The JLab SBS Program and Nucleon Form Factors at high Q²

- Some history regarding the role of nucleon form-factor measurements
- How SBS will enable huge advancements in our understanding of high-Q² form-factor measurements.
- A quick look at projected results

Gordon D. Cates September 23, 2019

What is SBS?

One answer:

• An acronym for Super Bigbite Spectrometer

A more substantive answer

 It is a collection of new equipment that will enable precise measurements of the nucleon form factors to unprecedented values of Q²

So why measure the nucleon form factors to such high Q²

Here it is useful to take a quick look at history....

Studies of elastic FFs have provided a long history of discovery

Hofstadter's studies of the proton form factor (FF)
helped establish its size.

• Studies at SLAC of proton FFs at high Q²

- were a key part of the data from SLAC that led to the discovery of quarks
- Discovery at JLab that G_{E^p}/G_{M^p} decreases nearly linearly at high Q^2
 - Renewed focus on nucleon structure and the role of quark orbital angular momentum.

• Measurements at JLab of G_E^n/G_M^n high Q^2

 Provided, for the first time, the ability to separate the behavior of up and down quarks at high Q², and important evidence, beyond the missing states in the N* spectrum, for the existence of diquarks.

SLAC proposal from almost 54 years ago

SLAC Proposal No. 4

PROPOSALS FOR INITIAL ELECTRON SCATTERING EXPERIMENTS USING THE SLAC SPECTROMETER FACILITIES

Submitted

By SLAC-MIT-CIT Collaboration

Particle physicists actively participating in the collaboration at this time:

Stanford Linear Accelerator Center (Group A)

W.K.H. Panofsky, D. H. Coward, H. DeStaebler, J. Litt, L. W. Mo and R. E. Taylor.

Massachusetts Institute of Technology

J. I. Friedman, H. W. Kendall and L. Van Speybroeck.

California Institute of Technology

C. Peck and J. Pine.

January 1966

Sl	LAC proposal from almost 54 year	's ago	
0	. TABLE OF CONTENTS		
INT	RODUCTION	2	
I.	PROPOSAL NUMBER 4a - ELECTRON-PROTON ELASTIC SCATTERING	24	
II.	PROPOSAL NUMBER 4b - THE ELECTRON-PROTON INELASTIC SCATTERING EXPERIMENT.	33	
III.	PROPOSAL NUMBER 4c - COMPARISON OF POSITRON-PROTON AND ELECTRON- PROTON ELASTIC SCATTERING	59	
Service of	We are submitting three proposals:		8
	I. Electron-proton elastic scattering		
	II. Electron-proton inelastic scattering		
	III. Comparison of positron-proton and electron-proton		

Measuring <u>both</u> the elastic and the inelastic scattering at high Q^2 was key to SLAC's role in the discovery of quarks

elastic scattering.

From Michael Riordan's "The discovery of quarks" Science 256, 1287 (1992)

• The elastic cross section dropped roughly as the 6th power of Q², and the

"... behavior was generally interpreted as evidence for a soft proton lacking any core; it was commonly thought that the existence of such a core would have slowed the rate at which the cross section decreased"

• However, Riordan describes how in the first inelastic experiment, the

" ... raw counting rates were much higher than had been expected in the deep inelastic region"

• "In hindsight, such an observation paralleled the discovery of the atomic nucleus by Ernest Rutherford"

Elastic scattering at SLAC circa 1970 also helped set the stage for big surprises at JLab

Litt et al., Phys. Lett. 31B, 40 (1970)

These data helped start a bias to expect that $\mu_p G_{E^p}/G_{M^p} \sim 1$

The measurements of $\mu_p G_{E^p}/G_{M^p}$ using the recoil polarization technique at JLab

Data from both Rosenbluth separations and the double-polarization technique.

Resulted in the 2017 Bonner Prize in Nuclear Physics being awarded to to Charles Perdrisat of William and Mary

Explanations for the Q^2 behavior of G_{E^p}/G_{M^p} have emphasized the role of <u>quark orbital angular momentum</u>.

Evidence for quark orbital angular momentum has subsequently been seen in a variety of other experiments

Proton results for G_E/G_M led to keen interest in gaining corresponding results for the <u>neutron</u>

But elastic cross sections at high Q^2 are tiny! To get to a Q^2 comparable with the proton, considerable innovation was needed.

- The experiment measured doublepolarization asymmetries in ³He(e,e'n)pp
- The electron arm used Big Bite, an open geometry spectrometer using a single dipole, with a detector package that looked directly at the target.
- It also used a high luminosity polarized ³He target, with a figure of merit more than 10x higher than E142 that measured the neutron spin structure.
- The neutron detector was, I believe the world's largest at that time.

