star} = \Pi_{i}^{N\star} = \Pi_{i}^{\Sigma\star} = \Pi_{i}^{\Xi\star} \\ \Phi_{-,i}^{\star} &\equiv \Phi_{-,i}^{N\star} = \Phi_{-,i}^{\Sigma\star} = \Phi_{-,i}^{\pm\star} = \Phi_{-,i}^{\Lambda\star} = \Pi_{i}^{\Lambda\star} \end{split}$$

 \blacksquare the Λ baryon fits in nicely

				BChPT			
0000000	00	000	00	00000000	0	0000	0000

Results: Definition of octet DAs (leading twist)

$$\begin{split} \Phi_{\pm,\Lambda}^{B\neq\Lambda}(x_1, x_2, x_3) &= \frac{1}{2} \left(\left[V_1 - A_1 \right]^B (x_1, x_2, x_3) \pm \left[V_1 - A_1 \right]^B (x_3, x_2, x_1) \right) \\ \Pi_3^{B\neq\Lambda}(x_1, x_2, x_3) &= T_1^B (x_1, x_3, x_2) \\ \Phi_{+,3}^{\Lambda}(x_1, x_2, x_3) &= +\sqrt{\frac{1}{6}} \left(\left[V_1 - A_1 \right]^{\Lambda} (x_1, x_2, x_3) + \left[V_1 - A_1 \right]^{\Lambda} (x_3, x_2, x_1) \right) \\ \Phi_{-,3}^{\Lambda}(x_1, x_2, x_3) &= -\sqrt{\frac{3}{2}} \left(\left[V_1 - A_1 \right]^{\Lambda} (x_1, x_2, x_3) - \left[V_1 - A_1 \right]^{\Lambda} (x_3, x_2, x_1) \right) \\ \Pi_3^{\Lambda}(x_1, x_2, x_3) &= \sqrt{6} T_1^{\Lambda} (x_1, x_3, x_2) \end{split}$$

- similar definitions are possible for higher twist DAs
- the result automatically fulfills all known isospin constraints, e.g.,

$$\Phi_{+,3}^{N} = \Pi_{3}^{N} \quad \hat{=} \quad 2T_{1}^{N}(x_{1}, x_{3}, x_{2}) = [V_{1} - A_{1}]^{N}(x_{1}, x_{2}, x_{3}) + [V_{1} - A_{1}]^{N}(x_{3}, x_{2}, x_{1})$$

				BChPT		
0000000	00	000	00	00000000	0000	0000

Results: Extrapolation formulas

$$\begin{split} \text{Example: chiral-odd DAs} & \bar{m}^2 \equiv (2m_K^2 + m_\pi^2)/3 \approx 2B_0(m_s + 2m_\ell)/3 \\ & \delta m^2 \equiv m_K^2 - m_\pi^2 \approx B_0(m_s - m_\ell) \end{split}$$

$$\Phi^B_{\pm,i} = g^B_{\Phi\pm}(m_\pi, m_K, L) \left(\Phi^0_{\pm,i} + \bar{m}^2 \bar{\Phi}_{\pm,i} + \delta m^2 \ \Delta \Phi^B_{\pm,i} \right) \\ \Pi^B_i = g^B_{\Pi}(m_\pi, m_K, L) \times \begin{cases} \Phi^0_{\pm,i} + \bar{m}^2 \bar{\Phi}_{\pm,i} + \delta m^2 \ \Delta \Pi^B_i \\ \Phi^0_{\pm,i} + \bar{m}^2 \bar{\Phi}_{\pm,i} + \delta m^2 \ \Delta \Pi^B_i \end{cases}, \text{ if } B \neq \Lambda \\ \Phi^0_{\pm,i} + \bar{m}^2 \bar{\Phi}_{\pm,i} + \delta m^2 \ \Delta \Pi^B_i \end{cases}, \text{ if } B = \Lambda \end{split}$$

- nice behaviour along the flavor symmetric line
- up to the fit parameters extrapolation formulas are twist independent
- complete non-analytic structure contained in prefactors; for $m_{\pi} = m_K$:

$$\begin{split} \lim_{m \to 0} g^B_{\mathsf{DA}}(m,m,\infty) &= 1 \qquad g^N_{\Phi+} = g^\Sigma_{\Phi+} = g^\Xi_{\Phi+} = g^\Lambda_{\Phi+} = g^N_\Pi = g^\Sigma_\Pi = g^\Xi_\Pi \\ g^N_{\Phi-} &= g^\Sigma_{\Phi-} = g^\Xi_{\Phi-} = g^\Lambda_{\Phi-} = g^\Lambda_\Pi \end{split}$$

• constraints for $SU(3)_f$ symmetry breaking: e.g., $\Delta \Pi_3^{\Sigma} = -\frac{1}{2} \Delta \Phi_{+,3}^{\Sigma} - \frac{3}{2} \Delta \Phi_{+,3}^{\Lambda}$

Motivation 0000000		BChPT 0000000●	Extrapolation 0000	Results 0000

Parametrization of octet DAs

Example: leading twist DAs

$$\begin{split} \Phi^B_{+,3} &= 120x_1x_2x_3 \left(f^B \mathcal{P}_{00} + \varphi^B_{11} \mathcal{P}_{11} + \dots \right) \\ \Phi^B_{-,3} &= 120x_1x_2x_3 \left(\varphi^B_{10} \mathcal{P}_{10} + \dots \right) \\ \Pi^{B \neq \Lambda}_3 &= 120x_1x_2x_3 \left(f^B_T \mathcal{P}_{00} + \pi^B_{11} \mathcal{P}_{11} + \dots \right) \\ \Pi^{\Lambda}_3 &= 120x_1x_2x_3 \left(\pi^{\Lambda}_{10} \mathcal{P}_{10} + \dots \right) \end{split}$$

distribution amplitudes can be expanded in a set of orthogonal polynomials

$$\mathcal{P}_{00} = 1$$
, $\mathcal{P}_{11} = 7(x_1 - 2x_2 + x_3)$, $\mathcal{P}_{10} = 21(x_1 - x_3)$, ...

- the expansion coefficients have autonomous scale dependence³
- higher moments are suppressed in the asymptotic limit
- \blacksquare our definition separates symmetric from antisymmetric polynomials under $x_1 \leftrightarrow x_3$
- we only separate contributions which are orthogonal anyway!

³see, e.g., V. M. Braun et. al., Prog. Part. Nucl. Phys. **51** (2003) 311

Motivation 0000000		BChPT 0000000	Extrapolation 0000	Results 0000

Parametrization of octet DAs

Example: leading twist DAs

$$\begin{split} \Phi^{B}_{+,3} &= 120x_{1}x_{2}x_{3}\left(\boldsymbol{f}^{B}\mathcal{P}_{00} + \varphi^{B}_{11}\mathcal{P}_{11} + \dots\right) \\ \Phi^{B}_{-,3} &= 120x_{1}x_{2}x_{3}\left(\varphi^{B}_{10}\mathcal{P}_{10} + \dots\right) \\ \Pi^{B\neq\Lambda}_{3} &= 120x_{1}x_{2}x_{3}\left(\boldsymbol{f}^{B}_{T}\mathcal{P}_{00} + \pi^{B}_{11}\mathcal{P}_{11} + \dots\right) \\ \Pi^{\Lambda}_{3} &= 120x_{1}x_{2}x_{3}\left(\pi^{\Lambda}_{10}\mathcal{P}_{10} + \dots\right) \end{split}$$