The polarized 3He target for the first precise measurement of G_{E^n} at high Q^2

- The use of hybrid mixtures of Rb ad K greatly improved the <u>efficiency</u> with which the ³He was polarized.
- Greatly improved commercial high-power diode-laser arrays enabled <u>larger volumes</u> of ³He to be polarized.

Data from the Hall A polarized ³He experiment (E02-013) extended knowledge of G_{E^n} to high Q^2

The BigBite G_{E^n} experiment provided the first test of theories developed to explain the surprising proton results, although clearly, higher Q² would be desirable

With <u>both</u> proton and neutron FF data, one can extract the individual quark contributions

Multiple theoretical models suggest that the different behavior of the u- and d-quarks are indicative of the importance of <u>diquark correlations</u>.

A naive scaling argument suggested by Jerry Miller invokes diquarks

u-quark scattering amplitude is dominated by scattering from the lone "outside" quark. _Two constituents implies 1/Q²

e⁻

e

U

d

U

e-

50000000

660000000

C

e

Recee

d-quark scattering amplitude is necessarily probing inside the diquark. Two gluons need to be exchanged (or the diquark would fall apart), so scaling goes like $1/Q^4$

While at present this idea is at the conceptual stage, it is an intriguingly simple interpretation for the very different behaviors, and dovetails nicely into the outstanding question of missing states in the N* spectrum.

So <u>why</u> measure the nucleon FF's to even higher Q²

There are many reasons, among them they...

- ... will provide exquisite discrimination between different models and approximate forms of QCD.
- ... will provide a necessary ingredient in formulating 3-D tomography of the nucleon within the framework of GPDs.
- ... will elucidate high-Q² behavior (such as scaling) that can be compared with expectations from QCD.
- ... enable the determination of the separate behavior of the up- and down-quark contributions in a new regime of Q²

In short, they could provide a key element of a paradigm shift in how we think about nucleon structure

DSE/Faddeev calculation of $\mu_n GE^n/GM^n$

Cloet, Eichmann, El-Bennich, Kahn and Roberts, Few-Body Systems 46, 1-36 (2009)

Many of the theoretical models that reproduce the above trends indicate the importance of diquark correlations.

DSE/Faddeev calculation of $Q^4F_1^u$ and $Q^4F_1^d$

Cloët, Roberts and Wilson, using the QCD DSE approach, have made:

" ... a prediction for the Q²-dependence of u- and d-quark Dirac and Pauli form factors in the proton, which exposes the critical role played by diquark correlations within the nucleon."

Within their model, the different behaviors of the u- and d-quark FFs are a direct consequence of diquark degrees of freedom.

Nambu-Jona-Lasinio model Cloet, Bentz and Thomas

PHYSICAL REVIEW C 90, 045202 (2014)

Again, the importance of scalar diquark correlations causes distinctly different behavior for the u- and d-quark sectors

Next, <u>how</u> to measure the nucleon FF's at high Q²

The Super Bigbite Spectrometer

In essence, SBS takes the open-geometry approach successfully applied in the first polarized ³He G_{Eⁿ} measurement using BigBite, and extends the approach.

The SBS equipment will be configured differently depending on the experiment

GEn/GMn and GMn/GMp

GFP/GMP

The first SBS experiments and their likely order:

- E12-09-019: measurement of $G_M{}^n/G_M{}^p$ to Q²=13.5 GeV². Installation will probably begin in May of 2020
- E12-17-004 measurement of G_E^n/G_M^n at Q²=4.5 GeV
- E12-09-016: measurement of G_E^n/G_M^n to $Q^2=10$ GeV².
- E12-07-109: measurement of G_{E^p}/G_{M^p} to $Q^2=12 \text{ GeV}^2$.

Super Bigbite will provide game-changing capability to study the elastic nucleon form factors at very high momentum transfer.