- \blacksquare additional leading twist normalization constants f_T^Σ and f_T^Ξ
- \blacksquare exact isospin symmetry $\Rightarrow f_T^N = f^N$ and $\pi_{11}^N = \varphi_{11}^N$
- quark mass dependence inherited from DAs; in particular:

$$f^{\star} \equiv f^{N\star} = f^{\Sigma\star} = f^{\Xi\star} = f^{\Lambda\star} = f^{\Lambda\star} = f^{T\star} = f^{\Sigma\star}_T = f^{\Xi\star}_T$$
$$\varphi^{\star}_{11} \equiv \varphi^{\Lambda\star}_{11} = \varphi^{\Sigma\star}_{11} = \varphi^{\Lambda\star}_{11} = \pi^{\Lambda\star}_{11} = \pi^{\Sigma\star}_{11} = \pi^{\Xi\star}_{11}$$
$$\varphi^{\star}_{10} \equiv \varphi^{\Lambda\star}_{10} = \varphi^{\Sigma\star}_{10} = \varphi^{\Xi\star}_{10} = \varphi^{\Lambda\star}_{10} = \pi^{\Lambda\star}_{10}$$

0000000 00 000 00	0 0	

40 ensembles

Coordinated Lattice Simulations gauge ensembles

- multiple trajectories in quark mass plane
- wide range of lattice spacings 0.039 fm $\leq a \leq$ 0.086 fm
- Iarge volumes (almost all ensembles have $m_{\pi}L > 4$)

		BChPT	Extrapolation	
			0000	

Continuum extrapolation

Ansatz for the lattice spacing dependence

$$\phi_{\rm lat} = \left(1 + c_\phi^0 a + \bar{c}_\phi \bar{m}^2 a + \delta c_\phi^B \delta m^2 a\right) \phi_{\rm cont} \,,$$

- $\ensuremath{\,{\rm \bullet}}\xspace \phi$ is a wildcard for normalization constants and moments
- $\blacksquare \ \phi_{\rm cont}$ corresponds to the volume and mass dependence in the continuum
- for $\delta m = 0$ flavor symmetry has to be exact also at $a \neq 0$ $\rightarrow c_{\phi}^{0}$ and \bar{c}_{ϕ} are constrainted (in particular baryon-independent)
- \blacksquare however: the discretization effects can violate the ${\rm SU}(3)$ breaking constraints

 \Rightarrow perform simultaneous fit to all 40 ensembles

		BChPT	Extrapolation	
			0000	

Continuum extrapolation

- for illustrative purposes:
 - 1 data shifted to physical masses and infinite volume
 - **2** then take average of all ensembles at the same lattice spacing (only 2 ens. at 0.039 fm)
- large discretization effects for normalization constants; even larger for moments
- for moments the effect can be a game changer (zero crossings)
 - \Rightarrow taking the continuum limit is pivotal

<u>Anecdote:</u> in an earlier study we only had data at a = 0.086 fm \rightarrow the accidental value $\pi_{10}^{\Lambda} \approx 0$ led to wrong conclusions

		BChPT	Extrapolation	
			0000	

Chiral extrapolation: normalization constants

- for illustrative purposes: data shifted to a = 0
- at flavor symmetric case: baryons nicely fall ontop of each other
- we find strong SU(3) breaking effects: $(f_T^{\Xi} f^N)/f^N \approx 78\%$
- far larger than estimated in QCD sum rules ($\lesssim 10\%$)

		BChPT	Extrapolation	
			0000	

Chiral extrapolation: first moments

for the moments SU(3) breaking effects are even larger (π_{11}^{Σ} changes sign)

BUT: numerical values for moments quite small

Philipp Wein

				BChPT			Results
0000000	00	000	00	00000000	0	0000	•000

Baryon 3q wave function (at leading twist & small transverse separation)

$$|B^{\uparrow}\rangle \sim \int \frac{[dx]}{\sqrt{x_1 x_2 x_3}} |fgh\rangle \otimes \left\{ [V+A]^B(x_1, x_2, x_3) |\downarrow\uparrow\uparrow\rangle + [V-A]^B(x_1, x_2, x_3) |\uparrow\downarrow\downarrow\rangle \right\}$$