The first SBS experiment: measurement of the ratio G_M^n/G_M^p : E12-09-019

- Electron arm will use BigBite w/ upgraded detector package utilizing GEMs.
- Neutron arm will use the SBS magnet to deflect protons relative to neutrons along with a hadron calorimeter, HCal.
- The set-up is very similar to what will be used to measure G_{Eⁿ} using polarized ³He.
- Complementary to CLAS12 G_Mⁿ measurement with different and smaller systematics

HCal - will be used in all four experiments form-factor experiments

- Hadron calorimeter has ~700 ps ToF accuracy and 30% energy resolution.
- 288 modules 3.6×1.8 m for acceptance matching at 17m
- >95% neutron and proton detection efficiency with near total suppression of all lowenergy background < 1 GeV

The first SBS experiment: measurement of the ratio G_M^n/G_M^p : E12-09-019

The <u>second</u> SBS experiment, the G_Eⁿ-Recoil Polarimeter experiment: E12-17-004

- Will run (almost) parasitically with the G_{M^n}/G_{M^p} experiment.
- Will use a copper analyzer just after the 48D48 Dipole, taking advantage of new data from Dubna.
- Will require only ~100 additional hours running
- Will provide highest existing Q² point for G_{Eⁿ}/G_{M^p}!
- Will also provide additional data on analyzing power which will guide potential future experiments.

The SBS GEⁿ-Recoil Polarimeter experiment: E12-17-004

Blue arrow indicates the recoil-polarimeter point

The <u>third</u> SBS experiment, the polarized ³He G_{Eⁿ} experiment: E12-09-016

- Will use Bigbite upgraded with GEMs for the electron arm.
- Will use the SBS magnet and the hadron calorimeter for the neutron arm.
- Will use a very-high luminosity polarized ³He target.

The SBS polarized ³He target

- Will have a FoM nearly 100 times higher than used at SLAC for E-142.
- <u>Spectrally-narrowed</u> high-power diode-laser arrays provide advantage over previous high-Q² polarized ³He G_{Eⁿ} experiment.
- Convection-driven target cells circulate polarized ³He more quickly, allowing higher beam current (8uA -> 60uA) while maintaining high polarization of 60%.

The SBS polarized-³He G_Eⁿ experiment: projected results

The <u>fourth</u> (and most challenging?) SBS experiment, the G_{E^p} experiment: E12-07-109

- Recoil polarimetry through two CH2 analyzers using GEMs for tracking
- e- detected in electromagnetic calorimeter with coordinate detector.
- Q² up to 12 GeV²

- 75 μ A on 40 cm H₂ target
- Θ_{hadron} down to 17 degrees
- Background rates up to 150 kHz/cm²

The <u>fourth</u> (and most challenging?) SBS experiment, the $G_{E^{p}}$ experiment: E12-07-109

Upgraded ECal calorimeter with human figure to give sense of scale

The <u>fourth</u> (and most challenging?) SBS experiment, the G_{E^p} experiment: E12-07-109

Electron calorimeter for the electron arm with NO magnetic elements.

- Upgraded version of existing electron calorimeter.
- ECal will absorb 0.5 kRad/ hour for Q² = 12 GeV² (no magnetic elements!)
- Thermal annealing at 200 C maintains optical transparency.
- Background rates up to 150 kHz/cm²

The SBS measurement of G_E^p/G_M^p : E12-09-019

The zero crossing of G_{E^p}/G_{M^p} provides sensitivity to the mass function $M(p^2)$

Summary of SBS form-factor measurements

SBS could help shape a <u>qualitatively</u> different picture of nucleon structure

A cartoon of the nucleon from the lobby of JLab

From the DOE Pulse Newsletter: A not-very-scientifically guided depiction of a nucleon with a diquark-like structure

While this cartoon is WAY too simple, it illustrates how the work being discussed at this workshop might influence fundamental concepts of hadronic structure

Additional experiments beyond the elastic form factors

Neutron Transversity with SBS+BB Semi-inclusive DIS: E12-09-018

- JLab E12-09-018—approved for 64 beam-days by JLab PAC38, A- scientific rating
- Transverse target single-spin asymmetries in ³He(e,e'h)X (h=π^{±,0}, K[±])
- ~100X higher statistical figure-of-merit for neutron than HERMES proton data
- First precision measurements in a multi-dimensional kinematic binning

SBS+BB projected results for neutron Sivers single-spin asymmetries

SBS+BB projected results for neutron Collins single-spin asymmetries

The SBS Tagged DIS experiment: PR12-15-006 Pion Exchange (Sullivan) Process -DIS from the pion cloud of the nucleon

- |t| has to be small to enhance contribution from Sullivan process -> use rTPC detection technique pioneered by JLab BONUS experiment with CLAS6
- BUT, small cross section means need luminosity solution: use an optimized rTPC with Super BigBite, L $\sim 10^{37}$

Summary

- The high luminosity and large solid angles of SBS will result in excellent statistics.
- The improved knowledge of the nucleon form factors at high Q² has the potential to be a game changer in our understanding of nucleon structure.
- The SBS program will also include additional physics such as SSAs in SIDIS, and tagged DIS.