shape in the asymptotic limit:

$$\begin{split} \phi_{\mathsf{as}} &= 120x_1x_2x_3 = \frac{V^N}{f^N} = \frac{V^\Sigma}{f^\Sigma} = \frac{V^\Xi}{f^\Xi} \\ &= \frac{T^N}{f^N} = \frac{T^\Sigma}{f^\Sigma_T} = \frac{T^\Xi}{f^\Xi_T} = \frac{-A^\Lambda}{f^\Lambda} \\ &0 = A^N = A^\Sigma = A^\Xi = V^\Lambda = T^\Lambda \end{split}$$

$$\begin{array}{c} 4.44 \\ & 0.0 \\ & 0.2 \\ & 0.4 \\ & 0.6 \\ & 0.6 \\ & 0.6 \\ & 0.6 \\ & 0.6 \\ & 0.6 \\ & 0.6 \\ & 0.6 \\ & 0.6 \\ & 0.6 \\ & 0.1 \\ & 0.0 \\ & 0.2 \\ & 0.4 \\ & 0.6 \\ & 0.8 \\ & 0.1 \\ & 0.1 \\ & 0.2 \\ & 0.1 \\$$

• use barycentric plots $(x_1 + x_2 + x_3 = 1)$

 $\phi_{\rm as}^{\rm max} = 120/27 = 4.44$

see, e.g., Chernyak et al., Sov. J. Nucl. Phys. 48 (1988) 536

- deviations of $[V A]^B$ (top) and T^B (bottom) from asymptotic shape
- \blacksquare from left to right the plots show the baryons N, $\Sigma,$ $\Xi,$ Λ
- $\blacksquare \ B \neq \Lambda:$ shift towards strange quarks and towards the leading quark
- T^{Λ} : asymptotic limit vanishes by construction
- isospin symmetry: T^N can be obtained from $[V A]^N$

due to isospin symmetry and symmetry under quark exchange:

$$|N^{\uparrow}\rangle \sim \int \frac{[dx]}{\sqrt{x_1 x_2 x_3}} [V-A]^N(x_1, x_2, x_3) \left| u^{\uparrow}(x_1) \left(u^{\downarrow}(x_2) d^{\uparrow}(x_3) - d^{\downarrow}(x_2) u^{\uparrow}(x_3) \right)
ight
angle$$

- \blacksquare momentum distribution shifted towards a leading u quark
- approximate symmetry under $x_2 \leftrightarrow x_3 \Rightarrow$ indicates scalar diquark correlation?

		BChPT		Results
				0000

What does this mean in position space?

- consider $\operatorname{Re}\left\{\int [dx]e^{-in \cdot p \sum_{i} a_{i}x_{i}} DA(x_{1}, x_{2}, x_{3})\right\}$ (DAs normalized as on last slide)
- $[V A]^B$ (top) and T^B (bottom); asymptotic (black), N, Σ , Ξ , Λ
- IF two quarks are far apart \rightarrow third quark close to one of them (BUT this is highly unlikely)
- in nucleon: opposite of my naive expectation for a scalar diquark happens (third quark prefers to be closer to the leading quark)

Motivation 0000000			BChPT 00000000	Extrapolation 0000	Results 000●
Summar	y				

- determination of normalization constants and first moments of baryon octet DAs using lattice QCD
- not in this talk but in the article: results for higher twist normalization constants
- effect of higher moments ignored so far (second moments would be interesting)
- \blacksquare results can/should be used to cross-check diquark models and DSE calculations \longrightarrow see the talk by C. Mezrag yesterday

we find:

- limit of exact flavor symmetry: nicely fulfilled by the lattice data
- performing the continuum extrapolation is pivotal (in particular for the moments)
- \blacksquare normalizations: $\mathsf{SU}(3)$ breaking quite large
- \blacksquare deviations from asymptotic shapes: numerically small, but $\mathsf{SU}(3)$ breaking very large
- only very mild diquark correlations